Asterisk - The Open Source Telephony Project GIT-master-f45f878
res_rtp_asterisk.c
Go to the documentation of this file.
1/*
2 * Asterisk -- An open source telephony toolkit.
3 *
4 * Copyright (C) 1999 - 2008, Digium, Inc.
5 *
6 * Mark Spencer <markster@digium.com>
7 *
8 * See http://www.asterisk.org for more information about
9 * the Asterisk project. Please do not directly contact
10 * any of the maintainers of this project for assistance;
11 * the project provides a web site, mailing lists and IRC
12 * channels for your use.
13 *
14 * This program is free software, distributed under the terms of
15 * the GNU General Public License Version 2. See the LICENSE file
16 * at the top of the source tree.
17 */
18
19/*!
20 * \file
21 *
22 * \brief Supports RTP and RTCP with Symmetric RTP support for NAT traversal.
23 *
24 * \author Mark Spencer <markster@digium.com>
25 *
26 * \note RTP is defined in RFC 3550.
27 *
28 * \ingroup rtp_engines
29 */
30
31/*** MODULEINFO
32 <use type="external">openssl</use>
33 <use type="external">pjproject</use>
34 <support_level>core</support_level>
35 ***/
36
37#include "asterisk.h"
38
39#include <arpa/nameser.h>
40#include "asterisk/dns_core.h"
43
44#include <sys/time.h>
45#include <signal.h>
46#include <fcntl.h>
47#include <math.h>
48
49#ifdef HAVE_OPENSSL
50#include <openssl/opensslconf.h>
51#include <openssl/opensslv.h>
52#if !defined(OPENSSL_NO_SRTP) && (OPENSSL_VERSION_NUMBER >= 0x10001000L)
53#include <openssl/ssl.h>
54#include <openssl/err.h>
55#include <openssl/bio.h>
56#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L)
57#include <openssl/bn.h>
58#endif
59#ifndef OPENSSL_NO_DH
60#include <openssl/dh.h>
61#endif
62#endif
63#endif
64
65#ifdef HAVE_PJPROJECT
66#include <pjlib.h>
67#include <pjlib-util.h>
68#include <pjnath.h>
69#include <ifaddrs.h>
70#endif
71
73#include "asterisk/options.h"
75#include "asterisk/stun.h"
76#include "asterisk/pbx.h"
77#include "asterisk/frame.h"
79#include "asterisk/channel.h"
80#include "asterisk/acl.h"
81#include "asterisk/config.h"
82#include "asterisk/lock.h"
83#include "asterisk/utils.h"
84#include "asterisk/cli.h"
85#include "asterisk/manager.h"
86#include "asterisk/unaligned.h"
87#include "asterisk/module.h"
88#include "asterisk/rtp_engine.h"
89#include "asterisk/smoother.h"
90#include "asterisk/uuid.h"
91#include "asterisk/test.h"
93#ifdef HAVE_PJPROJECT
96#endif
97
98#define MAX_TIMESTAMP_SKEW 640
99
100#define RTP_SEQ_MOD (1<<16) /*!< A sequence number can't be more than 16 bits */
101#define RTCP_DEFAULT_INTERVALMS 5000 /*!< Default milli-seconds between RTCP reports we send */
102#define RTCP_MIN_INTERVALMS 500 /*!< Min milli-seconds between RTCP reports we send */
103#define RTCP_MAX_INTERVALMS 60000 /*!< Max milli-seconds between RTCP reports we send */
104
105#define DEFAULT_RTP_START 5000 /*!< Default port number to start allocating RTP ports from */
106#define DEFAULT_RTP_END 31000 /*!< Default maximum port number to end allocating RTP ports at */
107
108#define MINIMUM_RTP_PORT 1024 /*!< Minimum port number to accept */
109#define MAXIMUM_RTP_PORT 65535 /*!< Maximum port number to accept */
110
111#define DEFAULT_TURN_PORT 3478
112
113#define TURN_STATE_WAIT_TIME 2000
114
115#define DEFAULT_RTP_SEND_BUFFER_SIZE 250 /*!< The initial size of the RTP send buffer */
116#define MAXIMUM_RTP_SEND_BUFFER_SIZE (DEFAULT_RTP_SEND_BUFFER_SIZE + 200) /*!< Maximum RTP send buffer size */
117#define DEFAULT_RTP_RECV_BUFFER_SIZE 20 /*!< The initial size of the RTP receiver buffer */
118#define MAXIMUM_RTP_RECV_BUFFER_SIZE (DEFAULT_RTP_RECV_BUFFER_SIZE + 20) /*!< Maximum RTP receive buffer size */
119#define OLD_PACKET_COUNT 1000 /*!< The number of previous packets that are considered old */
120#define MISSING_SEQNOS_ADDED_TRIGGER 2 /*!< The number of immediate missing packets that will trigger an immediate NACK */
121
122#define SEQNO_CYCLE_OVER 65536 /*!< The number after the maximum allowed sequence number */
123
124/*! Full INTRA-frame Request / Fast Update Request (From RFC2032) */
125#define RTCP_PT_FUR 192
126/*! Sender Report (From RFC3550) */
127#define RTCP_PT_SR AST_RTP_RTCP_SR
128/*! Receiver Report (From RFC3550) */
129#define RTCP_PT_RR AST_RTP_RTCP_RR
130/*! Source Description (From RFC3550) */
131#define RTCP_PT_SDES 202
132/*! Goodbye (To remove SSRC's from tables) (From RFC3550) */
133#define RTCP_PT_BYE 203
134/*! Application defined (From RFC3550) */
135#define RTCP_PT_APP 204
136/* VP8: RTCP Feedback */
137/*! Payload Specific Feed Back (From RFC4585 also RFC5104) */
138#define RTCP_PT_PSFB AST_RTP_RTCP_PSFB
139
140#define RTP_MTU 1200
141
142#define DEFAULT_DTMF_TIMEOUT (150 * (8000 / 1000)) /*!< samples */
143
144#define ZFONE_PROFILE_ID 0x505a
145
146#define DEFAULT_LEARNING_MIN_SEQUENTIAL 4
147/*!
148 * \brief Calculate the min learning duration in ms.
149 *
150 * \details
151 * The min supported packet size represents 10 ms and we need to account
152 * for some jitter and fast clocks while learning. Some messed up devices
153 * have very bad jitter for a small packet sample size. Jitter can also
154 * be introduced by the network itself.
155 *
156 * So we'll allow packets to come in every 9ms on average for fast clocking
157 * with the last one coming in 5ms early for jitter.
158 */
159#define CALC_LEARNING_MIN_DURATION(count) (((count) - 1) * 9 - 5)
160#define DEFAULT_LEARNING_MIN_DURATION CALC_LEARNING_MIN_DURATION(DEFAULT_LEARNING_MIN_SEQUENTIAL)
161
162#define SRTP_MASTER_KEY_LEN 16
163#define SRTP_MASTER_SALT_LEN 14
164#define SRTP_MASTER_LEN (SRTP_MASTER_KEY_LEN + SRTP_MASTER_SALT_LEN)
165
166#define RTP_DTLS_ESTABLISHED -37
167
169 STRICT_RTP_OPEN = 0, /*! No RTP packets should be dropped, all sources accepted */
170 STRICT_RTP_LEARN, /*! Accept next packet as source */
171 STRICT_RTP_CLOSED, /*! Drop all RTP packets not coming from source that was learned */
172};
173
175 STRICT_RTP_NO = 0, /*! Don't adhere to any strict RTP rules */
176 STRICT_RTP_YES, /*! Strict RTP that restricts packets based on time and sequence number */
177 STRICT_RTP_SEQNO, /*! Strict RTP that restricts packets based on sequence number */
178};
179
180/*!
181 * \brief Strict RTP learning timeout time in milliseconds
182 *
183 * \note Set to 5 seconds to allow reinvite chains for direct media
184 * to settle before media actually starts to arrive. There may be a
185 * reinvite collision involved on the other leg.
186 */
187#define STRICT_RTP_LEARN_TIMEOUT 5000
188
189#define DEFAULT_STRICT_RTP STRICT_RTP_YES /*!< Enabled by default */
190#define DEFAULT_SRTP_REPLAY_PROTECTION 1
191#define DEFAULT_ICESUPPORT 1
192#define DEFAULT_STUN_SOFTWARE_ATTRIBUTE 1
193#define DEFAULT_DTLS_MTU 1200
194
195/*!
196 * Because both ends usually don't start sending RTP
197 * at the same time, some of the calculations like
198 * rtt and jitter will probably be unstable for a while
199 * so we'll skip some received packets before starting
200 * analyzing. This just affects analyzing; we still
201 * process the RTP as normal.
202 */
203#define RTP_IGNORE_FIRST_PACKETS_COUNT 15
204
205extern struct ast_srtp_res *res_srtp;
207
209
210static int rtpstart = DEFAULT_RTP_START; /*!< First port for RTP sessions (set in rtp.conf) */
211static int rtpend = DEFAULT_RTP_END; /*!< Last port for RTP sessions (set in rtp.conf) */
212static int rtcpstats; /*!< Are we debugging RTCP? */
213static int rtcpinterval = RTCP_DEFAULT_INTERVALMS; /*!< Time between rtcp reports in millisecs */
214static struct ast_sockaddr rtpdebugaddr; /*!< Debug packets to/from this host */
215static struct ast_sockaddr rtcpdebugaddr; /*!< Debug RTCP packets to/from this host */
216static int rtpdebugport; /*!< Debug only RTP packets from IP or IP+Port if port is > 0 */
217static int rtcpdebugport; /*!< Debug only RTCP packets from IP or IP+Port if port is > 0 */
218#ifdef SO_NO_CHECK
219static int nochecksums;
220#endif
221static int strictrtp = DEFAULT_STRICT_RTP; /*!< Only accept RTP frames from a defined source. If we receive an indication of a changing source, enter learning mode. */
222static int learning_min_sequential = DEFAULT_LEARNING_MIN_SEQUENTIAL; /*!< Number of sequential RTP frames needed from a single source during learning mode to accept new source. */
223static int learning_min_duration = DEFAULT_LEARNING_MIN_DURATION; /*!< Lowest acceptable timeout between the first and the last sequential RTP frame. */
225#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
226static int dtls_mtu = DEFAULT_DTLS_MTU;
227#endif
228#ifdef HAVE_PJPROJECT
229static int icesupport = DEFAULT_ICESUPPORT;
230static int stun_software_attribute = DEFAULT_STUN_SOFTWARE_ATTRIBUTE;
231static struct sockaddr_in stunaddr;
232static pj_str_t turnaddr;
233static int turnport = DEFAULT_TURN_PORT;
234static pj_str_t turnusername;
235static pj_str_t turnpassword;
237static struct ast_sockaddr lo6 = { .len = 0 };
238
239/*! ACL for ICE addresses */
240static struct ast_acl_list *ice_acl = NULL;
241static ast_rwlock_t ice_acl_lock = AST_RWLOCK_INIT_VALUE;
242
243/*! ACL for STUN requests */
244static struct ast_acl_list *stun_acl = NULL;
245static ast_rwlock_t stun_acl_lock = AST_RWLOCK_INIT_VALUE;
246
247/*! stunaddr recurring resolution */
248static ast_rwlock_t stunaddr_lock = AST_RWLOCK_INIT_VALUE;
249static struct ast_dns_query_recurring *stunaddr_resolver = NULL;
250
251/*! \brief Pool factory used by pjlib to allocate memory. */
252static pj_caching_pool cachingpool;
253
254/*! \brief Global memory pool for configuration and timers */
255static pj_pool_t *pool;
256
257/*! \brief Global timer heap */
258static pj_timer_heap_t *timer_heap;
259
260/*! \brief Thread executing the timer heap */
261static pj_thread_t *timer_thread;
262
263/*! \brief Used to tell the timer thread to terminate */
264static int timer_terminate;
265
266/*! \brief Structure which contains ioqueue thread information */
267struct ast_rtp_ioqueue_thread {
268 /*! \brief Pool used by the thread */
269 pj_pool_t *pool;
270 /*! \brief The thread handling the queue and timer heap */
271 pj_thread_t *thread;
272 /*! \brief Ioqueue which polls on sockets */
273 pj_ioqueue_t *ioqueue;
274 /*! \brief Timer heap for scheduled items */
275 pj_timer_heap_t *timerheap;
276 /*! \brief Termination request */
277 int terminate;
278 /*! \brief Current number of descriptors being waited on */
279 unsigned int count;
280 /*! \brief Linked list information */
281 AST_LIST_ENTRY(ast_rtp_ioqueue_thread) next;
282};
283
284/*! \brief List of ioqueue threads */
285static AST_LIST_HEAD_STATIC(ioqueues, ast_rtp_ioqueue_thread);
286
287/*! \brief Structure which contains ICE host candidate mapping information */
288struct ast_ice_host_candidate {
289 struct ast_sockaddr local;
290 struct ast_sockaddr advertised;
291 unsigned int include_local;
292 AST_RWLIST_ENTRY(ast_ice_host_candidate) next;
293};
294
295/*! \brief List of ICE host candidate mappings */
296static AST_RWLIST_HEAD_STATIC(host_candidates, ast_ice_host_candidate);
297
298static char *generate_random_string(char *buf, size_t size);
299
300#endif
301
302#define FLAG_3389_WARNING (1 << 0)
303#define FLAG_NAT_ACTIVE (3 << 1)
304#define FLAG_NAT_INACTIVE (0 << 1)
305#define FLAG_NAT_INACTIVE_NOWARN (1 << 1)
306#define FLAG_NEED_MARKER_BIT (1 << 3)
307#define FLAG_DTMF_COMPENSATE (1 << 4)
308#define FLAG_REQ_LOCAL_BRIDGE_BIT (1 << 5)
309
310#define TRANSPORT_SOCKET_RTP 0
311#define TRANSPORT_SOCKET_RTCP 1
312#define TRANSPORT_TURN_RTP 2
313#define TRANSPORT_TURN_RTCP 3
314
315/*! \brief RTP learning mode tracking information */
317 struct ast_sockaddr proposed_address; /*!< Proposed remote address for strict RTP */
318 struct timeval start; /*!< The time learning mode was started */
319 struct timeval received; /*!< The time of the first received packet */
320 int max_seq; /*!< The highest sequence number received */
321 int packets; /*!< The number of remaining packets before the source is accepted */
322 /*! Type of media stream carried by the RTP instance */
324};
325
326#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
327struct dtls_details {
328 SSL *ssl; /*!< SSL session */
329 BIO *read_bio; /*!< Memory buffer for reading */
330 BIO *write_bio; /*!< Memory buffer for writing */
331 enum ast_rtp_dtls_setup dtls_setup; /*!< Current setup state */
332 enum ast_rtp_dtls_connection connection; /*!< Whether this is a new or existing connection */
333 int timeout_timer; /*!< Scheduler id for timeout timer */
334};
335#endif
336
337#ifdef HAVE_PJPROJECT
338/*! An ao2 wrapper protecting the PJPROJECT ice structure with ref counting. */
339struct ice_wrap {
340 pj_ice_sess *real_ice; /*!< ICE session */
341};
342#endif
343
344/*! \brief Structure used for mapping an incoming SSRC to an RTP instance */
346 /*! \brief The received SSRC */
347 unsigned int ssrc;
348 /*! True if the SSRC is available. Otherwise, this is a placeholder mapping until the SSRC is set. */
349 unsigned int ssrc_valid;
350 /*! \brief The RTP instance this SSRC belongs to*/
352};
353
354/*! \brief Packet statistics (used for transport-cc) */
356 /*! The transport specific sequence number */
357 unsigned int seqno;
358 /*! The time at which the packet was received */
359 struct timeval received;
360 /*! The delta between this packet and the previous */
361 int delta;
362};
363
364/*! \brief Statistics information (used for transport-cc) */
366 /*! A vector of packet statistics */
367 AST_VECTOR(, struct rtp_transport_wide_cc_packet_statistics) packet_statistics; /*!< Packet statistics, used for transport-cc */
368 /*! The last sequence number received */
369 unsigned int last_seqno;
370 /*! The last extended sequence number */
372 /*! How many feedback packets have gone out */
373 unsigned int feedback_count;
374 /*! How many cycles have occurred for the sequence numbers */
375 unsigned int cycles;
376 /*! Scheduler id for periodic feedback transmission */
378};
379
380typedef struct {
381 unsigned int ts;
382 unsigned char is_set;
384
385/*! \brief RTP session description */
386struct ast_rtp {
387 int s;
388 /*! \note The f.subclass.format holds a ref. */
389 struct ast_frame f;
390 unsigned char rawdata[8192 + AST_FRIENDLY_OFFSET];
391 unsigned int ssrc; /*!< Synchronization source, RFC 3550, page 10. */
392 unsigned int ssrc_orig; /*!< SSRC used before native bridge activated */
393 unsigned char ssrc_saved; /*!< indicates if ssrc_orig has a value */
394 char cname[AST_UUID_STR_LEN]; /*!< Our local CNAME */
395 unsigned int themssrc; /*!< Their SSRC */
396 unsigned int themssrc_valid; /*!< True if their SSRC is available. */
397 unsigned int lastts;
398 unsigned int lastividtimestamp;
399 unsigned int lastovidtimestamp;
400 unsigned int lastitexttimestamp;
401 unsigned int lastotexttimestamp;
402 int prevrxseqno; /*!< Previous received packeted sequence number, from the network */
403 int lastrxseqno; /*!< Last received sequence number, from the network */
404 int expectedrxseqno; /*!< Next expected sequence number, from the network */
405 AST_VECTOR(, int) missing_seqno; /*!< A vector of sequence numbers we never received */
406 int expectedseqno; /*!< Next expected sequence number, from the core */
407 unsigned short seedrxseqno; /*!< What sequence number did they start with?*/
408 unsigned int rxcount; /*!< How many packets have we received? */
409 unsigned int rxoctetcount; /*!< How many octets have we received? should be rxcount *160*/
410 unsigned int txcount; /*!< How many packets have we sent? */
411 unsigned int txoctetcount; /*!< How many octets have we sent? (txcount*160)*/
412 unsigned int cycles; /*!< Shifted count of sequence number cycles */
415
416 /*
417 * RX RTP Timestamp and Jitter calculation.
