Asterisk - The Open Source Telephony Project GIT-master-f36a736
lsf.c
Go to the documentation of this file.
1
2 /******************************************************************
3
4 iLBC Speech Coder ANSI-C Source Code
5
6 lsf.c
7
8 Copyright (C) The Internet Society (2004).
9 All Rights Reserved.
10
11 ******************************************************************/
12
13 #include <string.h>
14
15
16
17
18
19 #include <math.h>
20
21 #include "iLBC_define.h"
22
23 /*----------------------------------------------------------------*
24 * conversion from lpc coefficients to lsf coefficients
25 *---------------------------------------------------------------*/
26
27 void a2lsf(
28 float *freq,/* (o) lsf coefficients */
29 float *a /* (i) lpc coefficients */
30 ){
31 float steps[LSF_NUMBER_OF_STEPS] =
32 {(float)0.00635, (float)0.003175, (float)0.0015875,
33 (float)0.00079375};
34 float step;
35 int step_idx;
36 int lsp_index;
37 float p[LPC_HALFORDER];
38 float q[LPC_HALFORDER];
39 float p_pre[LPC_HALFORDER];
40 float q_pre[LPC_HALFORDER];
41 float old_p, old_q, *old;
42 float *pq_coef;
43 float omega, old_omega;
44 int i;
45 float hlp, hlp1, hlp2, hlp3, hlp4, hlp5;
46
47 for (i=0; i<LPC_HALFORDER; i++) {
48 p[i] = (float)-1.0 * (a[i + 1] + a[LPC_FILTERORDER - i]);
49 q[i] = a[LPC_FILTERORDER - i] - a[i + 1];
50 }
51
52 p_pre[0] = (float)-1.0 - p[0];
53 p_pre[1] = - p_pre[0] - p[1];
54 p_pre[2] = - p_pre[1] - p[2];
55 p_pre[3] = - p_pre[2] - p[3];
56 p_pre[4] = - p_pre[3] - p[4];
57 p_pre[4] = p_pre[4] / 2;
58
59 q_pre[0] = (float)1.0 - q[0];
60 q_pre[1] = q_pre[0] - q[1];
61 q_pre[2] = q_pre[1] - q[2];
62 q_pre[3] = q_pre[2] - q[3];
63 q_pre[4] = q_pre[3] - q[4];
64 q_pre[4] = q_pre[4] / 2;
65
66 omega = 0.0;
67
68
69
70
71
72 old_omega = 0.0;
73
74 old_p = FLOAT_MAX;
75 old_q = FLOAT_MAX;
76
77 /* Here we loop through lsp_index to find all the
78 LPC_FILTERORDER roots for omega. */
79
80 for (lsp_index = 0; lsp_index<LPC_FILTERORDER; lsp_index++) {
81
82 /* Depending on lsp_index being even or odd, we
83 alternatively solve the roots for the two LSP equations. */
84
85
86 if ((lsp_index & 0x1) == 0) {
87 pq_coef = p_pre;
88 old = &old_p;
89 } else {
90 pq_coef = q_pre;
91 old = &old_q;
92 }
93
94 /* Start with low resolution grid */
95
96 for (step_idx = 0, step = steps[step_idx];
97 step_idx < LSF_NUMBER_OF_STEPS;){
98
99 /* cos(10piw) + pq(0)cos(8piw) + pq(1)cos(6piw) +
100 pq(2)cos(4piw) + pq(3)cod(2piw) + pq(4) */
101
102 hlp = (float)cos(omega * TWO_PI);
103 hlp1 = (float)2.0 * hlp + pq_coef[0];
104 hlp2 = (float)2.0 * hlp * hlp1 - (float)1.0 +
105 pq_coef[1];
106 hlp3 = (float)2.0 * hlp * hlp2 - hlp1 + pq_coef[2];
107 hlp4 = (float)2.0 * hlp * hlp3 - hlp2 + pq_coef[3];
108 hlp5 = hlp * hlp4 - hlp3 + pq_coef[4];
109
110
111 if (((hlp5 * (*old)) <= 0.0) || (omega >= 0.5)){
112
113 if (step_idx == (LSF_NUMBER_OF_STEPS - 1)){
114
115 if (fabs(hlp5) >= fabs(*old)) {
116 freq[lsp_index] = omega - step;
117 } else {
118 freq[lsp_index] = omega;
119 }
120
121
122
123
124
125
126
127 if ((*old) >= 0.0){
128 *old = (float)-1.0 * FLOAT_MAX;
129 } else {
130 *old = FLOAT_MAX;
131 }
132
133 omega = old_omega;
134 step_idx = 0;
135
136 step_idx = LSF_NUMBER_OF_STEPS;
137 } else {
138
139 if (step_idx == 0) {
140 old_omega = omega;
141 }
142
143 step_idx++;
144 omega -= steps[step_idx];
145
146 /* Go back one grid step */
147
148 step = steps[step_idx];
149 }
150 } else {
151
152 /* increment omega until they are of different sign,
153 and we know there is at least one root between omega
