Asterisk - The Open Source Telephony Project GIT-master-f36a736
hash_bigkey.c
Go to the documentation of this file.
1/*-
2 * Copyright (c) 1990, 1993, 1994
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Margo Seltzer.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37#if defined(LIBC_SCCS) && !defined(lint)
38static char sccsid[] = "@(#)hash_bigkey.c 8.3 (Berkeley) 5/31/94";
39#endif /* LIBC_SCCS and not lint */
40
41/*
42 * PACKAGE: hash
43 * DESCRIPTION:
44 * Big key/data handling for the hashing package.
45 *
46 * ROUTINES:
47 * External
48 * __big_keydata
49 * __big_split
50 * __big_insert
51 * __big_return
52 * __big_delete
53 * __find_last_page
54 * Internal
55 * collect_key
56 * collect_data
57 */
58
59#include <sys/param.h>
60
61#include <errno.h>
62#include <stdio.h>
63#include <stdlib.h>
64#include <string.h>
65
66#ifdef DEBUG
67#include <assert.h>
68#endif
69
70#include "../include/db.h"
71#include "hash.h"
72#include "page.h"
73#include "extern.h"
74
75static int collect_key __P((HTAB *, BUFHEAD *, int, DBT *, int));
76static int collect_data __P((HTAB *, BUFHEAD *, int, int));
77
78/*
79 * Big_insert
80 *
81 * You need to do an insert and the key/data pair is too big
82 *
83 * Returns:
84 * 0 ==> OK
85 *-1 ==> ERROR
86 */
87extern int
88__big_insert(hashp, bufp, key, val)
89 HTAB *hashp;
90 BUFHEAD *bufp;
91 const DBT *key, *val;
92{
93 register u_int16_t *p;
94 int key_size, n, val_size;
95 u_int16_t space, move_bytes, off;
96 char *cp, *key_data, *val_data;
97
98 cp = bufp->page; /* Character pointer of p. */
99 p = (u_int16_t *)cp;
100
101 key_data = (char *)key->data;
102 key_size = key->size;
103 val_data = (char *)val->data;
104 val_size = val->size;
105
106 /* First move the Key */
107 for (space = FREESPACE(p) - BIGOVERHEAD; key_size;
108 space = FREESPACE(p) - BIGOVERHEAD) {
109 move_bytes = MIN(space, key_size);
110 off = OFFSET(p) - move_bytes;
111 memmove(cp + off, key_data, move_bytes);
112 key_size -= move_bytes;
113 key_data += move_bytes;
114 n = p[0];
115 p[++n] = off;
116 p[0] = ++n;
117 FREESPACE(p) = off - PAGE_META(n);
118 OFFSET(p) = off;
119 p[n] = PARTIAL_KEY;
120 bufp = __add_ovflpage(hashp, bufp);
121 if (!bufp)
122 return (-1);
123 n = p[0];
124 if (!key_size) {
125 if (FREESPACE(p)) {
126 move_bytes = MIN(FREESPACE(p), val_size);
127 off = OFFSET(p) - move_bytes;
128 p[n] = off;
129 memmove(cp + off, val_data, move_bytes);
130 val_data += move_bytes;
131 val_size -= move_bytes;
132 p[n - 2] = FULL_KEY_DATA;
133 FREESPACE(p) = FREESPACE(p) - move_bytes;
134 OFFSET(p) = off;
135 } else
136 p[n - 2] = FULL_KEY;
137 }
138 p = (u_int16_t *)bufp->page;
139 cp = bufp->page;
140 bufp->flags |= BUF_MOD;
141 }
142
143 /* Now move the data */
144 for (space = FREESPACE(p) - BIGOVERHEAD; val_size;
145 space = FREESPACE(p) - BIGOVERHEAD) {
146 move_bytes = MIN(space, val_size);
147 /*
148 * Here's the hack to make sure that if the data ends on the
149 * same page as the key ends, FREESPACE is at least one.