418 */
419 double rxstart; /*!< RX time of the first packet in the session in seconds since EPOCH. */
420 double rxstart_stable; /*!< RX time of the first packet after RTP_IGNORE_FIRST_PACKETS_COUNT */
421 unsigned int remote_seed_rx_rtp_ts; /*!< RTP timestamp of first RX packet. */
422 unsigned int remote_seed_rx_rtp_ts_stable; /*!< RTP timestamp of first packet after RTP_IGNORE_FIRST_PACKETS_COUNT */
423 unsigned int last_transit_time_samples; /*!< The last transit time in samples */
424 double rxjitter; /*!< Last calculated Interarrival jitter in seconds. */
425 double rxjitter_samples; /*!< Last calculated Interarrival jitter in samples. */
426 double rxmes; /*!< Media Experince Score at the moment to be reported */
427
428 /* DTMF Reception Variables */
429 char resp; /*!< The current digit being processed */
430 unsigned int last_seqno; /*!< The last known sequence number for any DTMF packet */
431 optional_ts last_end_timestamp; /*!< The last known timestamp received from an END packet */
432 unsigned int dtmf_duration; /*!< Total duration in samples since the digit start event */
433 unsigned int dtmf_timeout; /*!< When this timestamp is reached we consider END frame lost and forcibly abort digit */
434 unsigned int dtmfsamples;
435 enum ast_rtp_dtmf_mode dtmfmode; /*!< The current DTMF mode of the RTP stream */
436 unsigned int dtmf_samplerate_ms; /*!< The sample rate of the current RTP stream in ms (sample rate / 1000) */
437 /* DTMF Transmission Variables */
438 unsigned int lastdigitts;
439 char sending_digit; /*!< boolean - are we sending digits */
440 char send_digit; /*!< digit we are sending */
443 unsigned int flags;
444 struct timeval rxcore;
445 struct timeval txcore;
446
447 struct timeval dtmfmute;
449 unsigned short seqno; /*!< Sequence number, RFC 3550, page 13. */
451 struct ast_rtcp *rtcp;
452 unsigned int asymmetric_codec; /*!< Indicate if asymmetric send/receive codecs are allowed */
453
454 struct ast_rtp_instance *bundled; /*!< The RTP instance we are bundled to */
455 /*!
456 * \brief The RTP instance owning us (used for debugging purposes)
457 * We don't hold a reference to the instance because it created
458 * us in the first place. It can't go away.
459 */
461 int stream_num; /*!< Stream num for this RTP instance */
462 AST_VECTOR(, struct rtp_ssrc_mapping) ssrc_mapping; /*!< Mappings of SSRC to RTP instances */
463 struct ast_sockaddr bind_address; /*!< Requested bind address for the sockets */
464
465 enum strict_rtp_state strict_rtp_state; /*!< Current state that strict RTP protection is in */
466 struct ast_sockaddr strict_rtp_address; /*!< Remote address information for strict RTP purposes */
467
468 /*
469 * Learning mode values based on pjmedia's probation mode. Many of these values are redundant to the above,
470 * but these are in place to keep learning mode sequence values sealed from their normal counterparts.
471 */
472 struct rtp_learning_info rtp_source_learn; /* Learning mode track for the expected RTP source */
473
474 struct rtp_red *red;
475
476 struct ast_data_buffer *send_buffer; /*!< Buffer for storing sent packets for retransmission */
477 struct ast_data_buffer *recv_buffer; /*!< Buffer for storing received packets for retransmission */
478
479 struct rtp_transport_wide_cc_statistics transport_wide_cc; /*!< Transport-cc statistics information */
480
481#ifdef HAVE_PJPROJECT
482 ast_cond_t cond; /*!< ICE/TURN condition for signaling */
483
484 struct ice_wrap *ice; /*!< ao2 wrapped ICE session */
485 enum ast_rtp_ice_role role; /*!< Our role in ICE negotiation */
486 pj_turn_sock *turn_rtp; /*!< RTP TURN relay */
487 pj_turn_sock *turn_rtcp; /*!< RTCP TURN relay */
488 pj_turn_state_t turn_state; /*!< Current state of the TURN relay session */
489 unsigned int passthrough:1; /*!< Bit to indicate that the received packet should be passed through */
490 unsigned int rtp_passthrough:1; /*!< Bit to indicate that TURN RTP should be passed through */
491 unsigned int rtcp_passthrough:1; /*!< Bit to indicate that TURN RTCP should be passed through */
492 unsigned int ice_port; /*!< Port that ICE was started with if it was previously started */
493 struct ast_sockaddr rtp_loop; /*!< Loopback address for forwarding RTP from TURN */
494 struct ast_sockaddr rtcp_loop; /*!< Loopback address for forwarding RTCP from TURN */
495
496 struct ast_rtp_ioqueue_thread *ioqueue; /*!< The ioqueue thread handling us */
497
498 char remote_ufrag[256]; /*!< The remote ICE username */
499 char remote_passwd[256]; /*!< The remote ICE password */
500
501 char local_ufrag[256]; /*!< The local ICE username */
502 char local_passwd[256]; /*!< The local ICE password */
503
504 struct ao2_container *ice_local_candidates; /*!< The local ICE candidates */
505 struct ao2_container *ice_active_remote_candidates; /*!< The remote ICE candidates */
506 struct ao2_container *ice_proposed_remote_candidates; /*!< Incoming remote ICE candidates for new session */
507 struct ast_sockaddr ice_original_rtp_addr; /*!< rtp address that ICE started on first session */
508 unsigned int ice_num_components; /*!< The number of ICE components */
509 unsigned int ice_media_started:1; /*!< ICE media has started, either on a valid pair or on ICE completion */
510#endif
511
512#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
513 SSL_CTX *ssl_ctx; /*!< SSL context */
514 enum ast_rtp_dtls_verify dtls_verify; /*!< What to verify */
515 enum ast_srtp_suite suite; /*!< SRTP crypto suite */
516 enum ast_rtp_dtls_hash local_hash; /*!< Local hash used for the fingerprint */
517 char local_fingerprint[160]; /*!< Fingerprint of our certificate */
518 enum ast_rtp_dtls_hash remote_hash; /*!< Remote hash used for the fingerprint */
519 unsigned char remote_fingerprint[EVP_MAX_MD_SIZE]; /*!< Fingerprint of the peer certificate */
520 unsigned int rekey; /*!< Interval at which to renegotiate and rekey */
521 int rekeyid; /*!< Scheduled item id for rekeying */
522 struct dtls_details dtls; /*!< DTLS state information */
523#endif
524};
525
526/*!
527 * \brief Structure defining an RTCP session.
528 *
529 * The concept "RTCP session" is not defined in RFC 3550, but since
530 * this structure is analogous to ast_rtp, which tracks a RTP session,
531 * it is logical to think of this as a RTCP session.
532 *
533 * RTCP packet is defined on page 9 of RFC 3550.
534 *
535 */
536struct ast_rtcp {
538 int s; /*!< Socket */
539 struct ast_sockaddr us; /*!< Socket representation of the local endpoint. */
540 struct ast_sockaddr them; /*!< Socket representation of the remote endpoint. */
541 unsigned int soc; /*!< What they told us */
542 unsigned int spc; /*!< What they told us */
543 unsigned int themrxlsr; /*!< The middle 32 bits of the NTP timestamp in the last received SR*/
544 struct timeval rxlsr; /*!< Time when we got their last SR */
545 struct timeval txlsr; /*!< Time when we sent or last SR*/
546 unsigned int expected_prior; /*!< no. packets in previous interval */
547 unsigned int received_prior; /*!< no. packets received in previous interval */
548 int schedid; /*!< Schedid returned from ast_sched_add() to schedule RTCP-transmissions*/
549 unsigned int rr_count; /*!< number of RRs we've sent, not including report blocks in SR's */
550 unsigned int sr_count; /*!< number of SRs we've sent */
551 unsigned int lastsrtxcount; /*!< Transmit packet count when last SR sent */
552 double accumulated_transit; /*!< accumulated a-dlsr-lsr */
553 double rtt; /*!< Last reported rtt */
554 double reported_jitter; /*!< The contents of their last jitter entry in the RR in seconds */
555 unsigned int reported_lost; /*!< Reported lost packets in their RR */
556
557 double reported_maxjitter; /*!< Maximum reported interarrival jitter */
558 double reported_minjitter; /*!< Minimum reported interarrival jitter */
559 double reported_normdev_jitter; /*!< Mean of reported interarrival jitter */
560 double reported_stdev_jitter; /*!< Standard deviation of reported interarrival jitter */
561 unsigned int reported_jitter_count; /*!< Reported interarrival jitter count */
562
563 double reported_maxlost; /*!< Maximum reported packets lost */
564 double reported_minlost; /*!< Minimum reported packets lost */
565 double reported_normdev_lost; /*!< Mean of reported packets lost */
566 double reported_stdev_lost; /*!< Standard deviation of reported packets lost */
567 unsigned int reported_lost_count; /*!< Reported packets lost count */
568
569 double rxlost; /*!< Calculated number of lost packets since last report */
570 double maxrxlost; /*!< Maximum calculated lost number of packets between reports */
571 double minrxlost; /*!< Minimum calculated lost number of packets between reports */
572 double normdev_rxlost; /*!< Mean of calculated lost packets between reports */
573 double stdev_rxlost; /*!< Standard deviation of calculated lost packets between reports */
574 unsigned int rxlost_count; /*!< Calculated lost packets sample count */
575
576 double maxrxjitter; /*!< Maximum of calculated interarrival jitter */
577 double minrxjitter; /*!< Minimum of calculated interarrival jitter */
578 double normdev_rxjitter; /*!< Mean of calculated interarrival jitter */
579 double stdev_rxjitter; /*!< Standard deviation of calculated interarrival jitter */
580 unsigned int rxjitter_count; /*!< Calculated interarrival jitter count */
581
582 double maxrtt; /*!< Maximum of calculated round trip time */
583 double minrtt; /*!< Minimum of calculated round trip time */
584 double normdevrtt; /*!< Mean of calculated round trip time */
585 double stdevrtt; /*!< Standard deviation of calculated round trip time */
586 unsigned int rtt_count; /*!< Calculated round trip time count */
587
588 double reported_mes; /*!< The calculated MES from their last RR */
589 double reported_maxmes; /*!< Maximum reported mes */
590 double reported_minmes; /*!< Minimum reported mes */
591 double reported_normdev_mes; /*!< Mean of reported mes */
592 double reported_stdev_mes; /*!< Standard deviation of reported mes */
593 unsigned int reported_mes_count; /*!< Reported mes count */
594
595 double maxrxmes; /*!< Maximum of calculated mes */
596 double minrxmes; /*!< Minimum of calculated mes */
597 double normdev_rxmes; /*!< Mean of calculated mes */
598 double stdev_rxmes; /*!< Standard deviation of calculated mes */
599 unsigned int rxmes_count; /*!< mes count */
600
601 /* VP8: sequence number for the RTCP FIR FCI */
603
604#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
605 struct dtls_details dtls; /*!< DTLS state information */
606#endif
607
608 /* Cached local address string allows us to generate
609 * RTCP stasis messages without having to look up our
610 * own address every time
611 */
614 /* Buffer for frames created during RTCP interpretation */
615 unsigned char frame_buf[512 + AST_FRIENDLY_OFFSET];
616};
617
618struct rtp_red {
619 struct ast_frame t140; /*!< Primary data */
620 struct ast_frame t140red; /*!< Redundant t140*/
621 unsigned char pt[AST_RED_MAX_GENERATION]; /*!< Payload types for redundancy data */
622 unsigned char ts[AST_RED_MAX_GENERATION]; /*!< Time stamps */
623 unsigned char len[AST_RED_MAX_GENERATION]; /*!< length of each generation */
624 int num_gen; /*!< Number of generations */
625 int schedid; /*!< Timer id */
626 int ti; /*!< How long to buffer data before send */
627 unsigned char t140red_data[64000];
628 unsigned char buf_data[64000]; /*!< buffered primary data */
630 long int prev_ts;
631};
632
633/*! \brief Structure for storing RTP packets for retransmission */
635 size_t size; /*!< The size of the payload */
636 unsigned char buf[0]; /*!< The payload data */
637};
638
640
641/* Forward Declarations */
642static int ast_rtp_new(struct ast_rtp_instance *instance, struct ast_sched_context *sched, struct ast_sockaddr *addr, void *data);
643static int ast_rtp_destroy(struct ast_rtp_instance *instance);
644static int ast_rtp_dtmf_begin(struct ast_rtp_instance *instance, char digit);
645static int ast_rtp_dtmf_end(struct ast_rtp_instance *instance, char digit);
646static int ast_rtp_dtmf_end_with_duration(struct ast_rtp_instance *instance, char digit, unsigned int duration);
647static int ast_rtp_dtmf_mode_set(struct ast_rtp_instance *instance, enum ast_rtp_dtmf_mode dtmf_mode);
648static enum ast_rtp_dtmf_mode ast_rtp_dtmf_mode_get(struct ast_rtp_instance *instance);
649static void ast_rtp_update_source(struct ast_rtp_instance *instance);
650static void ast_rtp_change_source(struct ast_rtp_instance *instance);
651static int ast_rtp_write(struct ast_rtp_instance *instance, struct ast_frame *frame);
652static struct ast_frame *ast_rtp_read(struct ast_rtp_instance *instance, int rtcp);
653static void ast_rtp_prop_set(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value);
654static int ast_rtp_fd(struct ast_rtp_instance *instance, int rtcp);
655static void ast_rtp_remote_address_set(struct ast_rtp_instance *instance, struct ast_sockaddr *addr);
656static int rtp_red_init(struct ast_rtp_instance *instance, int buffer_time, int *payloads, int generations);
657static int rtp_red_buffer(struct ast_rtp_instance *instance, struct ast_frame *frame);
658static int ast_rtp_local_bridge(struct ast_rtp_instance *instance0, struct ast_rtp_instance *instance1);
659static int ast_rtp_get_stat(struct ast_rtp_instance *instance, struct ast_rtp_instance_stats *stats, enum ast_rtp_instance_stat stat);
660static int ast_rtp_dtmf_compatible(struct ast_channel *chan0, struct ast_rtp_instance *instance0, struct ast_channel *chan1, struct ast_rtp_instance *instance1);
661static void ast_rtp_stun_request(struct ast_rtp_instance *instance, struct ast_sockaddr *suggestion, const char *username);
662static void ast_rtp_stop(struct ast_rtp_instance *instance);
663static int ast_rtp_qos_set(struct ast_rtp_instance *instance, int tos, int cos, const char* desc);
664static int ast_rtp_sendcng(struct ast_rtp_instance *instance, int level);
665static unsigned int ast_rtp_get_ssrc(struct ast_rtp_instance *instance);
666static const char *ast_rtp_get_cname(struct ast_rtp_instance *instance);
667static void ast_rtp_set_remote_ssrc(struct ast_rtp_instance *instance, unsigned int ssrc);
668static void ast_rtp_set_stream_num(struct ast_rtp_instance *instance, int stream_num);
670static int ast_rtp_bundle(struct ast_rtp_instance *child, struct ast_rtp_instance *parent);
671static void update_reported_mes_stats(struct ast_rtp *rtp);
672static void update_local_mes_stats(struct ast_rtp *rtp);
673
674#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
675static int ast_rtp_activate(struct ast_rtp_instance *instance);
676static void dtls_srtp_start_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp);
677static void dtls_srtp_stop_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp);
678static int dtls_bio_write(BIO *bio, const char *buf, int len);
679static long dtls_bio_ctrl(BIO *bio, int cmd, long arg1, void *arg2);
680static int dtls_bio_new(BIO *bio);
681static int dtls_bio_free(BIO *bio);
682
683#ifndef HAVE_OPENSSL_BIO_METHOD
684static BIO_METHOD dtls_bio_methods = {
685 .type = BIO_TYPE_BIO,
686 .name = "rtp write",
687 .bwrite = dtls_bio_write,
688 .ctrl = dtls_bio_ctrl,
689 .create = dtls_bio_new,
690 .destroy = dtls_bio_free,
691};
692#else
693static BIO_METHOD *dtls_bio_methods;
694#endif
695#endif
696
697static int __rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp, int *via_ice, int use_srtp);
698
699#ifdef HAVE_PJPROJECT
700static void stunaddr_resolve_callback(const struct ast_dns_query *query);
701static int store_stunaddr_resolved(const struct ast_dns_query *query);
702#endif
703
704#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
705static int dtls_bio_new(BIO *bio)
706{
707#ifdef HAVE_OPENSSL_BIO_METHOD
708 BIO_set_init(bio, 1);
709 BIO_set_data(bio, NULL);
710 BIO_set_shutdown(bio, 0);
711#else
712 bio->init = 1;
713 bio->ptr = NULL;
714 bio->flags = 0;
715#endif
716 return 1;
717}
718
719static int dtls_bio_free(BIO *bio)
720{
721 /* The pointer on the BIO is that of the RTP instance. It is not reference counted as the BIO
722 * lifetime is tied to the instance, and actions on the BIO are taken by the thread handling
723 * the RTP instance - not another thread.