154 and old_omega */
155 *old = hlp5;
156 omega += step;
157 }
158 }
159 }
160
161 for (i = 0; i<LPC_FILTERORDER; i++) {
162 freq[i] = freq[i] * TWO_PI;
163 }
164 }
165
166 /*----------------------------------------------------------------*
167 * conversion from lsf coefficients to lpc coefficients
168 *---------------------------------------------------------------*/
169
170 void lsf2a(
171 float *a_coef, /* (o) lpc coefficients */
172 float *freq /* (i) lsf coefficients */
173
174
175
176
177
178 ){
179 int i, j;
180 float hlp;
181 float p[LPC_HALFORDER], q[LPC_HALFORDER];
182 float a[LPC_HALFORDER + 1], a1[LPC_HALFORDER],
183 a2[LPC_HALFORDER];
184 float b[LPC_HALFORDER + 1], b1[LPC_HALFORDER],
185 b2[LPC_HALFORDER];
186
187 for (i=0; i<LPC_FILTERORDER; i++) {
188 freq[i] = freq[i] * PI2;
189 }
190
191 /* Check input for ill-conditioned cases. This part is not
192 found in the TIA standard. It involves the following 2 IF
193 blocks. If "freq" is judged ill-conditioned, then we first
194 modify freq[0] and freq[LPC_HALFORDER-1] (normally
195 LPC_HALFORDER = 10 for LPC applications), then we adjust
196 the other "freq" values slightly */
197
198
199 if ((freq[0] <= 0.0) || (freq[LPC_FILTERORDER - 1] >= 0.5)){
200
201
202 if (freq[0] <= 0.0) {
203 freq[0] = (float)0.022;
204 }
205
206
207 if (freq[LPC_FILTERORDER - 1] >= 0.5) {
208 freq[LPC_FILTERORDER - 1] = (float)0.499;
209 }
210
211 hlp = (freq[LPC_FILTERORDER - 1] - freq[0]) /
212 (float) (LPC_FILTERORDER - 1);
213
214 for (i=1; i<LPC_FILTERORDER; i++) {
215 freq[i] = freq[i - 1] + hlp;
216 }
217 }
218
219 memset(a1, 0, LPC_HALFORDER*sizeof(float));
220 memset(a2, 0, LPC_HALFORDER*sizeof(float));
221 memset(b1, 0, LPC_HALFORDER*sizeof(float));
222 memset(b2, 0, LPC_HALFORDER*sizeof(float));
223 memset(a, 0, (LPC_HALFORDER+1)*sizeof(float));
224 memset(b, 0, (LPC_HALFORDER+1)*sizeof(float));
225
226
227
228
229
230
231 /* p[i] and q[i] compute cos(2*pi*omega_{2j}) and
232 cos(2*pi*omega_{2j-1} in eqs. 4.2.2.2-1 and 4.2.2.2-2.
233 Note that for this code p[i] specifies the coefficients
234 used in .Q_A(z) while q[i] specifies the coefficients used
235 in .P_A(z) */
236
237 for (i=0; i<LPC_HALFORDER; i++) {
238 p[i] = (float)cos(TWO_PI * freq[2 * i]);
239 q[i] = (float)cos(TWO_PI * freq[2 * i + 1]);
240 }
241
242 a[0] = 0.25;
243 b[0] = 0.25;
244
245 for (i= 0; i<LPC_HALFORDER; i++) {
246 a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i];
247 b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i];
248 a2[i] = a1[i];
249 a1[i] = a[i];
250 b2[i] = b1[i];
251 b1[i] = b[i];
252 }
253
254 for (j=0; j<LPC_FILTERORDER; j++) {
255
256 if (j == 0) {
257 a[0] = 0.25;
258 b[0] = -0.25;
259 } else {
260 a[0] = b[0] = 0.0;
261 }
262
263 for (i=0; i<LPC_HALFORDER; i++) {
264 a[i + 1] = a[i] - 2 * p[i] * a1[i] + a2[i];
265 b[i + 1] = b[i] - 2 * q[i] * b1[i] + b2[i];
266 a2[i] = a1[i];
267 a1[i] = a[i];
268 b2[i] = b1[i];
269 b1[i] = b[i];
270 }
271
272 a_coef[j + 1] = 2 * (a[LPC_HALFORDER] + b[LPC_HALFORDER]);
273 }
274
275 a_coef[0] = 1.0;
276 }
unsigned int cos
Definition: chan_iax2.c:356
#define FLOAT_MAX
Definition: iLBC_define.h:105
#define PI2
Definition: iLBC_define.h:111
#define TWO_PI
Definition: iLBC_define.h:110
#define LSF_NUMBER_OF_STEPS
Definition: iLBC_define.h:51
#define LPC_HALFORDER
Definition: iLBC_define.h:52
#define LPC_FILTERORDER
Definition: iLBC_define.h:40
void a2lsf(float *freq, float *a)
Definition: lsf.c:27
void lsf2a(float *a_coef, float *freq)
Definition: lsf.c:170
static struct test_val b
static struct test_val a