150 */
151 if ((int) space == val_size && (size_t) val_size == val->size)
152 move_bytes--;
153 off = OFFSET(p) - move_bytes;
154 memmove(cp + off, val_data, move_bytes);
155 val_size -= move_bytes;
156 val_data += move_bytes;
157 n = p[0];
158 p[++n] = off;
159 p[0] = ++n;
160 FREESPACE(p) = off - PAGE_META(n);
161 OFFSET(p) = off;
162 if (val_size) {
163 p[n] = FULL_KEY;
164 bufp = __add_ovflpage(hashp, bufp);
165 if (!bufp)
166 return (-1);
167 cp = bufp->page;
168 p = (u_int16_t *)cp;
169 } else
170 p[n] = FULL_KEY_DATA;
171 bufp->flags |= BUF_MOD;
172 }
173 return (0);
174}
175
176/*
177 * Called when bufp's page contains a partial key (index should be 1)
178 *
179 * All pages in the big key/data pair except bufp are freed. We cannot
180 * free bufp because the page pointing to it is lost and we can't get rid
181 * of its pointer.
182 *
183 * Returns:
184 * 0 => OK
185 *-1 => ERROR
186 */
187extern int
188__big_delete(hashp, bufp)
189 HTAB *hashp;
190 BUFHEAD *bufp;
191{
192 register BUFHEAD *last_bfp, *rbufp;
193 u_int16_t *bp, pageno;
194 int key_done, n;
195
196 rbufp = bufp;
197 last_bfp = NULL;
198 bp = (u_int16_t *)bufp->page;
199 pageno = 0;
200 key_done = 0;
201
202 while (!key_done || (bp[2] != FULL_KEY_DATA)) {
203 if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
204 key_done = 1;
205
206 /*
207 * If there is freespace left on a FULL_KEY_DATA page, then
208 * the data is short and fits entirely on this page, and this
209 * is the last page.
210 */
211 if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
212 break;
213 pageno = bp[bp[0] - 1];
214 rbufp->flags |= BUF_MOD;
215 rbufp = __get_buf(hashp, pageno, rbufp, 0);
216 if (last_bfp)
217 __free_ovflpage(hashp, last_bfp);
218 last_bfp = rbufp;
219 if (!rbufp)
220 return (-1); /* Error. */
221 bp = (u_int16_t *)rbufp->page;
222 }
223
224 /*
225 * If we get here then rbufp points to the last page of the big
226 * key/data pair. Bufp points to the first one -- it should now be
227 * empty pointing to the next page after this pair. Can't free it
228 * because we don't have the page pointing to it.
229 */
230
231 /* This is information from the last page of the pair. */
232 n = bp[0];
233 pageno = bp[n - 1];
234
235 /* Now, bp is the first page of the pair. */
236 bp = (u_int16_t *)bufp->page;
237 if (n > 2) {
238 /* There is an overflow page. */
239 bp[1] = pageno;
240 bp[2] = OVFLPAGE;
241 bufp->ovfl = rbufp->ovfl;
242 } else
243 /* This is the last page. */
244 bufp->ovfl = NULL;
245 n -= 2;
246 bp[0] = n;
247 FREESPACE(bp) = hashp->BSIZE - PAGE_META(n);
248 OFFSET(bp) = hashp->BSIZE - 1;
249
250 bufp->flags |= BUF_MOD;
251 if (rbufp)
252 __free_ovflpage(hashp, rbufp);
253 if (last_bfp && last_bfp != rbufp)
254 __free_ovflpage(hashp, last_bfp);
255
256 hashp->NKEYS--;
257 return (0);
258}
259/*
260 * Returns:
261 * 0 = key not found
262 * -1 = get next overflow page
263 * -2 means key not found and this is big key/data
264 * -3 error
265 */
266extern int
267__find_bigpair(hashp, bufp, ndx, key, size)
268 HTAB *hashp;
269 BUFHEAD *bufp;
270 int ndx;
271 char *key;
272 int size;
273{
274 register u_int16_t *bp;
275 register char *p;
276 int ksize;
277 u_int16_t bytes;
278 char *kkey;
279
280 bp = (u_int16_t *)bufp->page;
281 p = bufp->page;
282 ksize = size;
283 kkey = key;
284
285 for (bytes = hashp->BSIZE - bp[ndx];
286 bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
287 bytes = hashp->BSIZE - bp[ndx]) {
288 if (memcmp(p + bp[ndx], kkey, bytes))
289 return (-2);
290 kkey += bytes;
291 ksize -= bytes;
292 bufp = __get_buf(hashp, bp[ndx + 2], bufp, 0);
293 if (!bufp)
294 return (-3);
295 p = bufp->page;
296 bp = (u_int16_t *)p;
297 ndx = 1;
298 }
299
300 if (bytes != ksize || memcmp(p + bp[ndx], kkey, bytes)) {
301#ifdef HASH_STATISTICS
302 ++hash_collisions;
303#endif
304 return (-2);
305 } else
306 return (ndx);
307}
308
309/*
310 * Given the buffer pointer of the first overflow page of a big pair,
311 * find the end of the big pair
312 *
313 * This will set bpp to the buffer header of the last page of the big pair.