724 */
725#ifdef HAVE_OPENSSL_BIO_METHOD
726 BIO_set_data(bio, NULL);
727#else
728 bio->ptr = NULL;
729#endif
730 return 1;
731}
732
733static int dtls_bio_write(BIO *bio, const char *buf, int len)
734{
735#ifdef HAVE_OPENSSL_BIO_METHOD
736 struct ast_rtp_instance *instance = BIO_get_data(bio);
737#else
738 struct ast_rtp_instance *instance = bio->ptr;
739#endif
740 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
741 int rtcp = 0;
742 struct ast_sockaddr remote_address = { {0, } };
743 int ice;
744 int bytes_sent;
745
746 /* OpenSSL can't tolerate a packet not being sent, so we always state that
747 * we sent the packet. If it isn't then retransmission will occur.
748 */
749
750 if (rtp->rtcp && rtp->rtcp->dtls.write_bio == bio) {
751 rtcp = 1;
752 ast_sockaddr_copy(&remote_address, &rtp->rtcp->them);
753 } else {
754 ast_rtp_instance_get_remote_address(instance, &remote_address);
755 }
756
757 if (ast_sockaddr_isnull(&remote_address)) {
758 return len;
759 }
760
761 bytes_sent = __rtp_sendto(instance, (char *)buf, len, 0, &remote_address, rtcp, &ice, 0);
762
763 if (bytes_sent > 0 && ast_debug_dtls_packet_is_allowed) {
764 ast_debug(0, "(%p) DTLS - sent %s packet to %s%s (len %-6.6d)\n",
765 instance, rtcp ? "RTCP" : "RTP", ast_sockaddr_stringify(&remote_address),
766 ice ? " (via ICE)" : "", bytes_sent);
767 }
768
769 return len;
770}
771
772static long dtls_bio_ctrl(BIO *bio, int cmd, long arg1, void *arg2)
773{
774 switch (cmd) {
775 case BIO_CTRL_FLUSH:
776 return 1;
777 case BIO_CTRL_DGRAM_QUERY_MTU:
778 return dtls_mtu;
779 case BIO_CTRL_WPENDING:
780 case BIO_CTRL_PENDING:
781 return 0L;
782 default:
783 return 0;
784 }
785}
786
787#endif
788
789#ifdef HAVE_PJPROJECT
790/*! \brief Helper function which clears the ICE host candidate mapping */
791static void host_candidate_overrides_clear(void)
792{
793 struct ast_ice_host_candidate *candidate;
794
795 AST_RWLIST_WRLOCK(&host_candidates);
796 AST_RWLIST_TRAVERSE_SAFE_BEGIN(&host_candidates, candidate, next) {
798 ast_free(candidate);
799 }
801 AST_RWLIST_UNLOCK(&host_candidates);
802}
803
804/*! \brief Helper function which updates an ast_sockaddr with the candidate used for the component */
805static void update_address_with_ice_candidate(pj_ice_sess *ice, enum ast_rtp_ice_component_type component,
806 struct ast_sockaddr *cand_address)
807{
808 char address[PJ_INET6_ADDRSTRLEN];
809
810 if (component < 1 || !ice->comp[component - 1].valid_check) {
811 return;
812 }
813
814 ast_sockaddr_parse(cand_address,
815 pj_sockaddr_print(&ice->comp[component - 1].valid_check->rcand->addr, address,
816 sizeof(address), 0), 0);
817 ast_sockaddr_set_port(cand_address,
818 pj_sockaddr_get_port(&ice->comp[component - 1].valid_check->rcand->addr));
819}
820
821/*! \brief Destructor for locally created ICE candidates */
822static void ast_rtp_ice_candidate_destroy(void *obj)
823{
824 struct ast_rtp_engine_ice_candidate *candidate = obj;
825
826 if (candidate->foundation) {
827 ast_free(candidate->foundation);
828 }
829
830 if (candidate->transport) {
831 ast_free(candidate->transport);
832 }
833}
834
835/*! \pre instance is locked */
836static void ast_rtp_ice_set_authentication(struct ast_rtp_instance *instance, const char *ufrag, const char *password)
837{
838 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
839 int ice_attrb_reset = 0;
840
841 if (!ast_strlen_zero(ufrag)) {
842 if (!ast_strlen_zero(rtp->remote_ufrag) && strcmp(ufrag, rtp->remote_ufrag)) {
843 ice_attrb_reset = 1;
844 }
845 ast_copy_string(rtp->remote_ufrag, ufrag, sizeof(rtp->remote_ufrag));
846 }
847
848 if (!ast_strlen_zero(password)) {
849 if (!ast_strlen_zero(rtp->remote_passwd) && strcmp(password, rtp->remote_passwd)) {
850 ice_attrb_reset = 1;
851 }
852 ast_copy_string(rtp->remote_passwd, password, sizeof(rtp->remote_passwd));
853 }
854
855 /* If the remote ufrag or passwd changed, local ufrag and passwd need to regenerate */
856 if (ice_attrb_reset) {
857 generate_random_string(rtp->local_ufrag, sizeof(rtp->local_ufrag));
858 generate_random_string(rtp->local_passwd, sizeof(rtp->local_passwd));
859 }
860}
861
862static int ice_candidate_cmp(void *obj, void *arg, int flags)
863{
864 struct ast_rtp_engine_ice_candidate *candidate1 = obj, *candidate2 = arg;
865
866 if (strcmp(candidate1->foundation, candidate2->foundation) ||
867 candidate1->id != candidate2->id ||
868 candidate1->type != candidate2->type ||
869 ast_sockaddr_cmp(&candidate1->address, &candidate2->address)) {
870 return 0;
871 }
872
873 return CMP_MATCH | CMP_STOP;
874}
875
876/*! \pre instance is locked */
877static void ast_rtp_ice_add_remote_candidate(struct ast_rtp_instance *instance, const struct ast_rtp_engine_ice_candidate *candidate)
878{
879 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
880 struct ast_rtp_engine_ice_candidate *remote_candidate;
881
882 /* ICE sessions only support UDP candidates */
883 if (strcasecmp(candidate->transport, "udp")) {
884 return;
885 }
886
887 if (!rtp->ice_proposed_remote_candidates) {
888 rtp->ice_proposed_remote_candidates = ao2_container_alloc_list(
889 AO2_ALLOC_OPT_LOCK_MUTEX, 0, NULL, ice_candidate_cmp);
890 if (!rtp->ice_proposed_remote_candidates) {
891 return;
892 }
893 }
894
895 /* If this is going to exceed the maximum number of ICE candidates don't even add it */
896 if (ao2_container_count(rtp->ice_proposed_remote_candidates) == PJ_ICE_MAX_CAND) {
897 return;
898 }
899
900 if (!(remote_candidate = ao2_alloc(sizeof(*remote_candidate), ast_rtp_ice_candidate_destroy))) {
901 return;
902 }
903
904 remote_candidate->foundation = ast_strdup(candidate->foundation);
905 remote_candidate->id = candidate->id;
906 remote_candidate->transport = ast_strdup(candidate->transport);
907 remote_candidate->priority = candidate->priority;
908 ast_sockaddr_copy(&remote_candidate->address, &candidate->address);
909 ast_sockaddr_copy(&remote_candidate->relay_address, &candidate->relay_address);
910 remote_candidate->type = candidate->type;
911
912 ast_debug_ice(2, "(%p) ICE add remote candidate\n", instance);
913
914 ao2_link(rtp->ice_proposed_remote_candidates, remote_candidate);
915 ao2_ref(remote_candidate, -1);
916}
917
919
920/*! \brief Function used to check if the calling thread is registered with pjlib. If it is not it will be registered. */
921static void pj_thread_register_check(void)
922{
923 pj_thread_desc *desc;
924 pj_thread_t *thread;
925
926 if (pj_thread_is_registered() == PJ_TRUE) {
927 return;
928 }
929
930 desc = ast_threadstorage_get(&pj_thread_storage, sizeof(pj_thread_desc));
931 if (!desc) {
932 ast_log(LOG_ERROR, "Could not get thread desc from thread-local storage. Expect awful things to occur\n");
933 return;
934 }
935 pj_bzero(*desc, sizeof(*desc));
936
937 if (pj_thread_register("Asterisk Thread", *desc, &thread) != PJ_SUCCESS) {
938 ast_log(LOG_ERROR, "Coudln't register thread with PJLIB.\n");
939 }
940 return;
941}
942
943static int ice_create(struct ast_rtp_instance *instance, struct ast_sockaddr *addr,
944 int port, int replace);
945
946/*! \pre instance is locked */
947static void ast_rtp_ice_stop(struct ast_rtp_instance *instance)
948{
949 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
950 struct ice_wrap *ice;
951
952 ice = rtp->ice;
953 rtp->ice = NULL;
954 if (ice) {
955 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
956 ao2_unlock(instance);
957 ao2_ref(ice, -1);
958 ao2_lock(instance);
959 ast_debug_ice(2, "(%p) ICE stopped\n", instance);
960 }
961}
962
963/*!
964 * \brief ao2 ICE wrapper object destructor.
965 *
966 * \param vdoomed Object being destroyed.
967 *
968 * \note The associated struct ast_rtp_instance object must not
969 * be locked when unreffing the object. Otherwise we could
970 * deadlock trying to destroy the PJPROJECT ICE structure.
971 */
972static void ice_wrap_dtor(void *vdoomed)
973{
974 struct ice_wrap *ice = vdoomed;
975
976 if (ice->real_ice) {
977 pj_thread_register_check();
978
979 pj_ice_sess_destroy(ice->real_ice);
980 }
981}
982
983static void ast2pj_rtp_ice_role(enum ast_rtp_ice_role ast_role, enum pj_ice_sess_role *pj_role)
984{
985 switch (ast_role) {
987 *pj_role = PJ_ICE_SESS_ROLE_CONTROLLED;
988 break;
990 *pj_role = PJ_ICE_SESS_ROLE_CONTROLLING;
991 break;
992 }
993}
994
995static void pj2ast_rtp_ice_role(enum pj_ice_sess_role pj_role, enum ast_rtp_ice_role *ast_role)
996{
997 switch (pj_role) {
998 case PJ_ICE_SESS_ROLE_CONTROLLED:
999 *ast_role = AST_RTP_ICE_ROLE_CONTROLLED;
1000 return;
1001 case PJ_ICE_SESS_ROLE_CONTROLLING:
1002 *ast_role = AST_RTP_ICE_ROLE_CONTROLLING;
1003 return;
1004 case PJ_ICE_SESS_ROLE_UNKNOWN:
1005 /* Don't change anything */
1006 return;
1007 default:
1008 /* If we aren't explicitly handling something, it's a bug */
1009 ast_assert(0);
1010 return;
1011 }
1012}
1013
1014/*! \pre instance is locked */
1015static int ice_reset_session(struct ast_rtp_instance *instance)
1016{
1017 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1018 int res;
1019
1020 ast_debug_ice(3, "(%p) ICE resetting\n", instance);
1021 if (!rtp->ice->real_ice->is_nominating && !rtp->ice->real_ice->is_complete) {
1022 ast_debug_ice(3, " (%p) ICE nevermind, not ready for a reset\n", instance);
1023 return 0;
1024 }
1025
1026 ast_debug_ice(3, "(%p) ICE recreating ICE session %s (%d)\n",
1027 instance, ast_sockaddr_stringify(&rtp->ice_original_rtp_addr), rtp->ice_port);
1028 res = ice_create(instance, &rtp->ice_original_rtp_addr, rtp->ice_port, 1);
1029 if (!res) {
1030 /* Use the current expected role for the ICE session */
1031 enum pj_ice_sess_role role = PJ_ICE_SESS_ROLE_UNKNOWN;
1032 ast2pj_rtp_ice_role(rtp->role, &role);
1033 pj_ice_sess_change_role(rtp->ice->real_ice, role);
1034 }
1035
1036 /* If we only have one component now, and we previously set up TURN for RTCP,
1037 * we need to destroy that TURN socket.
1038 */
1039 if (rtp->ice_num_components == 1 && rtp->turn_rtcp) {
1040 struct timeval wait = ast_tvadd(ast_tvnow(), ast_samp2tv(TURN_STATE_WAIT_TIME, 1000));
1041 struct timespec ts = { .tv_sec = wait.tv_sec, .tv_nsec = wait.tv_usec * 1000, };
1042
1043 rtp->turn_state = PJ_TURN_STATE_NULL;
1044
1045 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1046 ao2_unlock(instance);
1047 pj_turn_sock_destroy(rtp->turn_rtcp);
1048 ao2_lock(instance);
1049 while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
1050 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
1051 }
1052 }
1053
1054 rtp->ice_media_started = 0;
1055
1056 return res;
1057}
1058
1059static int ice_candidates_compare(struct ao2_container *left, struct ao2_container *right)
1060{
1061 struct ao2_iterator i;
1062 struct ast_rtp_engine_ice_candidate *right_candidate;
1063
1064 if (ao2_container_count(left) != ao2_container_count(right)) {
1065 return -1;
1066 }
1067
1068 i = ao2_iterator_init(right, 0);
1069 while ((right_candidate = ao2_iterator_next(&i))) {
1070 struct ast_rtp_engine_ice_candidate *left_candidate = ao2_find(left, right_candidate, OBJ_POINTER);
1071
1072 if (!left_candidate) {
1073 ao2_ref(right_candidate, -1);
1075 return -1;
1076 }
1077
1078 ao2_ref(left_candidate, -1);
1079 ao2_ref(right_candidate, -1);
1080 }
1082
1083 return 0;
1084}
1085
1086/*! \pre instance is locked */
1087static void ast_rtp_ice_start(struct ast_rtp_instance *instance)
1088{
1089 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1090 pj_str_t ufrag = pj_str(rtp->remote_ufrag), passwd = pj_str(rtp->remote_passwd);
1091 pj_ice_sess_cand candidates[PJ_ICE_MAX_CAND];
1092 struct ao2_iterator i;
1093 struct ast_rtp_engine_ice_candidate *candidate;
1094 int cand_cnt = 0, has_rtp = 0, has_rtcp = 0;
1095
1096 if (!rtp->ice || !rtp->ice_proposed_remote_candidates) {
1097 return;
1098 }
1099
1100 /* Check for equivalence in the lists */
1101 if (rtp->ice_active_remote_candidates &&
1102 !ice_candidates_compare(rtp->ice_proposed_remote_candidates, rtp->ice_active_remote_candidates)) {
1103 ast_debug_ice(2, "(%p) ICE proposed equals active candidates\n", instance);
1104 ao2_cleanup(rtp->ice_proposed_remote_candidates);
1105 rtp->ice_proposed_remote_candidates = NULL;
1106 /* If this ICE session is being preserved then go back to the role it currently is */
1107 pj2ast_rtp_ice_role(rtp->ice->real_ice->role, &rtp->role);
1108 return;
1109 }
1110
1111 /* Out with the old, in with the new */
1112 ao2_cleanup(rtp->ice_active_remote_candidates);
1113 rtp->ice_active_remote_candidates = rtp->ice_proposed_remote_candidates;
1114 rtp->ice_proposed_remote_candidates = NULL;
1115
1116 ast_debug_ice(2, "(%p) ICE start\n", instance);
1117
1118 /* Reset the ICE session. Is this going to work? */
1119 if (ice_reset_session(instance)) {
1120 ast_log(LOG_NOTICE, "(%p) ICE failed to create replacement session\n", instance);
1121 return;
1122 }
1123
1124 pj_thread_register_check();
1125
1126 i = ao2_iterator_init(rtp->ice_active_remote_candidates, 0);
1127
1128 while ((candidate = ao2_iterator_next(&i)) && (cand_cnt < PJ_ICE_MAX_CAND)) {
1129 pj_str_t address;
1130
1131 /* there needs to be at least one rtp and rtcp candidate in the list */
1132 has_rtp |= candidate->id == AST_RTP_ICE_COMPONENT_RTP;
1133 has_rtcp |= candidate->id == AST_RTP_ICE_COMPONENT_RTCP;
1134
1135 pj_strdup2(rtp->ice->real_ice->pool, &candidates[cand_cnt].foundation,
1136 candidate->foundation);
1137 candidates[cand_cnt].comp_id = candidate->id;
1138 candidates[cand_cnt].prio = candidate->priority;
1139
1140 pj_sockaddr_parse(pj_AF_UNSPEC(), 0, pj_cstr(&address, ast_sockaddr_stringify(&candidate->address)), &candidates[cand_cnt].addr);