314 * It will return the pageno of the overflow page following the last page
315 * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
316 * bucket)
317 */
318extern u_int16_t
320 HTAB *hashp;
321 BUFHEAD **bpp;
322{
323 BUFHEAD *bufp;
324 u_int16_t *bp, pageno;
325 int n;
326
327 bufp = *bpp;
328 bp = (u_int16_t *)bufp->page;
329 for (;;) {
330 n = bp[0];
331
332 /*
333 * This is the last page if: the tag is FULL_KEY_DATA and
334 * either only 2 entries OVFLPAGE marker is explicit there
335 * is freespace on the page.
336 */
337 if (bp[2] == FULL_KEY_DATA &&
338 ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
339 break;
340
341 pageno = bp[n - 1];
342 bufp = __get_buf(hashp, pageno, bufp, 0);
343 if (!bufp)
344 return (0); /* Need to indicate an error! */
345 bp = (u_int16_t *)bufp->page;
346 }
347
348 *bpp = bufp;
349 if (bp[0] > 2)
350 return (bp[3]);
351 else
352 return (0);
353}
354
355/*
356 * Return the data for the key/data pair that begins on this page at this
357 * index (index should always be 1).
358 */
359extern int
360__big_return(hashp, bufp, ndx, val, set_current)
361 HTAB *hashp;
362 BUFHEAD *bufp;
363 int ndx;
364 DBT *val;
365 int set_current;
366{
367 BUFHEAD *save_p;
368 u_int16_t *bp, len, off, save_addr;
369 char *tp;
370
371 bp = (u_int16_t *)bufp->page;
372 while (bp[ndx + 1] == PARTIAL_KEY) {
373 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
374 if (!bufp)
375 return (-1);
376 bp = (u_int16_t *)bufp->page;
377 ndx = 1;
378 }
379
380 if (bp[ndx + 1] == FULL_KEY) {
381 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
382 if (!bufp)
383 return (-1);
384 bp = (u_int16_t *)bufp->page;
385 save_p = bufp;
386 save_addr = save_p->addr;
387 off = bp[1];
388 len = 0;
389 } else
390 if (!FREESPACE(bp)) {
391 /*
392 * This is a hack. We can't distinguish between
393 * FULL_KEY_DATA that contains complete data or
394 * incomplete data, so we require that if the data
395 * is complete, there is at least 1 byte of free
396 * space left.