1141
1142 if (!ast_sockaddr_isnull(&candidate->relay_address)) {
1143 pj_sockaddr_parse(pj_AF_UNSPEC(), 0, pj_cstr(&address, ast_sockaddr_stringify(&candidate->relay_address)), &candidates[cand_cnt].rel_addr);
1144 }
1145
1146 if (candidate->type == AST_RTP_ICE_CANDIDATE_TYPE_HOST) {
1147 candidates[cand_cnt].type = PJ_ICE_CAND_TYPE_HOST;
1148 } else if (candidate->type == AST_RTP_ICE_CANDIDATE_TYPE_SRFLX) {
1149 candidates[cand_cnt].type = PJ_ICE_CAND_TYPE_SRFLX;
1150 } else if (candidate->type == AST_RTP_ICE_CANDIDATE_TYPE_RELAYED) {
1151 candidates[cand_cnt].type = PJ_ICE_CAND_TYPE_RELAYED;
1152 }
1153
1154 if (candidate->id == AST_RTP_ICE_COMPONENT_RTP && rtp->turn_rtp) {
1155 ast_debug_ice(2, "(%p) ICE RTP candidate %s\n", instance, ast_sockaddr_stringify(&candidate->address));
1156 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1157 ao2_unlock(instance);
1158 pj_turn_sock_set_perm(rtp->turn_rtp, 1, &candidates[cand_cnt].addr, 1);
1159 ao2_lock(instance);
1160 } else if (candidate->id == AST_RTP_ICE_COMPONENT_RTCP && rtp->turn_rtcp) {
1161 ast_debug_ice(2, "(%p) ICE RTCP candidate %s\n", instance, ast_sockaddr_stringify(&candidate->address));
1162 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1163 ao2_unlock(instance);
1164 pj_turn_sock_set_perm(rtp->turn_rtcp, 1, &candidates[cand_cnt].addr, 1);
1165 ao2_lock(instance);
1166 }
1167
1168 cand_cnt++;
1169 ao2_ref(candidate, -1);
1170 }
1171
1173
1174 if (cand_cnt < ao2_container_count(rtp->ice_active_remote_candidates)) {
1175 ast_log(LOG_WARNING, "(%p) ICE lost %d candidates. Consider increasing PJ_ICE_MAX_CAND in PJSIP\n",
1176 instance, ao2_container_count(rtp->ice_active_remote_candidates) - cand_cnt);
1177 }
1178
1179 if (!has_rtp) {
1180 ast_log(LOG_WARNING, "(%p) ICE no RTP candidates; skipping checklist\n", instance);
1181 }
1182
1183 /* If we're only dealing with one ICE component, then we don't care about the lack of RTCP candidates */
1184 if (!has_rtcp && rtp->ice_num_components > 1) {
1185 ast_log(LOG_WARNING, "(%p) ICE no RTCP candidates; skipping checklist\n", instance);
1186 }
1187
1188 if (rtp->ice && has_rtp && (has_rtcp || rtp->ice_num_components == 1)) {
1189 pj_status_t res;
1190 char reason[80];
1191 struct ice_wrap *ice;
1192
1193 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1194 ice = rtp->ice;
1195 ao2_ref(ice, +1);
1196 ao2_unlock(instance);
1197 res = pj_ice_sess_create_check_list(ice->real_ice, &ufrag, &passwd, cand_cnt, &candidates[0]);
1198 if (res == PJ_SUCCESS) {
1199 ast_debug_ice(2, "(%p) ICE successfully created checklist\n", instance);
1200 ast_test_suite_event_notify("ICECHECKLISTCREATE", "Result: SUCCESS");
1201 pj_ice_sess_start_check(ice->real_ice);
1202 pj_timer_heap_poll(timer_heap, NULL);
1203 ao2_ref(ice, -1);
1204 ao2_lock(instance);
1206 return;
1207 }
1208 ao2_ref(ice, -1);
1209 ao2_lock(instance);
1210
1211 pj_strerror(res, reason, sizeof(reason));
1212 ast_log(LOG_WARNING, "(%p) ICE failed to create session check list: %s\n", instance, reason);
1213 }
1214
1215 ast_test_suite_event_notify("ICECHECKLISTCREATE", "Result: FAILURE");
1216
1217 /* even though create check list failed don't stop ice as
1218 it might still work */
1219 /* however we do need to reset remote candidates since
1220 this function may be re-entered */
1221 ao2_ref(rtp->ice_active_remote_candidates, -1);
1222 rtp->ice_active_remote_candidates = NULL;
1223 if (rtp->ice) {
1224 rtp->ice->real_ice->rcand_cnt = rtp->ice->real_ice->clist.count = 0;
1225 }
1226}
1227
1228/*! \pre instance is locked */
1229static const char *ast_rtp_ice_get_ufrag(struct ast_rtp_instance *instance)
1230{
1231 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1232
1233 return rtp->local_ufrag;
1234}
1235
1236/*! \pre instance is locked */
1237static const char *ast_rtp_ice_get_password(struct ast_rtp_instance *instance)
1238{
1239 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1240
1241 return rtp->local_passwd;
1242}
1243
1244/*! \pre instance is locked */
1245static struct ao2_container *ast_rtp_ice_get_local_candidates(struct ast_rtp_instance *instance)
1246{
1247 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1248
1249 if (rtp->ice_local_candidates) {
1250 ao2_ref(rtp->ice_local_candidates, +1);
1251 }
1252
1253 return rtp->ice_local_candidates;
1254}
1255
1256/*! \pre instance is locked */
1257static void ast_rtp_ice_lite(struct ast_rtp_instance *instance)
1258{
1259 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1260
1261 if (!rtp->ice) {
1262 return;
1263 }
1264
1265 pj_thread_register_check();
1266
1267 pj_ice_sess_change_role(rtp->ice->real_ice, PJ_ICE_SESS_ROLE_CONTROLLING);
1268}
1269
1270/*! \pre instance is locked */
1271static void ast_rtp_ice_set_role(struct ast_rtp_instance *instance, enum ast_rtp_ice_role role)
1272{
1273 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1274
1275 if (!rtp->ice) {
1276 ast_debug_ice(3, "(%p) ICE set role failed; no ice instance\n", instance);
1277 return;
1278 }
1279
1280 rtp->role = role;
1281
1282 if (!rtp->ice->real_ice->is_nominating && !rtp->ice->real_ice->is_complete) {
1283 pj_thread_register_check();
1284 ast_debug_ice(2, "(%p) ICE set role to %s\n",
1285 instance, role == AST_RTP_ICE_ROLE_CONTROLLED ? "CONTROLLED" : "CONTROLLING");
1286 pj_ice_sess_change_role(rtp->ice->real_ice, role == AST_RTP_ICE_ROLE_CONTROLLED ?
1287 PJ_ICE_SESS_ROLE_CONTROLLED : PJ_ICE_SESS_ROLE_CONTROLLING);
1288 } else {
1289 ast_debug_ice(2, "(%p) ICE not setting role because state is %s\n",
1290 instance, rtp->ice->real_ice->is_nominating ? "nominating" : "complete");
1291 }
1292}
1293
1294/*! \pre instance is locked */
1295static void ast_rtp_ice_add_cand(struct ast_rtp_instance *instance, struct ast_rtp *rtp,
1296 unsigned comp_id, unsigned transport_id, pj_ice_cand_type type, pj_uint16_t local_pref,
1297 const pj_sockaddr_t *addr, const pj_sockaddr_t *base_addr, const pj_sockaddr_t *rel_addr,
1298 int addr_len)
1299{
1300 pj_str_t foundation;
1301 struct ast_rtp_engine_ice_candidate *candidate, *existing;
1302 struct ice_wrap *ice;
1303 char address[PJ_INET6_ADDRSTRLEN];
1304 pj_status_t status;
1305
1306 if (!rtp->ice) {
1307 return;
1308 }
1309
1310 pj_thread_register_check();
1311
1312 pj_ice_calc_foundation(rtp->ice->real_ice->pool, &foundation, type, addr);
1313
1314 if (!rtp->ice_local_candidates) {
1315 rtp->ice_local_candidates = ao2_container_alloc_list(AO2_ALLOC_OPT_LOCK_MUTEX, 0,
1316 NULL, ice_candidate_cmp);
1317 if (!rtp->ice_local_candidates) {
1318 return;
1319 }
1320 }
1321
1322 if (!(candidate = ao2_alloc(sizeof(*candidate), ast_rtp_ice_candidate_destroy))) {
1323 return;
1324 }
1325
1326 candidate->foundation = ast_strndup(pj_strbuf(&foundation), pj_strlen(&foundation));
1327 candidate->id = comp_id;
1328 candidate->transport = ast_strdup("UDP");
1329
1330 ast_sockaddr_parse(&candidate->address, pj_sockaddr_print(addr, address, sizeof(address), 0), 0);
1331 ast_sockaddr_set_port(&candidate->address, pj_sockaddr_get_port(addr));
1332
1333 if (rel_addr) {
1334 ast_sockaddr_parse(&candidate->relay_address, pj_sockaddr_print(rel_addr, address, sizeof(address), 0), 0);
1335 ast_sockaddr_set_port(&candidate->relay_address, pj_sockaddr_get_port(rel_addr));
1336 }
1337
1338 if (type == PJ_ICE_CAND_TYPE_HOST) {
1340 } else if (type == PJ_ICE_CAND_TYPE_SRFLX) {
1342 } else if (type == PJ_ICE_CAND_TYPE_RELAYED) {
1344 }
1345
1346 if ((existing = ao2_find(rtp->ice_local_candidates, candidate, OBJ_POINTER))) {
1347 ao2_ref(existing, -1);
1348 ao2_ref(candidate, -1);
1349 return;
1350 }
1351
1352 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1353 ice = rtp->ice;
1354 ao2_ref(ice, +1);
1355 ao2_unlock(instance);
1356 status = pj_ice_sess_add_cand(ice->real_ice, comp_id, transport_id, type, local_pref,
1357 &foundation, addr, base_addr, rel_addr, addr_len, NULL);
1358 ao2_ref(ice, -1);
1359 ao2_lock(instance);
1360 if (!rtp->ice || status != PJ_SUCCESS) {
1361 ast_debug_ice(2, "(%p) ICE unable to add candidate: %s, %d\n", instance, ast_sockaddr_stringify(
1362 &candidate->address), candidate->priority);
1363 ao2_ref(candidate, -1);
1364 return;
1365 }
1366
1367 /* By placing the candidate into the ICE session it will have produced the priority, so update the local candidate with it */
1368 candidate->priority = rtp->ice->real_ice->lcand[rtp->ice->real_ice->lcand_cnt - 1].prio;
1369
1370 ast_debug_ice(2, "(%p) ICE add candidate: %s, %d\n", instance, ast_sockaddr_stringify(
1371 &candidate->address), candidate->priority);
1372
1373 ao2_link(rtp->ice_local_candidates, candidate);
1374 ao2_ref(candidate, -1);
1375}
1376
1377/* PJPROJECT TURN callback */
1378static void ast_rtp_on_turn_rx_rtp_data(pj_turn_sock *turn_sock, void *pkt, unsigned pkt_len, const pj_sockaddr_t *peer_addr, unsigned addr_len)
1379{
1380 struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
1381 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1382 struct ice_wrap *ice;
1383 pj_status_t status;
1384
1385 ao2_lock(instance);
1386 ice = ao2_bump(rtp->ice);
1387 ao2_unlock(instance);
1388
1389 if (ice) {
1390 status = pj_ice_sess_on_rx_pkt(ice->real_ice, AST_RTP_ICE_COMPONENT_RTP,
1391 TRANSPORT_TURN_RTP, pkt, pkt_len, peer_addr, addr_len);
1392 ao2_ref(ice, -1);
1393 if (status != PJ_SUCCESS) {
1394 char buf[100];
1395
1396 pj_strerror(status, buf, sizeof(buf));
1397 ast_log(LOG_WARNING, "(%p) ICE PJ Rx error status code: %d '%s'.\n",
1398 instance, (int)status, buf);
1399 return;
1400 }
1401 if (!rtp->rtp_passthrough) {
1402 return;
1403 }
1404 rtp->rtp_passthrough = 0;
1405 }
1406
1407 ast_sendto(rtp->s, pkt, pkt_len, 0, &rtp->rtp_loop);
1408}
1409
1410/* PJPROJECT TURN callback */
1411static void ast_rtp_on_turn_rtp_state(pj_turn_sock *turn_sock, pj_turn_state_t old_state, pj_turn_state_t new_state)
1412{
1413 struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
1414 struct ast_rtp *rtp;
1415
1416 /* If this is a leftover from an already notified RTP instance just ignore the state change */
1417 if (!instance) {
1418 return;
1419 }
1420
1421 rtp = ast_rtp_instance_get_data(instance);
1422
1423 ao2_lock(instance);
1424
1425 /* We store the new state so the other thread can actually handle it */
1426 rtp->turn_state = new_state;
1427 ast_cond_signal(&rtp->cond);
1428
1429 if (new_state == PJ_TURN_STATE_DESTROYING) {
1430 pj_turn_sock_set_user_data(rtp->turn_rtp, NULL);
1431 rtp->turn_rtp = NULL;
1432 }
1433
1434 ao2_unlock(instance);
1435}
1436
1437/* RTP TURN Socket interface declaration */
1438static pj_turn_sock_cb ast_rtp_turn_rtp_sock_cb = {
1439 .on_rx_data = ast_rtp_on_turn_rx_rtp_data,
1440 .on_state = ast_rtp_on_turn_rtp_state,
1441};
1442
1443/* PJPROJECT TURN callback */
1444static void ast_rtp_on_turn_rx_rtcp_data(pj_turn_sock *turn_sock, void *pkt, unsigned pkt_len, const pj_sockaddr_t *peer_addr, unsigned addr_len)
1445{
1446 struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
1447 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1448 struct ice_wrap *ice;
1449 pj_status_t status;
1450
1451 ao2_lock(instance);
1452 ice = ao2_bump(rtp->ice);
1453 ao2_unlock(instance);
1454
1455 if (ice) {
1456 status = pj_ice_sess_on_rx_pkt(ice->real_ice, AST_RTP_ICE_COMPONENT_RTCP,
1457 TRANSPORT_TURN_RTCP, pkt, pkt_len, peer_addr, addr_len);
1458 ao2_ref(ice, -1);
1459 if (status != PJ_SUCCESS) {
1460 char buf[100];
1461
1462 pj_strerror(status, buf, sizeof(buf));
1463 ast_log(LOG_WARNING, "PJ ICE Rx error status code: %d '%s'.\n",
1464 (int)status, buf);
1465 return;
1466 }
1467 if (!rtp->rtcp_passthrough) {
1468 return;
1469 }
1470 rtp->rtcp_passthrough = 0;
1471 }
1472
1473 ast_sendto(rtp->rtcp->s, pkt, pkt_len, 0, &rtp->rtcp_loop);
1474}
1475
1476/* PJPROJECT TURN callback */
1477static void ast_rtp_on_turn_rtcp_state(pj_turn_sock *turn_sock, pj_turn_state_t old_state, pj_turn_state_t new_state)
1478{
1479 struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
1480 struct ast_rtp *rtp;
1481
1482 /* If this is a leftover from an already destroyed RTP instance just ignore the state change */
1483 if (!instance) {
1484 return;
1485 }
1486
1487 rtp = ast_rtp_instance_get_data(instance);
1488
1489 ao2_lock(instance);
1490
1491 /* We store the new state so the other thread can actually handle it */
1492 rtp->turn_state = new_state;
1493 ast_cond_signal(&rtp->cond);
1494
1495 if (new_state == PJ_TURN_STATE_DESTROYING) {
1496 pj_turn_sock_set_user_data(rtp->turn_rtcp, NULL);
1497 rtp->turn_rtcp = NULL;
1498 }
1499
1500 ao2_unlock(instance);
1501}
1502
1503/* RTCP TURN Socket interface declaration */
1504static pj_turn_sock_cb ast_rtp_turn_rtcp_sock_cb = {
1505 .on_rx_data = ast_rtp_on_turn_rx_rtcp_data,
1506 .on_state = ast_rtp_on_turn_rtcp_state,
1507};
1508
1509/*! \brief Worker thread for ioqueue and timerheap */
1510static int ioqueue_worker_thread(void *data)
1511{
1512 struct ast_rtp_ioqueue_thread *ioqueue = data;
1513
1514 while (!ioqueue->terminate) {
1515 const pj_time_val delay = {0, 10};
1516
1517 pj_ioqueue_poll(ioqueue->ioqueue, &delay);
1518
1519 pj_timer_heap_poll(ioqueue->timerheap, NULL);
1520 }
1521
1522 return 0;
1523}
1524
1525/*! \brief Destroyer for ioqueue thread */
1526static void rtp_ioqueue_thread_destroy(struct ast_rtp_ioqueue_thread *ioqueue)
1527{
1528 if (ioqueue->thread) {
1529 ioqueue->terminate = 1;
1530 pj_thread_join(ioqueue->thread);
1531 pj_thread_destroy(ioqueue->thread);
1532 }
1533
1534 if (ioqueue->pool) {
1535 /* This mimics the behavior of pj_pool_safe_release
1536 * which was introduced in pjproject 2.6.