397 */
398 off = bp[bp[0]];
399 len = bp[1] - off;
400 save_p = bufp;
401 save_addr = bufp->addr;
402 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
403 if (!bufp)
404 return (-1);
405 bp = (u_int16_t *)bufp->page;
406 } else {
407 /* The data is all on one page. */
408 tp = (char *)bp;
409 off = bp[bp[0]];
410 val->data = (u_char *)tp + off;
411 val->size = bp[1] - off;
412 if (set_current) {
413 if (bp[0] == 2) { /* No more buckets in
414 * chain */
415 hashp->cpage = NULL;
416 hashp->cbucket++;
417 hashp->cndx = 1;
418 } else {
419 hashp->cpage = __get_buf(hashp,
420 bp[bp[0] - 1], bufp, 0);
421 if (!hashp->cpage)
422 return (-1);
423 hashp->cndx = 1;
424 if (!((u_int16_t *)
425 hashp->cpage->page)[0]) {
426 hashp->cbucket++;
427 hashp->cpage = NULL;
428 }
429 }
430 }
431 return (0);
432 }
433
434 val->size = collect_data(hashp, bufp, (int)len, set_current);
435 if (val->size == (size_t) -1)
436 return (-1);
437 if (save_p->addr != save_addr) {
438 /* We are pretty short on buffers. */
439 errno = EINVAL; /* OUT OF BUFFERS */
440 return (-1);
441 }
442 memmove(hashp->tmp_buf, (save_p->page) + off, len);
443 val->data = (u_char *)hashp->tmp_buf;
444 return (0);
445}
446/*
447 * Count how big the total datasize is by recursing through the pages. Then
448 * allocate a buffer and copy the data as you recurse up.
449 */
450static int
451collect_data(hashp, bufp, len, set)
452 HTAB *hashp;
453 BUFHEAD *bufp;
454 int len, set;
455{
456 register u_int16_t *bp;
457 register char *p;
458 BUFHEAD *xbp;
459 u_int16_t save_addr;
460 int mylen, totlen;
461
462 p = bufp->page;
463 bp = (u_int16_t *)p;
464 mylen = hashp->BSIZE - bp[1];
465 save_addr = bufp->addr;
466
467 if (bp[2] == FULL_KEY_DATA) { /* End of Data */
468 totlen = len + mylen;
469 if (hashp->tmp_buf)
470 free(hashp->tmp_buf);
471 if ((hashp->tmp_buf = (char *)malloc(totlen)) == NULL)
472 return (-1);
473 if (set) {
474 hashp->cndx = 1;
475 if (bp[0] == 2) { /* No more buckets in chain */
476 hashp->cpage = NULL;
477 hashp->cbucket++;
478 } else {
479 hashp->cpage =
480 __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
481 if (!hashp->cpage)
482 return (-1);
483 else if (!((u_int16_t *)hashp->cpage->page)[0]) {
484 hashp->cbucket++;
485 hashp->cpage = NULL;
486 }
487 }
488 }
489 } else {
490 xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
491 if (!xbp || ((totlen =
492 collect_data(hashp, xbp, len + mylen, set)) < 1))
493 return (-1);
494 }
495 if (bufp->addr != save_addr) {
496 errno = EINVAL; /* Out of buffers. */
497 return (-1);
498 }
499 memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], mylen);
500 return (totlen);
501}
502
503/*
504 * Fill in the key and data for this big pair.
505 */
506extern int
507__big_keydata(hashp, bufp, key, val, set)
508 HTAB *hashp;
509 BUFHEAD *bufp;
510 DBT *key, *val;
511 int set;
512{
513 key->size = collect_key(hashp, bufp, 0, val, set);
514 if (key->size == (size_t) -1)
515 return (-1);
516 key->data = (u_char *)hashp->tmp_key;
517 return (0);
518}
519
520/*
521 * Count how big the total key size is by recursing through the pages. Then
522 * collect the data, allocate a buffer and copy the key as you recurse up.