1537 */
1538 pj_pool_t *temp_pool = ioqueue->pool;
1539
1540 ioqueue->pool = NULL;
1541 pj_pool_release(temp_pool);
1542 }
1543
1544 ast_free(ioqueue);
1545}
1546
1547/*! \brief Removal function for ioqueue thread, determines if it should be terminated and destroyed */
1548static void rtp_ioqueue_thread_remove(struct ast_rtp_ioqueue_thread *ioqueue)
1549{
1550 int destroy = 0;
1551
1552 /* If nothing is using this ioqueue thread destroy it */
1553 AST_LIST_LOCK(&ioqueues);
1554 if ((ioqueue->count -= 2) == 0) {
1555 destroy = 1;
1556 AST_LIST_REMOVE(&ioqueues, ioqueue, next);
1557 }
1558 AST_LIST_UNLOCK(&ioqueues);
1559
1560 if (!destroy) {
1561 return;
1562 }
1563
1564 rtp_ioqueue_thread_destroy(ioqueue);
1565}
1566
1567/*! \brief Finder and allocator for an ioqueue thread */
1568static struct ast_rtp_ioqueue_thread *rtp_ioqueue_thread_get_or_create(void)
1569{
1570 struct ast_rtp_ioqueue_thread *ioqueue;
1571 pj_lock_t *lock;
1572
1573 AST_LIST_LOCK(&ioqueues);
1574
1575 /* See if an ioqueue thread exists that can handle more */
1576 AST_LIST_TRAVERSE(&ioqueues, ioqueue, next) {
1577 if ((ioqueue->count + 2) < PJ_IOQUEUE_MAX_HANDLES) {
1578 break;
1579 }
1580 }
1581
1582 /* If we found one bump it up and return it */
1583 if (ioqueue) {
1584 ioqueue->count += 2;
1585 goto end;
1586 }
1587
1588 ioqueue = ast_calloc(1, sizeof(*ioqueue));
1589 if (!ioqueue) {
1590 goto end;
1591 }
1592
1593 ioqueue->pool = pj_pool_create(&cachingpool.factory, "rtp", 512, 512, NULL);
1594
1595 /* We use a timer on the ioqueue thread for TURN so that two threads aren't operating
1596 * on a session at the same time
1597 */
1598 if (pj_timer_heap_create(ioqueue->pool, 4, &ioqueue->timerheap) != PJ_SUCCESS) {
1599 goto fatal;
1600 }
1601
1602 if (pj_lock_create_recursive_mutex(ioqueue->pool, "rtp%p", &lock) != PJ_SUCCESS) {
1603 goto fatal;
1604 }
1605
1606 pj_timer_heap_set_lock(ioqueue->timerheap, lock, PJ_TRUE);
1607
1608 if (pj_ioqueue_create(ioqueue->pool, PJ_IOQUEUE_MAX_HANDLES, &ioqueue->ioqueue) != PJ_SUCCESS) {
1609 goto fatal;
1610 }
1611
1612 if (pj_thread_create(ioqueue->pool, "ice", &ioqueue_worker_thread, ioqueue, 0, 0, &ioqueue->thread) != PJ_SUCCESS) {
1613 goto fatal;
1614 }
1615
1616 AST_LIST_INSERT_HEAD(&ioqueues, ioqueue, next);
1617
1618 /* Since this is being returned to an active session the count always starts at 2 */
1619 ioqueue->count = 2;
1620
1621 goto end;
1622
1623fatal:
1624 rtp_ioqueue_thread_destroy(ioqueue);
1625 ioqueue = NULL;
1626
1627end:
1628 AST_LIST_UNLOCK(&ioqueues);
1629 return ioqueue;
1630}
1631
1632/*! \pre instance is locked */
1633static void ast_rtp_ice_turn_request(struct ast_rtp_instance *instance, enum ast_rtp_ice_component_type component,
1634 enum ast_transport transport, const char *server, unsigned int port, const char *username, const char *password)
1635{
1636 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1637 pj_turn_sock **turn_sock;
1638 const pj_turn_sock_cb *turn_cb;
1639 pj_turn_tp_type conn_type;
1640 int conn_transport;
1641 pj_stun_auth_cred cred = { 0, };
1642 pj_str_t turn_addr;
1643 struct ast_sockaddr addr = { { 0, } };
1644 pj_stun_config stun_config;
1645 struct timeval wait = ast_tvadd(ast_tvnow(), ast_samp2tv(TURN_STATE_WAIT_TIME, 1000));
1646 struct timespec ts = { .tv_sec = wait.tv_sec, .tv_nsec = wait.tv_usec * 1000, };
1647 pj_turn_session_info info;
1648 struct ast_sockaddr local, loop;
1649 pj_status_t status;
1650 pj_turn_sock_cfg turn_sock_cfg;
1651 struct ice_wrap *ice;
1652
1653 ast_rtp_instance_get_local_address(instance, &local);
1654 if (ast_sockaddr_is_ipv4(&local)) {
1655 ast_sockaddr_parse(&loop, "127.0.0.1", PARSE_PORT_FORBID);
1656 } else {
1658 }
1659
1660 /* Determine what component we are requesting a TURN session for */
1661 if (component == AST_RTP_ICE_COMPONENT_RTP) {
1662 turn_sock = &rtp->turn_rtp;
1663 turn_cb = &ast_rtp_turn_rtp_sock_cb;
1664 conn_transport = TRANSPORT_TURN_RTP;
1666 } else if (component == AST_RTP_ICE_COMPONENT_RTCP) {
1667 turn_sock = &rtp->turn_rtcp;
1668 turn_cb = &ast_rtp_turn_rtcp_sock_cb;
1669 conn_transport = TRANSPORT_TURN_RTCP;
1671 } else {
1672 return;
1673 }
1674
1675 if (transport == AST_TRANSPORT_UDP) {
1676 conn_type = PJ_TURN_TP_UDP;
1677 } else if (transport == AST_TRANSPORT_TCP) {
1678 conn_type = PJ_TURN_TP_TCP;
1679 } else {
1680 ast_assert(0);
1681 return;
1682 }
1683
1684 ast_sockaddr_parse(&addr, server, PARSE_PORT_FORBID);
1685
1686 if (*turn_sock) {
1687 rtp->turn_state = PJ_TURN_STATE_NULL;
1688
1689 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1690 ao2_unlock(instance);
1691 pj_turn_sock_destroy(*turn_sock);
1692 ao2_lock(instance);
1693 while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
1694 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
1695 }
1696 }
1697
1698 if (component == AST_RTP_ICE_COMPONENT_RTP && !rtp->ioqueue) {
1699 /*
1700 * We cannot hold the instance lock because we could wait
1701 * for the ioqueue thread to die and we might deadlock as
1702 * a result.
1703 */
1704 ao2_unlock(instance);
1705 rtp->ioqueue = rtp_ioqueue_thread_get_or_create();
1706 ao2_lock(instance);
1707 if (!rtp->ioqueue) {
1708 return;
1709 }
1710 }
1711
1712 pj_stun_config_init(&stun_config, &cachingpool.factory, 0, rtp->ioqueue->ioqueue, rtp->ioqueue->timerheap);
1713 if (!stun_software_attribute) {
1714 stun_config.software_name = pj_str(NULL);
1715 }
1716
1717 /* Use ICE session group lock for TURN session to avoid deadlock */
1718 pj_turn_sock_cfg_default(&turn_sock_cfg);
1719 ice = rtp->ice;
1720 if (ice) {
1721 turn_sock_cfg.grp_lock = ice->real_ice->grp_lock;
1722 ao2_ref(ice, +1);
1723 }
1724
1725 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1726 ao2_unlock(instance);
1727 status = pj_turn_sock_create(&stun_config,
1728 ast_sockaddr_is_ipv4(&addr) ? pj_AF_INET() : pj_AF_INET6(), conn_type,
1729 turn_cb, &turn_sock_cfg, instance, turn_sock);
1730 ao2_cleanup(ice);
1731 if (status != PJ_SUCCESS) {
1732 ast_log(LOG_WARNING, "(%p) Could not create a TURN client socket\n", instance);
1733 ao2_lock(instance);
1734 return;
1735 }
1736
1737 cred.type = PJ_STUN_AUTH_CRED_STATIC;
1738 pj_strset2(&cred.data.static_cred.username, (char*)username);
1739 cred.data.static_cred.data_type = PJ_STUN_PASSWD_PLAIN;
1740 pj_strset2(&cred.data.static_cred.data, (char*)password);
1741
1742 pj_turn_sock_alloc(*turn_sock, pj_cstr(&turn_addr, server), port, NULL, &cred, NULL);
1743
1744 ast_debug_ice(2, "(%p) ICE request TURN %s %s candidate\n", instance,
1745 transport == AST_TRANSPORT_UDP ? "UDP" : "TCP",
1746 component == AST_RTP_ICE_COMPONENT_RTP ? "RTP" : "RTCP");
1747
1748 ao2_lock(instance);
1749
1750 /*
1751 * Because the TURN socket is asynchronous and we are synchronous we need to
1752 * wait until it is done
1753 */
1754 while (rtp->turn_state < PJ_TURN_STATE_READY) {
1755 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
1756 }
1757
1758 /* If a TURN session was allocated add it as a candidate */
1759 if (rtp->turn_state != PJ_TURN_STATE_READY) {
1760 return;
1761 }
1762
1763 pj_turn_sock_get_info(*turn_sock, &info);
1764
1765 ast_rtp_ice_add_cand(instance, rtp, component, conn_transport,
1766 PJ_ICE_CAND_TYPE_RELAYED, 65535, &info.relay_addr, &info.relay_addr,
1767 &info.mapped_addr, pj_sockaddr_get_len(&info.relay_addr));
1768
1769 if (component == AST_RTP_ICE_COMPONENT_RTP) {
1770 ast_sockaddr_copy(&rtp->rtp_loop, &loop);
1771 } else if (component == AST_RTP_ICE_COMPONENT_RTCP) {
1772 ast_sockaddr_copy(&rtp->rtcp_loop, &loop);
1773 }
1774}
1775
1776static char *generate_random_string(char *buf, size_t size)
1777{
1778 long val[4];
1779 int x;
1780
1781 for (x=0; x<4; x++) {
1782 val[x] = ast_random();
1783 }
1784 snprintf(buf, size, "%08lx%08lx%08lx%08lx", (long unsigned)val[0], (long unsigned)val[1], (long unsigned)val[2], (long unsigned)val[3]);
1785
1786 return buf;
1787}
1788
1789/*! \pre instance is locked */
1790static void ast_rtp_ice_change_components(struct ast_rtp_instance *instance, int num_components)
1791{
1792 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1793
1794 /* Don't do anything if ICE is unsupported or if we're not changing the
1795 * number of components
1796 */
1797 if (!icesupport || !rtp->ice || rtp->ice_num_components == num_components) {
1798 return;
1799 }
1800
1801 ast_debug_ice(2, "(%p) ICE change number of components %u -> %u\n", instance,
1802 rtp->ice_num_components, num_components);
1803
1804 rtp->ice_num_components = num_components;
1805 ice_reset_session(instance);
1806}
1807
1808/* ICE RTP Engine interface declaration */
1809static struct ast_rtp_engine_ice ast_rtp_ice = {
1810 .set_authentication = ast_rtp_ice_set_authentication,
1811 .add_remote_candidate = ast_rtp_ice_add_remote_candidate,
1812 .start = ast_rtp_ice_start,
1813 .stop = ast_rtp_ice_stop,
1814 .get_ufrag = ast_rtp_ice_get_ufrag,
1815 .get_password = ast_rtp_ice_get_password,
1816 .get_local_candidates = ast_rtp_ice_get_local_candidates,
1817 .ice_lite = ast_rtp_ice_lite,
1818 .set_role = ast_rtp_ice_set_role,
1819 .turn_request = ast_rtp_ice_turn_request,
1820 .change_components = ast_rtp_ice_change_components,
1821};
1822#endif
1823
1824#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
1825static int dtls_verify_callback(int preverify_ok, X509_STORE_CTX *ctx)
1826{
1827 /* We don't want to actually verify the certificate so just accept what they have provided */
1828 return 1;
1829}
1830
1831static int dtls_details_initialize(struct dtls_details *dtls, SSL_CTX *ssl_ctx,
1832 enum ast_rtp_dtls_setup setup, struct ast_rtp_instance *instance)
1833{
1834 dtls->dtls_setup = setup;
1835
1836 if (!(dtls->ssl = SSL_new(ssl_ctx))) {
1837 ast_log(LOG_ERROR, "Failed to allocate memory for SSL\n");
1838 goto error;
1839 }
1840
1841 if (!(dtls->read_bio = BIO_new(BIO_s_mem()))) {
1842 ast_log(LOG_ERROR, "Failed to allocate memory for inbound SSL traffic\n");
1843 goto error;
1844 }
1845 BIO_set_mem_eof_return(dtls->read_bio, -1);
1846
1847#ifdef HAVE_OPENSSL_BIO_METHOD
1848 if (!(dtls->write_bio = BIO_new(dtls_bio_methods))) {
1849 ast_log(LOG_ERROR, "Failed to allocate memory for outbound SSL traffic\n");
1850 goto error;
1851 }
1852
1853 BIO_set_data(dtls->write_bio, instance);
1854#else
1855 if (!(dtls->write_bio = BIO_new(&dtls_bio_methods))) {
1856 ast_log(LOG_ERROR, "Failed to allocate memory for outbound SSL traffic\n");
1857 goto error;
1858 }
1859 dtls->write_bio->ptr = instance;
1860#endif
1861 SSL_set_bio(dtls->ssl, dtls->read_bio, dtls->write_bio);
1862
1863 if (dtls->dtls_setup == AST_RTP_DTLS_SETUP_PASSIVE) {
1864 SSL_set_accept_state(dtls->ssl);
1865 } else {
1866 SSL_set_connect_state(dtls->ssl);
1867 }
1868 dtls->connection = AST_RTP_DTLS_CONNECTION_NEW;
1869
1870 return 0;
1871
1872error:
1873 if (dtls->read_bio) {
1874 BIO_free(dtls->read_bio);
1875 dtls->read_bio = NULL;
1876 }
1877
1878 if (dtls->write_bio) {
1879 BIO_free(dtls->write_bio);
1880 dtls->write_bio = NULL;
1881 }
1882
1883 if (dtls->ssl) {
1884 SSL_free(dtls->ssl);
1885 dtls->ssl = NULL;
1886 }
1887 return -1;
1888}
1889
1890static int dtls_setup_rtcp(struct ast_rtp_instance *instance)
1891{
1892 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1893
1894 if (!rtp->ssl_ctx || !rtp->rtcp) {
1895 return 0;
1896 }
1897
1898 ast_debug_dtls(3, "(%p) DTLS RTCP setup\n", instance);
1899 return dtls_details_initialize(&rtp->rtcp->dtls, rtp->ssl_ctx, rtp->dtls.dtls_setup, instance);
1900}
1901
1902static const SSL_METHOD *get_dtls_method(void)
1903{
1904#if OPENSSL_VERSION_NUMBER < 0x10002000L
1905 return DTLSv1_method();
1906#else
1907 return DTLS_method();
1908#endif
1909}
1910
1911struct dtls_cert_info {
1912 EVP_PKEY *private_key;
1913 X509 *certificate;
1914};
1915
1916static int apply_dh_params(SSL_CTX *ctx, BIO *bio)
1917{
1918 int res = 0;
1919
1920#if OPENSSL_VERSION_NUMBER >= 0x30000000L
1921 EVP_PKEY *dhpkey = PEM_read_bio_Parameters(bio, NULL);
1922 if (dhpkey && EVP_PKEY_is_a(dhpkey, "DH")) {
1923 res = SSL_CTX_set0_tmp_dh_pkey(ctx, dhpkey);
1924 }
1925 if (!res) {
1926 /* A successful call to SSL_CTX_set0_tmp_dh_pkey() means
1927 that we lost ownership of dhpkey and should not free
1928 it ourselves */
1929 EVP_PKEY_free(dhpkey);
1930 }
1931#else
1932 DH *dh = PEM_read_bio_DHparams(bio, NULL, NULL, NULL);
1933 if (dh) {
1934 res = SSL_CTX_set_tmp_dh(ctx, dh);
1935 }
1936 DH_free(dh);
1937#endif
1938
1939 return res;
1940}
1941
1942static void configure_dhparams(const struct ast_rtp *rtp, const struct ast_rtp_dtls_cfg *dtls_cfg)
1943{
1944#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L) && (OPENSSL_VERSION_NUMBER < 0x10100000L)
1945 EC_KEY *ecdh;
1946#endif
1947
1948#ifndef OPENSSL_NO_DH
1949 if (!ast_strlen_zero(dtls_cfg->pvtfile)) {
1950 BIO *bio = BIO_new_file(dtls_cfg->pvtfile, "r");
1951 if (bio) {
1952 if (apply_dh_params(rtp->ssl_ctx, bio)) {
1953 long options = SSL_OP_CIPHER_SERVER_PREFERENCE |
1954 SSL_OP_SINGLE_DH_USE | SSL_OP_SINGLE_ECDH_USE;
1955 options = SSL_CTX_set_options(rtp->ssl_ctx, options);
1956 ast_verb(2, "DTLS DH initialized, PFS enabled\n");
1957 }
1958 BIO_free(bio);
1959 }
1960 }
1961#endif /* !OPENSSL_NO_DH */
1962
1963#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L) && (OPENSSL_VERSION_NUMBER < 0x10100000L)
1964 /* enables AES-128 ciphers, to get AES-256 use NID_secp384r1 */
1965 ecdh = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1);
1966 if (ecdh) {
1967 if (SSL_CTX_set_tmp_ecdh(rtp->ssl_ctx, ecdh)) {
1968 #ifndef SSL_CTRL_SET_ECDH_AUTO
1969 #define SSL_CTRL_SET_ECDH_AUTO 94
1970 #endif
1971 /* SSL_CTX_set_ecdh_auto(rtp->ssl_ctx, on); requires OpenSSL 1.0.2 which wraps: */
1972 if (SSL_CTX_ctrl(rtp->ssl_ctx, SSL_CTRL_SET_ECDH_AUTO, 1, NULL)) {
1973 ast_verb(2, "DTLS ECDH initialized (automatic), faster PFS enabled\n");
1974 } else {
1975 ast_verb(2, "DTLS ECDH initialized (secp256r1), faster PFS enabled\n");
1976 }
1977 }
1978 EC_KEY_free(ecdh);
1979 }
1980#endif /* !OPENSSL_NO_ECDH */
1981}
1982
1983#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L)
1984
1985static int create_ephemeral_ec_keypair(EVP_PKEY **keypair)
1986{
1987#if OPENSSL_VERSION_NUMBER >= 0x30000000L
1988 *keypair = EVP_EC_gen(SN_X9_62_prime256v1);
1989 return *keypair ? 0 : -1;
1990#else
1991 EC_KEY *eckey = NULL;
1992 EC_GROUP *group = NULL;
1993
1994 group = EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1);
1995 if (!group) {
1996 goto error;
1997 }
1998
1999 EC_GROUP_set_asn1_flag(group, OPENSSL_EC_NAMED_CURVE);
2000 EC_GROUP_set_point_conversion_form(group, POINT_CONVERSION_UNCOMPRESSED);
2001
2002 eckey = EC_KEY_new();
2003 if (!eckey) {
2004 goto error;
2005 }
2006
2007 if (!EC_KEY_set_group(eckey, group)) {
2008 goto error;
2009 }
2010
2011 if (!EC_KEY_generate_key(eckey)) {
2012 goto error;
2013 }
2014
2015 *keypair = EVP_PKEY_new();
2016 if (!*keypair) {
2017 goto error;
2018 }
2019
2020 EVP_PKEY_assign_EC_KEY(*keypair, eckey);
2021 EC_GROUP_free(group);
2022
2023 return 0;
2024
2025error:
2026 EC_KEY_free(eckey);
2027 EC_GROUP_free(group);
2028
2029 return -1;
2030#endif
2031}
2032
2033/* From OpenSSL's x509 command */
2034#define SERIAL_RAND_BITS 159
2035
2036static int create_ephemeral_certificate(EVP_PKEY *keypair, X509 **certificate)
2037{
2038 X509 *cert = NULL;
2039 BIGNUM *serial = NULL;
2040 X509_NAME *name = NULL;
2041
2042 cert = X509_new();
2043 if (!cert) {
2044 goto error;
2045 }
2046
2047 if (!X509_set_version(cert, 2)) {
2048 goto error;
2049 }
2050
2051 /* Set the public key */
2052 X509_set_pubkey(cert, keypair);
2053
2054 /* Generate a random serial number */
2055 if (!(serial = BN_new())
2056 || !BN_rand(serial, SERIAL_RAND_BITS, -1, 0)
2057 || !BN_to_ASN1_INTEGER(serial, X509_get_serialNumber(cert))) {
2058 BN_free(serial);
2059 goto error;
2060 }
2061
2062 BN_free(serial);
2063
2064 /*
2065 * Validity period - Current Chrome & Firefox make it 31 days starting
2066 * with yesterday at the current time, so we will do the same.
2067 */
2068#if OPENSSL_VERSION_NUMBER < 0x10100000L
2069 if (!X509_time_adj_ex(X509_get_notBefore(cert), -1, 0, NULL)
2070 || !X509_time_adj_ex(X509_get_notAfter(cert), 30, 0, NULL)) {
2071 goto error;
2072 }
2073#else
2074 if (!X509_time_adj_ex(X509_getm_notBefore(cert), -1, 0, NULL)
2075 || !X509_time_adj_ex(X509_getm_notAfter(cert), 30, 0, NULL)) {
2076 goto error;
2077 }
2078#endif
2079
2080 /* Set the name and issuer */
2081 if (!(name = X509_get_subject_name(cert))
2082 || !X509_NAME_add_entry_by_NID(name, NID_commonName, MBSTRING_ASC,
2083 (unsigned char *) "asterisk", -1, -1, 0)
2084 || !X509_set_issuer_name(cert, name)) {
2085 goto error;
2086 }
2087
2088 /* Sign it */
2089 if (!X509_sign(cert, keypair, EVP_sha256())) {
2090 goto error;
2091 }
2092
2093 *certificate = cert;
2094
2095 return 0;
2096
2097error:
2098 X509_free(cert);
2099
2100 return -1;
2101}
2102
2103static int create_certificate_ephemeral(struct ast_rtp_instance *instance,
2104 const struct ast_rtp_dtls_cfg *dtls_cfg,
2105 struct dtls_cert_info *cert_info)
2106{
2107 /* Make sure these are initialized */
2108 cert_info->private_key = NULL;
2109 cert_info->certificate = NULL;
2110
2111 if (create_ephemeral_ec_keypair(&cert_info->private_key)) {
2112 ast_log(LOG_ERROR, "Failed to create ephemeral ECDSA keypair\n");
2113 goto error;
2114 }
2115
2116 if (create_ephemeral_certificate(cert_info->private_key, &cert_info->certificate)) {
2117 ast_log(LOG_ERROR, "Failed to create ephemeral X509 certificate\n");
2118 goto error;
2119 }
2120
2121 return 0;
2122
2123 error:
2124 X509_free(cert_info->certificate);
2125 EVP_PKEY_free(cert_info->private_key);
2126
2127 return -1;
2128}
2129
2130#else
2131
2132static int create_certificate_ephemeral(struct ast_rtp_instance *instance,
2133 const struct ast_rtp_dtls_cfg *dtls_cfg,
2134 struct dtls_cert_info *cert_info)
2135{
2136 ast_log(LOG_ERROR, "Your version of OpenSSL does not support ECDSA keys\n");
2137 return -1;
2138}
2139
2140#endif /* !OPENSSL_NO_ECDH */
2141
2142static int create_certificate_from_file(struct ast_rtp_instance *instance,
2143 const struct ast_rtp_dtls_cfg *dtls_cfg,
2144 struct dtls_cert_info *cert_info)
2145{
2146 FILE *fp;
2147 BIO *certbio = NULL;
2148 EVP_PKEY *private_key = NULL;
2149 X509 *cert = NULL;
2150 char *private_key_file = ast_strlen_zero(dtls_cfg->pvtfile) ? dtls_cfg->certfile : dtls_cfg->pvtfile;
2151
2152 fp = fopen(private_key_file, "r");
2153 if (!fp) {
2154 ast_log(LOG_ERROR, "Failed to read private key from file '%s': %s\n", private_key_file, strerror(errno));
2155 goto error;
2156 }
2157
2158 if (!PEM_read_PrivateKey(fp, &private_key, NULL, NULL)) {
2159 ast_log(LOG_ERROR, "Failed to read private key from PEM file '%s'\n", private_key_file);
2160 fclose(fp);
2161 goto error;
2162 }
2163
2164 if (fclose(fp)) {
2165 ast_log(LOG_ERROR, "Failed to close private key file '%s': %s\n", private_key_file, strerror(errno));
2166 goto error;
2167 }
2168
2169 certbio = BIO_new(BIO_s_file());
2170 if (!certbio) {
2171 ast_log(LOG_ERROR, "Failed to allocate memory for certificate fingerprinting on RTP instance '%p'\n",
2172 instance);
2173 goto error;
2174 }
2175
2176 if (!BIO_read_filename(certbio, dtls_cfg->certfile)
2177 || !(cert = PEM_read_bio_X509(certbio, NULL, 0, NULL))) {
2178 ast_log(LOG_ERROR, "Failed to read certificate from file '%s'\n", dtls_cfg->certfile);
2179 goto error;
2180 }
2181
2182 cert_info->private_key = private_key;
2183 cert_info->certificate = cert;
2184
2185 BIO_free_all(certbio);
2186
2187 return 0;
2188
2189error:
2190 X509_free(cert);
2191 BIO_free_all(certbio);
2192 EVP_PKEY_free(private_key);
2193
2194 return -1;
2195}
2196
2197static int load_dtls_certificate(struct ast_rtp_instance *instance,
2198 const struct ast_rtp_dtls_cfg *dtls_cfg,
2199 struct dtls_cert_info *cert_info)
2200{
2201 if (dtls_cfg->ephemeral_cert) {
2202 return create_certificate_ephemeral(instance, dtls_cfg, cert_info);
2203 } else if (!ast_strlen_zero(dtls_cfg->certfile)) {
2204 return create_certificate_from_file(instance, dtls_cfg, cert_info);
2205 } else {
2206 return -1;
2207 }
2208}
2209
2210/*! \pre instance is locked */
2211static int ast_rtp_dtls_set_configuration(struct ast_rtp_instance *instance, const struct ast_rtp_dtls_cfg *dtls_cfg)
2212{
2213 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2214 struct dtls_cert_info cert_info = { 0 };
2215 int res;
2216
2217 if (!dtls_cfg->enabled) {
2218 return 0;
2219 }
2220
2221 ast_debug_dtls(3, "(%p) DTLS RTP setup\n", instance);
2222
2224 ast_log(LOG_ERROR, "SRTP support module is not loaded or available. Try loading res_srtp.so.\n");
2225 return -1;
2226 }
2227
2228 if (rtp->ssl_ctx) {
2229 return 0;
2230 }
2231
2232 rtp->ssl_ctx = SSL_CTX_new(get_dtls_method());
2233 if (!rtp->ssl_ctx) {
2234 return -1;
2235 }
2236
2237 SSL_CTX_set_read_ahead(rtp->ssl_ctx, 1);
2238
2239 configure_dhparams(rtp, dtls_cfg);
2240
2241 rtp->dtls_verify = dtls_cfg->verify;
2242
2243 SSL_CTX_set_verify(rtp->ssl_ctx, (rtp->dtls_verify & AST_RTP_DTLS_VERIFY_FINGERPRINT) || (rtp->dtls_verify & AST_RTP_DTLS_VERIFY_CERTIFICATE) ?
2244 SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT : SSL_VERIFY_NONE, !(rtp->dtls_verify & AST_RTP_DTLS_VERIFY_CERTIFICATE) ?
2245 dtls_verify_callback : NULL);
2246
2247 if (dtls_cfg->suite == AST_AES_CM_128_HMAC_SHA1_80) {
2248 SSL_CTX_set_tlsext_use_srtp(rtp->ssl_ctx, "SRTP_AES128_CM_SHA1_80");
2249 } else if (dtls_cfg->suite == AST_AES_CM_128_HMAC_SHA1_32) {
2250 SSL_CTX_set_tlsext_use_srtp(rtp->ssl_ctx, "SRTP_AES128_CM_SHA1_32");
2251 } else {
2252 ast_log(LOG_ERROR, "Unsupported suite specified for DTLS-SRTP on RTP instance '%p'\n", instance);
2253 return -1;
2254 }
2255
2256 rtp->local_hash = dtls_cfg->hash;
2257
2258 if (!load_dtls_certificate(instance, dtls_cfg, &cert_info)) {
2259 const EVP_MD *type;
2260 unsigned int size, i;
2261 unsigned char fingerprint[EVP_MAX_MD_SIZE];
2262 char *local_fingerprint = rtp->local_fingerprint;
2263
2264 if (!SSL_CTX_use_certificate(rtp->ssl_ctx, cert_info.certificate)) {
2265 ast_log(LOG_ERROR, "Specified certificate for RTP instance '%p' could not be used\n",
2266 instance);
2267 return -1;
2268 }
2269
2270 if (!SSL_CTX_use_PrivateKey(rtp->ssl_ctx, cert_info.private_key)
2271 || !SSL_CTX_check_private_key(rtp->ssl_ctx)) {
2272 ast_log(LOG_ERROR, "Specified private key for RTP instance '%p' could not be used\n",
2273 instance);
2274 return -1;
2275 }
2276
2277 if (rtp->local_hash == AST_RTP_DTLS_HASH_SHA1) {
2278 type = EVP_sha1();
2279 } else if (rtp->local_hash == AST_RTP_DTLS_HASH_SHA256) {
2280 type = EVP_sha256();
2281 } else {
2282 ast_log(LOG_ERROR, "Unsupported fingerprint hash type on RTP instance '%p'\n",
2283 instance);
2284 return -1;
2285 }
2286
2287 if (!X509_digest(cert_info.certificate, type, fingerprint, &size) || !size) {
2288 ast_log(LOG_ERROR, "Could not produce fingerprint from certificate for RTP instance '%p'\n",
2289 instance);
2290 return -1;
2291 }
2292
2293 for (i = 0; i < size; i++) {
2294 sprintf(local_fingerprint, "%02hhX:", fingerprint[i]);
2295 local_fingerprint += 3;
2296 }
2297
2298 *(local_fingerprint - 1) = 0;
2299
2300 EVP_PKEY_free(cert_info.private_key);
2301 X509_free(cert_info.certificate);
2302 }
2303
2304 if (!ast_strlen_zero(dtls_cfg->cipher)) {
2305 if (!SSL_CTX_set_cipher_list(rtp->ssl_ctx, dtls_cfg->cipher)) {
2306 ast_log(LOG_ERROR, "Invalid cipher specified in cipher list '%s' for RTP instance '%p'\n",
2307 dtls_cfg->cipher, instance);
2308 return -1;
2309 }
2310 }
2311
2312 if (!ast_strlen_zero(dtls_cfg->cafile) || !ast_strlen_zero(dtls_cfg->capath)) {
2313 if (!SSL_CTX_load_verify_locations(rtp->ssl_ctx, S_OR(dtls_cfg->cafile, NULL), S_OR(dtls_cfg->capath, NULL))) {
2314 ast_log(LOG_ERROR, "Invalid certificate authority file '%s' or path '%s' specified for RTP instance '%p'\n",
2315 S_OR(dtls_cfg->cafile, ""), S_OR(dtls_cfg->capath, ""), instance);
2316 return -1;
2317 }
2318 }
2319
2320 rtp->rekey = dtls_cfg->rekey;
2321 rtp->suite = dtls_cfg->suite;
2322
2323 res = dtls_details_initialize(&rtp->dtls, rtp->ssl_ctx, dtls_cfg->default_setup, instance);
2324 if (!res) {
2325 dtls_setup_rtcp(instance);
2326 }
2327
2328 return res;
2329}
2330
2331/*! \pre instance is locked */
2332static int ast_rtp_dtls_active(struct ast_rtp_instance *instance)
2333{
2334 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2335
2336 return !rtp->ssl_ctx ? 0 : 1;
2337}
2338
2339/*! \pre instance is locked */
2340static void ast_rtp_dtls_stop(struct ast_rtp_instance *instance)
2341{
2342 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2343 SSL *ssl = rtp->dtls.ssl;
2344
2345 ast_debug_dtls(3, "(%p) DTLS stop\n", instance);
2346 ao2_unlock(instance);
2347 dtls_srtp_stop_timeout_timer(instance, rtp, 0);
2348 ao2_lock(instance);
2349
2350 if (rtp->ssl_ctx) {
2351 SSL_CTX_free(rtp->ssl_ctx);
2352 rtp->ssl_ctx = NULL;
2353 }
2354
2355 if (rtp->dtls.ssl) {
2356 SSL_free(rtp->dtls.ssl);
2357 rtp->dtls.ssl = NULL;
2358 }
2359
2360 if (rtp->rtcp) {
2361 ao2_unlock(instance);
2362 dtls_srtp_stop_timeout_timer(instance, rtp, 1);
2363 ao2_lock(instance);
2364
2365 if (rtp->rtcp->dtls.ssl) {
2366 if (rtp->rtcp->dtls.ssl != ssl) {
2367 SSL_free(rtp->rtcp->dtls.ssl);
2368 }
2369 rtp->rtcp->dtls.ssl = NULL;
2370 }
2371 }
2372}
2373
2374/*! \pre instance is locked */
2375static void ast_rtp_dtls_reset(struct ast_rtp_instance *instance)
2376{
2377 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2378
2379 if (SSL_is_init_finished(rtp->dtls.ssl)) {
2380 SSL_shutdown(rtp->dtls.ssl);
2381 rtp->dtls.connection = AST_RTP_DTLS_CONNECTION_NEW;
2382 }
2383
2384 if (rtp->rtcp && SSL_is_init_finished(rtp->rtcp->dtls.ssl)) {
2385 SSL_shutdown(rtp->rtcp->dtls.ssl);
2386 rtp->rtcp->dtls.connection = AST_RTP_DTLS_CONNECTION_NEW;
2387 }
2388}
2389
2390/*! \pre instance is locked */
2391static enum ast_rtp_dtls_connection ast_rtp_dtls_get_connection(struct ast_rtp_instance *instance)
2392{
2393 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2394
2395 return rtp->dtls.connection;
2396}
2397
2398/*! \pre instance is locked */
2399static enum ast_rtp_dtls_setup ast_rtp_dtls_get_setup(struct ast_rtp_instance *instance)
2400{
2401 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2402
2403 return rtp->dtls.dtls_setup;
2404}
2405
2406static void dtls_set_setup(enum ast_rtp_dtls_setup *dtls_setup, enum ast_rtp_dtls_setup setup, SSL *ssl)
2407{
2408 enum ast_rtp_dtls_setup old = *dtls_setup;
2409
2410 switch (setup) {
2412 *dtls_setup = AST_RTP_DTLS_SETUP_PASSIVE;
2413 break;
2415 *dtls_setup = AST_RTP_DTLS_SETUP_ACTIVE;
2416 break;
2418 /* We can't respond to an actpass setup with actpass ourselves... so respond with active, as we can initiate connections */
2419 if (*dtls_setup == AST_RTP_DTLS_SETUP_ACTPASS) {
2420 *dtls_setup = AST_RTP_DTLS_SETUP_ACTIVE;
2421 }
2422 break;
2424 *dtls_setup = AST_RTP_DTLS_SETUP_HOLDCONN;
2425 break;
2426 default:
2427 /* This should never occur... if it does exit early as we don't know what state things are in */
2428 return;
2429 }
2430
2431 /* If the setup state did not change we go on as if nothing happened */
2432 if (old == *dtls_setup) {
2433 return;
2434 }
2435
2436 /* If they don't want us to establish a connection wait until later */
2437 if (*dtls_setup == AST_RTP_DTLS_SETUP_HOLDCONN) {
2438 return;
2439 }
2440
2441 if (*dtls_setup == AST_RTP_DTLS_SETUP_ACTIVE) {
2442 SSL_set_connect_state(ssl);
2443 } else if (*dtls_setup == AST_RTP_DTLS_SETUP_PASSIVE) {
2444 SSL_set_accept_state(ssl);
2445 } else {
2446 return;
2447 }
2448}
2449
2450/*! \pre instance is locked */
2451static void ast_rtp_dtls_set_setup(struct ast_rtp_instance *instance, enum ast_rtp_dtls_setup setup)
2452{
2453 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2454
2455 if (rtp->dtls.ssl) {
2456 dtls_set_setup(&rtp->dtls.dtls_setup, setup, rtp->dtls.ssl);
2457 }
2458
2459 if (rtp->rtcp && rtp->rtcp->dtls.ssl) {
2460 dtls_set_setup(&rtp->rtcp->dtls.dtls_setup, setup, rtp->rtcp->dtls.ssl);
2461 }
2462}
2463
2464/*! \pre instance is locked */
2465static void ast_rtp_dtls_set_fingerprint(struct ast_rtp_instance *instance, enum ast_rtp_dtls_hash hash, const char *fingerprint)
2466{
2467 char *tmp = ast_strdupa(fingerprint), *value;
2468 int pos = 0;
2469 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2470
2471 if (hash != AST_RTP_DTLS_HASH_SHA1 && hash != AST_RTP_DTLS_HASH_SHA256) {
2472 return;
2473 }
2474
2475 rtp->remote_hash = hash;
2476
2477 while ((value = strsep(&tmp, ":")) && (pos != (EVP_MAX_MD_SIZE - 1))) {
2478 sscanf(value, "%02hhx", &rtp->remote_fingerprint[pos++]);
2479 }
2480}
2481
2482/*! \pre instance is locked */
2483static enum ast_rtp_dtls_hash ast_rtp_dtls_get_fingerprint_hash(struct ast_rtp_instance *instance)
2484{
2485 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2486
2487 return rtp->local_hash;
2488}
2489
2490/*! \pre instance is locked */
2491static const char *ast_rtp_dtls_get_fingerprint(struct ast_rtp_instance *instance)
2492{
2493 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2494
2495 return rtp->local_fingerprint;
2496}
2497
2498/* DTLS RTP Engine interface declaration */
2499static struct ast_rtp_engine_dtls ast_rtp_dtls = {
2500 .set_configuration = ast_rtp_dtls_set_configuration,
2501 .active = ast_rtp_dtls_active,
2502 .stop = ast_rtp_dtls_stop,
2503 .reset = ast_rtp_dtls_reset,
2504 .get_connection = ast_rtp_dtls_get_connection,