523 */
524static int
525collect_key(hashp, bufp, len, val, set)
526 HTAB *hashp;
527 BUFHEAD *bufp;
528 int len;
529 DBT *val;
530 int set;
531{
532 BUFHEAD *xbp;
533 char *p;
534 int mylen, totlen;
535 u_int16_t *bp, save_addr;
536
537 p = bufp->page;
538 bp = (u_int16_t *)p;
539 mylen = hashp->BSIZE - bp[1];
540
541 save_addr = bufp->addr;
542 totlen = len + mylen;
543 if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) { /* End of Key. */
544 if (hashp->tmp_key != NULL)
545 free(hashp->tmp_key);
546 if ((hashp->tmp_key = (char *)malloc(totlen)) == NULL)
547 return (-1);
548 if (__big_return(hashp, bufp, 1, val, set))
549 return (-1);
550 } else {
551 xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
552 if (!xbp || ((totlen =
553 collect_key(hashp, xbp, totlen, val, set)) < 1))
554 return (-1);
555 }
556 if (bufp->addr != save_addr) {
557 errno = EINVAL; /* MIS -- OUT OF BUFFERS */
558 return (-1);
559 }
560 memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], mylen);
561 return (totlen);
562}
563
564/*
565 * Returns:
566 * 0 => OK
567 * -1 => error
568 */
569extern int
570__big_split(hashp, op, np, big_keyp, addr, obucket, ret)
571 HTAB *hashp;
572 BUFHEAD *op; /* Pointer to where to put keys that go in old bucket */
573 BUFHEAD *np; /* Pointer to new bucket page */
574 /* Pointer to first page containing the big key/data */
575 BUFHEAD *big_keyp;
576 int addr; /* Address of big_keyp */
577 u_int32_t obucket;/* Old Bucket */
578 SPLIT_RETURN *ret;
579{
580 register BUFHEAD *tmpp;
581 register u_int16_t *tp;
582 BUFHEAD *bp;
583 DBT key, val;
584 u_int32_t change;
585 u_int16_t free_space, n, off;
586
587 bp = big_keyp;
588
589 /* Now figure out where the big key/data goes */
590 if (__big_keydata(hashp, big_keyp, &key, &val, 0))
591 return (-1);
592 change = (__call_hash(hashp, key.data, key.size) != obucket);
593
594 if ((ret->next_addr = __find_last_page(hashp, &big_keyp))) {
595 if (!(ret->nextp =
596 __get_buf(hashp, ret->next_addr, big_keyp, 0)))
597 return (-1);;
598 } else
599 ret->nextp = NULL;
600
601 /* Now make one of np/op point to the big key/data pair */
602#ifdef DEBUG
603 assert(np->ovfl == NULL);
604#endif
605 if (change)
606 tmpp = np;
607 else
608 tmpp = op;
609
610 tmpp->flags |= BUF_MOD;
611#ifdef DEBUG1
612 (void)fprintf(stderr,
613 "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
614 (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
615#endif
616 tmpp->ovfl = bp; /* one of op/np point to big_keyp */
617 tp = (u_int16_t *)tmpp->page;
618#ifdef DEBUG
619 assert(FREESPACE(tp) >= OVFLSIZE);
620#endif
621 n = tp[0];
622 off = OFFSET(tp);
623 free_space = FREESPACE(tp);
624 tp[++n] = (u_int16_t)addr;
625 tp[++n] = OVFLPAGE;
626 tp[0] = n;
627 OFFSET(tp) = off;
628 FREESPACE(tp) = free_space - OVFLSIZE;
629
630 /*
631 * Finally, set the new and old return values. BIG_KEYP contains a
632 * pointer to the last page of the big key_data pair. Make sure that
633 * big_keyp has no following page (2 elements) or create an empty
634 * following page.
635 */
636
637 ret->newp = np;
638 ret->oldp = op;
639
640 tp = (u_int16_t *)big_keyp->page;
641 big_keyp->flags |= BUF_MOD;
642 if (tp[0] > 2) {
643 /*
644 * There may be either one or two offsets on this page. If
645 * there is one, then the overflow page is linked on normally
646 * and tp[4] is OVFLPAGE. If there are two, tp[4] contains
647 * the second offset and needs to get stuffed in after the
648 * next overflow page is added.