2505 .get_setup = ast_rtp_dtls_get_setup,
2506 .set_setup = ast_rtp_dtls_set_setup,
2507 .set_fingerprint = ast_rtp_dtls_set_fingerprint,
2508 .get_fingerprint_hash = ast_rtp_dtls_get_fingerprint_hash,
2509 .get_fingerprint = ast_rtp_dtls_get_fingerprint,
2510};
2511
2512#endif
2513
2514#ifdef TEST_FRAMEWORK
2515static size_t get_recv_buffer_count(struct ast_rtp_instance *instance)
2516{
2517 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2518
2519 if (rtp && rtp->recv_buffer) {
2521 }
2522
2523 return 0;
2524}
2525
2526static size_t get_recv_buffer_max(struct ast_rtp_instance *instance)
2527{
2528 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2529
2530 if (rtp && rtp->recv_buffer) {
2531 return ast_data_buffer_max(rtp->recv_buffer);
2532 }
2533
2534 return 0;
2535}
2536
2537static size_t get_send_buffer_count(struct ast_rtp_instance *instance)
2538{
2539 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2540
2541 if (rtp && rtp->send_buffer) {
2543 }
2544
2545 return 0;
2546}
2547
2548static void set_rtp_rtcp_schedid(struct ast_rtp_instance *instance, int id)
2549{
2550 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2551
2552 if (rtp && rtp->rtcp) {
2553 rtp->rtcp->schedid = id;
2554 }
2555}
2556
2557static struct ast_rtp_engine_test ast_rtp_test = {
2558 .packets_to_drop = 0,
2559 .send_report = 0,
2560 .sdes_received = 0,
2561 .recv_buffer_count = get_recv_buffer_count,
2562 .recv_buffer_max = get_recv_buffer_max,
2563 .send_buffer_count = get_send_buffer_count,
2564 .set_schedid = set_rtp_rtcp_schedid,
2565};
2566#endif
2567
2568/* RTP Engine Declaration */
2570 .name = "asterisk",
2571 .new = ast_rtp_new,
2572 .destroy = ast_rtp_destroy,
2573 .dtmf_begin = ast_rtp_dtmf_begin,
2574 .dtmf_end = ast_rtp_dtmf_end,
2575 .dtmf_end_with_duration = ast_rtp_dtmf_end_with_duration,
2576 .dtmf_mode_set = ast_rtp_dtmf_mode_set,
2577 .dtmf_mode_get = ast_rtp_dtmf_mode_get,
2578 .update_source = ast_rtp_update_source,
2579 .change_source = ast_rtp_change_source,
2580 .write = ast_rtp_write,
2581 .read = ast_rtp_read,
2582 .prop_set = ast_rtp_prop_set,
2583 .fd = ast_rtp_fd,
2584 .remote_address_set = ast_rtp_remote_address_set,
2585 .red_init = rtp_red_init,
2586 .red_buffer = rtp_red_buffer,
2587 .local_bridge = ast_rtp_local_bridge,
2588 .get_stat = ast_rtp_get_stat,
2589 .dtmf_compatible = ast_rtp_dtmf_compatible,
2590 .stun_request = ast_rtp_stun_request,
2591 .stop = ast_rtp_stop,
2592 .qos = ast_rtp_qos_set,
2593 .sendcng = ast_rtp_sendcng,
2594#ifdef HAVE_PJPROJECT
2595 .ice = &ast_rtp_ice,
2596#endif
2597#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2598 .dtls = &ast_rtp_dtls,
2599 .activate = ast_rtp_activate,
2600#endif
2601 .ssrc_get = ast_rtp_get_ssrc,
2602 .cname_get = ast_rtp_get_cname,
2603 .set_remote_ssrc = ast_rtp_set_remote_ssrc,
2604 .set_stream_num = ast_rtp_set_stream_num,
2605 .extension_enable = ast_rtp_extension_enable,
2606 .bundle = ast_rtp_bundle,
2607#ifdef TEST_FRAMEWORK
2608 .test = &ast_rtp_test,
2609#endif
2610};
2611
2612#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2613/*! \pre instance is locked */
2614static void dtls_perform_handshake(struct ast_rtp_instance *instance, struct dtls_details *dtls, int rtcp)
2615{
2616 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2617
2618 ast_debug_dtls(3, "(%p) DTLS perform handshake - ssl = %p, setup = %d\n",
2619 rtp, dtls->ssl, dtls->dtls_setup);
2620
2621 /* If we are not acting as a client connecting to the remote side then
2622 * don't start the handshake as it will accomplish nothing and would conflict
2623 * with the handshake we receive from the remote side.
2624 */
2625 if (!dtls->ssl || (dtls->dtls_setup != AST_RTP_DTLS_SETUP_ACTIVE)) {
2626 return;
2627 }
2628
2629 SSL_do_handshake(dtls->ssl);
2630
2631 /*
2632 * A race condition is prevented between this function and __rtp_recvfrom()
2633 * because both functions have to get the instance lock before they can do
2634 * anything. Without holding the instance lock, this function could start
2635 * the SSL handshake above in one thread and the __rtp_recvfrom() function
2636 * called by the channel thread could read the response and stop the timeout
2637 * timer before we have a chance to even start it.
2638 */
2639 dtls_srtp_start_timeout_timer(instance, rtp, rtcp);
2640}
2641#endif
2642
2643#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2644static void dtls_perform_setup(struct dtls_details *dtls)
2645{
2646 if (!dtls->ssl || !SSL_is_init_finished(dtls->ssl)) {
2647 return;
2648 }
2649
2650 SSL_clear(dtls->ssl);
2651 if (dtls->dtls_setup == AST_RTP_DTLS_SETUP_PASSIVE) {
2652 SSL_set_accept_state(dtls->ssl);
2653 } else {
2654 SSL_set_connect_state(dtls->ssl);
2655 }
2656 dtls->connection = AST_RTP_DTLS_CONNECTION_NEW;
2657
2658 ast_debug_dtls(3, "DTLS perform setup - connection reset\n");
2659}
2660#endif
2661
2662#ifdef HAVE_PJPROJECT
2663static void rtp_learning_start(struct ast_rtp *rtp);
2664
2665/* Handles start of media during ICE negotiation or completion */
2666static void ast_rtp_ice_start_media(pj_ice_sess *ice, pj_status_t status)
2667{
2668 struct ast_rtp_instance *instance = ice->user_data;
2669 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2670
2671 ao2_lock(instance);
2672
2673 if (status == PJ_SUCCESS) {
2674 struct ast_sockaddr remote_address;
2675
2676 ast_sockaddr_setnull(&remote_address);
2677 update_address_with_ice_candidate(ice, AST_RTP_ICE_COMPONENT_RTP, &remote_address);
2678 if (!ast_sockaddr_isnull(&remote_address)) {
2679 /* Symmetric RTP must be disabled for the remote address to not get overwritten */
2681
2682 ast_rtp_instance_set_remote_address(instance, &remote_address);
2683 }
2684
2685 if (rtp->rtcp) {
2686 update_address_with_ice_candidate(ice, AST_RTP_ICE_COMPONENT_RTCP, &rtp->rtcp->them);
2687 }
2688 }
2689
2690#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2691 /* If we've already started media, no need to do all of this again */
2692 if (rtp->ice_media_started) {
2693 ao2_unlock(instance);
2694 return;
2695 }
2696
2698 "(%p) ICE starting media - perform DTLS - (%p)\n", instance, rtp);
2699
2700 /*
2701 * Seemingly no reason to call dtls_perform_setup here. Currently we'll do a full
2702 * protocol level renegotiation if things do change. And if bundled is being used
2703 * then ICE is reused when a stream is added.
2704 *
2705 * Note, if for some reason in the future dtls_perform_setup does need to done here
2706 * be aware that creates a race condition between the call here (on ice completion)
2707 * and potential DTLS handshaking when receiving RTP. What happens is the ssl object
2708 * can get cleared (SSL_clear) during that handshaking process (DTLS init). If that
2709 * happens then Asterisk won't complete DTLS initialization. RTP packets are still
2710 * sent/received but won't be encrypted/decrypted.
2711 */
2712 dtls_perform_handshake(instance, &rtp->dtls, 0);
2713
2714 if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
2715 dtls_perform_handshake(instance, &rtp->rtcp->dtls, 1);
2716 }
2717#endif
2718
2719 rtp->ice_media_started = 1;
2720
2721 if (!strictrtp) {
2722 ao2_unlock(instance);
2723 return;
2724 }
2725
2726 ast_verb(4, "%p -- Strict RTP learning after ICE completion\n", rtp);
2727 rtp_learning_start(rtp);
2728 ao2_unlock(instance);
2729}
2730
2731#ifdef HAVE_PJPROJECT_ON_VALID_ICE_PAIR_CALLBACK
2732/* PJPROJECT ICE optional callback */
2733static void ast_rtp_on_valid_pair(pj_ice_sess *ice)
2734{
2735 ast_debug_ice(2, "(%p) ICE valid pair, start media\n", ice->user_data);
2736 ast_rtp_ice_start_media(ice, PJ_SUCCESS);
2737}
2738#endif
2739
2740/* PJPROJECT ICE callback */
2741static void ast_rtp_on_ice_complete(pj_ice_sess *ice, pj_status_t status)
2742{
2743 ast_debug_ice(2, "(%p) ICE complete, start media\n", ice->user_data);
2744 ast_rtp_ice_start_media(ice, status);
2745}
2746
2747/* PJPROJECT ICE callback */
2748static void ast_rtp_on_ice_rx_data(pj_ice_sess *ice, unsigned comp_id, unsigned transport_id, void *pkt, pj_size_t size, const pj_sockaddr_t *src_addr, unsigned src_addr_len)
2749{
2750 struct ast_rtp_instance *instance = ice->user_data;
2751 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2752
2753 /* Instead of handling the packet here (which really doesn't work with our architecture) we set a bit to indicate that it should be handled after pj_ice_sess_on_rx_pkt
2754 * returns */
2755 if (transport_id == TRANSPORT_SOCKET_RTP || transport_id == TRANSPORT_SOCKET_RTCP) {
2756 rtp->passthrough = 1;
2757 } else if (transport_id == TRANSPORT_TURN_RTP) {
2758 rtp->rtp_passthrough = 1;
2759 } else if (transport_id == TRANSPORT_TURN_RTCP) {
2760 rtp->rtcp_passthrough = 1;
2761 }
2762}
2763
2764/* PJPROJECT ICE callback */
2765static pj_status_t ast_rtp_on_ice_tx_pkt(pj_ice_sess *ice, unsigned comp_id, unsigned transport_id, const void *pkt, pj_size_t size, const pj_sockaddr_t *dst_addr, unsigned dst_addr_len)
2766{
2767 struct ast_rtp_instance *instance = ice->user_data;
2768 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2769 pj_status_t status = PJ_EINVALIDOP;
2770 pj_ssize_t _size = (pj_ssize_t)size;
2771
2772 if (transport_id == TRANSPORT_SOCKET_RTP) {
2773 /* Traffic is destined to go right out the RTP socket we already have */
2774 status = pj_sock_sendto(rtp->s, pkt, &_size, 0, dst_addr, dst_addr_len);
2775 /* sendto on a connectionless socket should send all the data, or none at all */
2776 ast_assert(_size == size || status != PJ_SUCCESS);
2777 } else if (transport_id == TRANSPORT_SOCKET_RTCP) {
2778 /* Traffic is destined to go right out the RTCP socket we already have */
2779 if (rtp->rtcp) {
2780 status = pj_sock_sendto(rtp->rtcp->s, pkt, &_size, 0, dst_addr, dst_addr_len);
2781 /* sendto on a connectionless socket should send all the data, or none at all */
2782 ast_assert(_size == size || status != PJ_SUCCESS);
2783 } else {
2784 status = PJ_SUCCESS;
2785 }
2786 } else if (transport_id == TRANSPORT_TURN_RTP) {
2787 /* Traffic is going through the RTP TURN relay */
2788 if (rtp->turn_rtp) {
2789 status = pj_turn_sock_sendto(rtp->turn_rtp, pkt, size, dst_addr, dst_addr_len);
2790 }
2791 } else if (transport_id == TRANSPORT_TURN_RTCP) {
2792 /* Traffic is going through the RTCP TURN relay */
2793 if (rtp->turn_rtcp) {
2794 status = pj_turn_sock_sendto(rtp->turn_rtcp, pkt, size, dst_addr, dst_addr_len);
2795 }
2796 }
2797
2798 return status;
2799}
2800
2801/* ICE Session interface declaration */
2802static pj_ice_sess_cb ast_rtp_ice_sess_cb = {
2803#ifdef HAVE_PJPROJECT_ON_VALID_ICE_PAIR_CALLBACK
2804 .on_valid_pair = ast_rtp_on_valid_pair,
2805#endif
2806 .on_ice_complete = ast_rtp_on_ice_complete,
2807 .on_rx_data = ast_rtp_on_ice_rx_data,
2808 .on_tx_pkt = ast_rtp_on_ice_tx_pkt,
2809};
2810
2811/*! \brief Worker thread for timerheap */
2812static int timer_worker_thread(void *data)
2813{
2814 pj_ioqueue_t *ioqueue;
2815
2816 if (pj_ioqueue_create(pool, 1, &ioqueue) != PJ_SUCCESS) {
2817 return -1;
2818 }
2819
2820 while (!timer_terminate) {
2821 const pj_time_val delay = {0, 10};
2822
2823 pj_timer_heap_poll(timer_heap, NULL);
2824 pj_ioqueue_poll(ioqueue, &delay);
2825 }
2826
2827 return 0;
2828}
2829#endif
2830
2831static inline int rtp_debug_test_addr(struct ast_sockaddr *addr)
2832{
2834 return 0;
2835 }
2837 if (rtpdebugport) {
2838 return (ast_sockaddr_cmp(&rtpdebugaddr, addr) == 0); /* look for RTP packets from IP+Port */
2839 } else {
2840 return (ast_sockaddr_cmp_addr(&rtpdebugaddr, addr) == 0); /* only look for RTP packets from IP */
2841 }
2842 }
2843
2844 return 1;
2845}
2846
2847static inline int rtcp_debug_test_addr(struct ast_sockaddr *addr)
2848{
2850 return 0;
2851 }
2853 if (rtcpdebugport) {
2854 return (ast_sockaddr_cmp(&rtcpdebugaddr, addr) == 0); /* look for RTCP packets from IP+Port */
2855 } else {
2856 return (ast_sockaddr_cmp_addr(&rtcpdebugaddr, addr) == 0); /* only look for RTCP packets from IP */
2857 }
2858 }
2859
2860 return 1;
2861}
2862
2863#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2864/*! \pre instance is locked */
2865static int dtls_srtp_handle_timeout(struct ast_rtp_instance *instance, int rtcp)
2866{
2867 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2868 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
2869 struct timeval dtls_timeout;
2870
2871 ast_debug_dtls(3, "(%p) DTLS srtp - handle timeout - rtcp=%d\n", instance, rtcp);
2872 DTLSv1_handle_timeout(dtls->ssl);
2873
2874 /* If a timeout can't be retrieved then this recurring scheduled item must stop */
2875 if (!DTLSv1_get_timeout(dtls->ssl, &dtls_timeout)) {
2876 dtls->timeout_timer = -1;
2877 return 0;
2878 }
2879
2880 return dtls_timeout.tv_sec * 1000 + dtls_timeout.tv_usec / 1000;
2881}
2882
2883/* Scheduler callback */
2884static int dtls_srtp_handle_rtp_timeout(const void *data)
2885{
2886 struct ast_rtp_instance *instance = (struct ast_rtp_instance *)data;
2887 int reschedule;
2888
2889 ao2_lock(instance);
2890 reschedule = dtls_srtp_handle_timeout(instance, 0);
2891 ao2_unlock(instance);
2892 if (!reschedule) {
2893 ao2_ref(instance, -1);
2894 }
2895
2896 return reschedule;
2897}
2898
2899/* Scheduler callback */
2900static int dtls_srtp_handle_rtcp_timeout(const void *data)
2901{
2902 struct ast_rtp_instance *instance = (struct ast_rtp_instance *)data;
2903 int reschedule;
2904
2905 ao2_lock(instance);
2906 reschedule = dtls_srtp_handle_timeout(instance, 1);
2907 ao2_unlock(instance);
2908 if (!reschedule) {