649 */
650 n = tp[4];
651 free_space = FREESPACE(tp);
652 off = OFFSET(tp);
653 tp[0] -= 2;
654 FREESPACE(tp) = free_space + OVFLSIZE;
655 OFFSET(tp) = off;
656 tmpp = __add_ovflpage(hashp, big_keyp);
657 if (!tmpp)
658 return (-1);
659 tp[4] = n;
660 } else
661 tmpp = big_keyp;
662
663 if (change)
664 ret->newp = tmpp;
665 else
666 ret->oldp = tmpp;
667 return (0);
668}
if(!yyg->yy_init)
Definition: ast_expr2f.c:854
while(1)
Definition: ast_expr2f.c:880
static int set(struct ast_channel *chan, const char *cmd, char *data, char *buf, size_t len)
Definition: func_logic.c:238
static int len(struct ast_channel *chan, const char *cmd, char *data, char *buf, size_t buflen)
char * malloc()
void free()
u_int32_t __call_hash(HTAB *hashp, char *k, int len)
Definition: hash.c:886
#define OVFLPAGE
Definition: hash.h:266
#define PARTIAL_KEY
Definition: hash.h:267
#define FULL_KEY
Definition: hash.h:268
#define FULL_KEY_DATA
Definition: hash.h:269
#define BUF_MOD
Definition: hash.h:54
static int collect_data(HTAB *hashp, BUFHEAD *bufp, int len, int set)
Definition: hash_bigkey.c:451
int __big_keydata(HTAB *hashp, BUFHEAD *bufp, DBT *key, DBT *val, int set)
Definition: hash_bigkey.c:507
static int collect_key(HTAB *hashp, BUFHEAD *bufp, int len, DBT *val, int set)
Definition: hash_bigkey.c:525
int __big_insert(HTAB *hashp, BUFHEAD *bufp, const DBT *key, const DBT *val)
Definition: hash_bigkey.c:88
int __find_bigpair(HTAB *hashp, BUFHEAD *bufp, int ndx, char *key, int size)
Definition: hash_bigkey.c:267
static int collect_key __P((HTAB *, BUFHEAD *, int, DBT *, int))
int __big_return(HTAB *hashp, BUFHEAD *bufp, int ndx, DBT *val, int set_current)
Definition: hash_bigkey.c:360
int __big_delete(HTAB *hashp, BUFHEAD *bufp)
Definition: hash_bigkey.c:188
u_int16_t __find_last_page(HTAB *hashp, BUFHEAD **bpp)
Definition: hash_bigkey.c:319
int __big_split(HTAB *hashp, BUFHEAD *op, BUFHEAD *np, BUFHEAD *big_keyp, int addr, u_int32_t obucket, SPLIT_RETURN *ret)
Definition: hash_bigkey.c:570
BUFHEAD * __get_buf(HTAB *hashp, u_int32_t addr, BUFHEAD *prev_bp, int newpage)
Definition: hash_buf.c:105
BUFHEAD * __add_ovflpage(HTAB *hashp, BUFHEAD *bufp)
Definition: hash_page.c:465
void __free_ovflpage(HTAB *hashp, BUFHEAD *obufp)
Definition: hash_page.c:815
unsigned int u_int32_t
unsigned short u_int16_t
#define DEBUG(a)
Definition: io.c:48
int errno
#define OFFSET(P)
Definition: page.h:81
#define BIGOVERHEAD
Definition: page.h:77
#define OVFLSIZE
Definition: page.h:79
#define FREESPACE(P)
Definition: page.h:80
#define PAGE_META(N)
Definition: page.h:85
#define NULL
Definition: resample.c:96
Definition: db.h:85
void * data
Definition: db.h:86
size_t size
Definition: db.h:87
BUFHEAD * nextp
Definition: page.h:90
BUFHEAD * newp
Definition: page.h:88
BUFHEAD * oldp
Definition: page.h:89
u_int16_t next_addr
Definition: page.h:91
Definition: hash.h:47
char * page
Definition: hash.h:52
BUFHEAD * ovfl
Definition: hash.h:50
char flags
Definition: hash.h:53
u_int32_t addr
Definition: hash.h:51
Definition: hash.h:91
int cbucket
Definition: hash.h:103
char * tmp_buf
Definition: hash.h:100
char * tmp_key
Definition: hash.h:101
BUFHEAD * cpage
Definition: hash.h:102
int cndx
Definition: hash.h:104
Definition: ast_expr2.c:325
#define MIN(a, b)
Definition: utils.h:231