2909 ao2_ref(instance, -1);
2910 }
2911
2912 return reschedule;
2913}
2914
2915static void dtls_srtp_start_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp)
2916{
2917 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
2918 struct timeval dtls_timeout;
2919
2920 if (DTLSv1_get_timeout(dtls->ssl, &dtls_timeout)) {
2921 int timeout = dtls_timeout.tv_sec * 1000 + dtls_timeout.tv_usec / 1000;
2922
2923 ast_assert(dtls->timeout_timer == -1);
2924
2925 ao2_ref(instance, +1);
2926 if ((dtls->timeout_timer = ast_sched_add(rtp->sched, timeout,
2927 !rtcp ? dtls_srtp_handle_rtp_timeout : dtls_srtp_handle_rtcp_timeout, instance)) < 0) {
2928 ao2_ref(instance, -1);
2929 ast_log(LOG_WARNING, "Scheduling '%s' DTLS retransmission for RTP instance [%p] failed.\n",
2930 !rtcp ? "RTP" : "RTCP", instance);
2931 } else {
2932 ast_debug_dtls(3, "(%p) DTLS srtp - scheduled timeout timer for '%d'\n", instance, timeout);
2933 }
2934 }
2935}
2936
2937/*! \pre Must not be called with the instance locked. */
2938static void dtls_srtp_stop_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp)
2939{
2940 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
2941
2942 AST_SCHED_DEL_UNREF(rtp->sched, dtls->timeout_timer, ao2_ref(instance, -1));
2943 ast_debug_dtls(3, "(%p) DTLS srtp - stopped timeout timer'\n", instance);
2944}
2945
2946/* Scheduler callback */
2947static int dtls_srtp_renegotiate(const void *data)
2948{
2949 struct ast_rtp_instance *instance = (struct ast_rtp_instance *)data;
2950 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2951
2952 ao2_lock(instance);
2953
2954 ast_debug_dtls(3, "(%p) DTLS srtp - renegotiate'\n", instance);
2955 SSL_renegotiate(rtp->dtls.ssl);
2956 SSL_do_handshake(rtp->dtls.ssl);
2957
2958 if (rtp->rtcp && rtp->rtcp->dtls.ssl && rtp->rtcp->dtls.ssl != rtp->dtls.ssl) {
2959 SSL_renegotiate(rtp->rtcp->dtls.ssl);
2960 SSL_do_handshake(rtp->rtcp->dtls.ssl);
2961 }
2962
2963 rtp->rekeyid = -1;
2964
2965 ao2_unlock(instance);
2966 ao2_ref(instance, -1);
2967
2968 return 0;
2969}
2970
2971static int dtls_srtp_add_local_ssrc(struct ast_rtp *rtp, struct ast_rtp_instance *instance, int rtcp, unsigned int ssrc, int set_remote_policy)
2972{
2973 unsigned char material[SRTP_MASTER_LEN * 2];
2974 unsigned char *local_key, *local_salt, *remote_key, *remote_salt;
2975 struct ast_srtp_policy *local_policy, *remote_policy = NULL;
2976 int res = -1;
2977 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
2978
2979 ast_debug_dtls(3, "(%p) DTLS srtp - add local ssrc - rtcp=%d, set_remote_policy=%d'\n",
2980 instance, rtcp, set_remote_policy);
2981
2982 /* Produce key information and set up SRTP */
2983 if (!SSL_export_keying_material(dtls->ssl, material, SRTP_MASTER_LEN * 2, "EXTRACTOR-dtls_srtp", 19, NULL, 0, 0)) {
2984 ast_log(LOG_WARNING, "Unable to extract SRTP keying material from DTLS-SRTP negotiation on RTP instance '%p'\n",
2985 instance);
2986 return -1;
2987 }
2988
2989 /* Whether we are acting as a server or client determines where the keys/salts are */
2990 if (rtp->dtls.dtls_setup == AST_RTP_DTLS_SETUP_ACTIVE) {
2991 local_key = material;
2992 remote_key = local_key + SRTP_MASTER_KEY_LEN;
2993 local_salt = remote_key + SRTP_MASTER_KEY_LEN;
2994 remote_salt = local_salt + SRTP_MASTER_SALT_LEN;
2995 } else {
2996 remote_key = material;
2997 local_key = remote_key + SRTP_MASTER_KEY_LEN;
2998 remote_salt = local_key + SRTP_MASTER_KEY_LEN;
2999 local_salt = remote_salt + SRTP_MASTER_SALT_LEN;
3000 }
3001
3002 if (!(local_policy = res_srtp_policy->alloc())) {
3003 return -1;
3004 }
3005
3006 if (res_srtp_policy->set_master_key(local_policy, local_key, SRTP_MASTER_KEY_LEN, local_salt, SRTP_MASTER_SALT_LEN) < 0) {
3007 ast_log(LOG_WARNING, "Could not set key/salt information on local policy of '%p' when setting up DTLS-SRTP\n", rtp);
3008 goto error;
3009 }
3010
3011 if (res_srtp_policy->set_suite(local_policy, rtp->suite)) {
3012 ast_log(LOG_WARNING, "Could not set suite to '%u' on local policy of '%p' when setting up DTLS-SRTP\n", rtp->suite, rtp);
3013 goto error;
3014 }
3015
3016 res_srtp_policy->set_ssrc(local_policy, ssrc, 0);
3017
3018 if (set_remote_policy) {
3019 if (!(remote_policy = res_srtp_policy->alloc())) {
3020 goto error;
3021 }
3022
3023 if (res_srtp_policy->set_master_key(remote_policy, remote_key, SRTP_MASTER_KEY_LEN, remote_salt, SRTP_MASTER_SALT_LEN) < 0) {
3024 ast_log(LOG_WARNING, "Could not set key/salt information on remote policy of '%p' when setting up DTLS-SRTP\n", rtp);
3025 goto error;
3026 }
3027
3028 if (res_srtp_policy->set_suite(remote_policy, rtp->suite)) {
3029 ast_log(LOG_WARNING, "Could not set suite to '%u' on remote policy of '%p' when setting up DTLS-SRTP\n", rtp->suite, rtp);
3030 goto error;
3031 }
3032
3033 res_srtp_policy->set_ssrc(remote_policy, 0, 1);
3034 }
3035
3036 if (ast_rtp_instance_add_srtp_policy(instance, remote_policy, local_policy, rtcp)) {
3037 ast_log(LOG_WARNING, "Could not set policies when setting up DTLS-SRTP on '%p'\n", rtp);
3038 goto error;
3039 }
3040
3041 res = 0;
3042
3043error:
3044 /* policy->destroy() called even on success to release local reference to these resources */
3045 res_srtp_policy->destroy(local_policy);
3046
3047 if (remote_policy) {
3048 res_srtp_policy->destroy(remote_policy);
3049 }
3050
3051 return res;
3052}
3053
3054static int dtls_srtp_setup(struct ast_rtp *rtp, struct ast_rtp_instance *instance, int rtcp)
3055{
3056 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
3057 int index;
3058
3059 ast_debug_dtls(3, "(%p) DTLS setup SRTP rtp=%p'\n", instance, rtp);
3060
3061 /* If a fingerprint is present in the SDP make sure that the peer certificate matches it */
3062 if (rtp->dtls_verify & AST_RTP_DTLS_VERIFY_FINGERPRINT) {
3063 X509 *certificate;
3064
3065 if (!(certificate = SSL_get_peer_certificate(dtls->ssl))) {
3066 ast_log(LOG_WARNING, "No certificate was provided by the peer on RTP instance '%p'\n", instance);
3067 return -1;
3068 }
3069
3070 /* If a fingerprint is present in the SDP make sure that the peer certificate matches it */
3071 if (rtp->remote_fingerprint[0]) {
3072 const EVP_MD *type;
3073 unsigned char fingerprint[EVP_MAX_MD_SIZE];
3074 unsigned int size;
3075
3076 if (rtp->remote_hash == AST_RTP_DTLS_HASH_SHA1) {
3077 type = EVP_sha1();
3078 } else if (rtp->remote_hash == AST_RTP_DTLS_HASH_SHA256) {
3079 type = EVP_sha256();
3080 } else {
3081 ast_log(LOG_WARNING, "Unsupported fingerprint hash type on RTP instance '%p'\n", instance);
3082 return -1;
3083 }
3084
3085 if (!X509_digest(certificate, type, fingerprint, &size) ||
3086 !size ||
3087 memcmp(fingerprint, rtp->remote_fingerprint, size)) {
3088 X509_free(certificate);
3089 ast_log(LOG_WARNING, "Fingerprint provided by remote party does not match that of peer certificate on RTP instance '%p'\n",
3090 instance);
3091 return -1;
3092 }
3093 }
3094
3095 X509_free(certificate);
3096 }
3097
3098 if (dtls_srtp_add_local_ssrc(rtp, instance, rtcp, ast_rtp_instance_get_ssrc(instance), 1)) {
3099 ast_log(LOG_ERROR, "Failed to add local source '%p'\n", rtp);
3100 return -1;
3101 }
3102
3103 for (index = 0; index < AST_VECTOR_SIZE(&rtp->ssrc_mapping); ++index) {
3104 struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&rtp->ssrc_mapping, index);
3105
3106 if (dtls_srtp_add_local_ssrc(rtp, instance, rtcp, ast_rtp_instance_get_ssrc(mapping->instance), 0)) {
3107 return -1;
3108 }
3109 }
3110
3111 if (rtp->rekey) {
3112 ao2_ref(instance, +1);
3113 if ((rtp->rekeyid = ast_sched_add(rtp->sched, rtp->rekey * 1000, dtls_srtp_renegotiate, instance)) < 0) {
3114 ao2_ref(instance, -1);
3115 return -1;
3116 }
3117 }
3118
3119 return 0;
3120}
3121#endif
3122
3123/*! \brief Helper function to compare an elem in a vector by value */
3124static int compare_by_value(int elem, int value)
3125{
3126 return elem - value;
3127}
3128
3129/*! \brief Helper function to find an elem in a vector by value */
3130static int find_by_value(int elem, int value)
3131{
3132 return elem == value;
3133}
3134
3135static int rtcp_mux(struct ast_rtp *rtp, const unsigned char *packet)
3136{
3137 uint8_t version;
3138 uint8_t pt;
3139 uint8_t m;
3140
3141 if (!rtp->rtcp || rtp->rtcp->type != AST_RTP_INSTANCE_RTCP_MUX) {
3142 return 0;
3143 }
3144
3145 version = (packet[0] & 0XC0) >> 6;
3146 if (version == 0) {
3147 /* version 0 indicates this is a STUN packet and shouldn't
3148 * be interpreted as a possible RTCP packet
3149 */
3150 return 0;
3151 }
3152
3153 /* The second octet of a packet will be one of the following:
3154 * For RTP: The marker bit (1 bit) and the RTP payload type (7 bits)
3155 * For RTCP: The payload type (8)
3156 *
3157 * RTP has a forbidden range of payload types (64-95) since these
3158 * will conflict with RTCP payload numbers if the marker bit is set.
3159 */
3160 m = packet[1] & 0x80;
3161 pt = packet[1] & 0x7F;
3162 if (m && pt >= 64 && pt <= 95) {
3163 return 1;
3164 }
3165 return 0;
3166}
3167
3168/*! \pre instance is locked */
3169static int __rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp)
3170{
3171 int len;
3172 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3173#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
3174 char *in = buf;
3175#endif
3176#ifdef HAVE_PJPROJECT
3177 struct ast_sockaddr *loop = rtcp ? &rtp->rtcp_loop : &rtp->rtp_loop;
3178#endif
3179#ifdef TEST_FRAMEWORK
3180 struct ast_rtp_engine_test *test = ast_rtp_instance_get_test(instance);
3181#endif
3182
3183 if ((len = ast_recvfrom(rtcp ? rtp->rtcp->s : rtp->s, buf, size, flags, sa)) < 0) {
3184 return len;
3185 }
3186
3187#ifdef TEST_FRAMEWORK
3188 if (test && test->packets_to_drop > 0) {
3189 test->packets_to_drop--;
3190 return 0;
3191 }
3192#endif
3193
3194#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
3195 /* If this is an SSL packet pass it to OpenSSL for processing. RFC section for first byte value:
3196 * https://tools.ietf.org/html/rfc5764#section-5.1.2 */
3197 if ((*in >= 20) && (*in <= 63)) {
3198 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
3199 int res = 0;
3200
3201 /* If no SSL session actually exists terminate things */
3202 if (!dtls->ssl) {
3203 ast_log(LOG_ERROR, "Received SSL traffic on RTP instance '%p' without an SSL session\n",
3204 instance);
3205 return -1;
3206 }
3207
3208 ast_debug_dtls(3, "(%p) DTLS - __rtp_recvfrom rtp=%p - Got SSL packet '%d'\n", instance, rtp, *in);
3209
3210 /*
3211 * If ICE is in use, we can prevent a possible DOS attack
3212 * by allowing DTLS protocol messages (client hello, etc)
3213 * only from sources that are in the active remote
3214 * candidates list.
3215 */
3216
3217#ifdef HAVE_PJPROJECT
3218 if (rtp->ice) {
3219 int pass_src_check = 0;
3220 int ix = 0;
3221
3222 /*
3223 * You'd think that this check would cause a "deadlock"
3224 * because ast_rtp_ice_start_media calls dtls_perform_handshake
3225 * before it sets ice_media_started = 1 so how can we do a
3226 * handshake if we're dropping packets before we send them
3227 * to openssl. Fortunately, dtls_perform_handshake just sets
3228 * up openssl to do the handshake and doesn't actually perform it
3229 * itself and the locking prevents __rtp_recvfrom from
3230 * running before the ice_media_started flag is set. So only
3231 * unexpected DTLS packets can get dropped here.
3232 */
3233 if (!rtp->ice_media_started) {
3234 ast_log(LOG_WARNING, "%s: DTLS packet from %s dropped. ICE not completed yet.\n",
3237 return 0;
3238 }
3239
3240 /*
3241 * If we got this far, then there have to be candidates.
3242 * We have to use pjproject's rcands because they may have
3243 * peer reflexive candidates that our ice_active_remote_candidates
3244 * won't.
3245 */
3246 for (ix = 0; ix < rtp->ice->real_ice->rcand_cnt; ix++) {
3247 pj_ice_sess_cand *rcand = &rtp->ice->real_ice->rcand[ix];
3248 if (ast_sockaddr_pj_sockaddr_cmp(sa, &rcand->addr) == 0) {
3249 pass_src_check = 1;
3250 break;
3251 }
3252 }
3253
3254 if (!pass_src_check) {
3255 ast_log(LOG_WARNING, "%s: DTLS packet from %s dropped. Source not in ICE active candidate list.\n",
3258 return 0;
3259 }
3260 }
3261#endif
3262
3263 /*
3264 * A race condition is prevented between dtls_perform_handshake()
3265 * and this function because both functions have to get the
3266 * instance lock before they can do anything. The
3267 * dtls_perform_handshake() function needs to start the timer
3268 * before we stop it below.
3269 */
3270
3271 /* Before we feed data into OpenSSL ensure that the timeout timer is either stopped or completed */
3272 ao2_unlock(instance);
3273 dtls_srtp_stop_timeout_timer(instance, rtp, rtcp);
3274 ao2_lock(instance);
3275
3276 /* If we don't yet know if we are active or passive and we receive a packet... we are obviously passive */
3277 if (dtls->dtls_setup == AST_RTP_DTLS_SETUP_ACTPASS) {
3278 dtls->dtls_setup = AST_RTP_DTLS_SETUP_PASSIVE;
3279 SSL_set_accept_state(dtls->ssl);
3280 }
3281
3282 BIO_write(dtls->read_bio, buf, len);
3283
3284 len = SSL_read(dtls->ssl, buf, len);
3285
3286 if ((len < 0) && (SSL_get_error(dtls->ssl, len) == SSL_ERROR_SSL)) {
3287 unsigned long error = ERR_get_error();
3288 ast_log(LOG_ERROR, "DTLS failure occurred on RTP instance '%p' due to reason '%s', terminating\n",
3289 instance, ERR_reason_error_string(error));
3290 return -1;
3291 }
3292
3293 if (SSL_is_init_finished(dtls->ssl)) {
3294 /* Any further connections will be existing since this is now established */
3295 dtls->connection = AST_RTP_DTLS_CONNECTION_EXISTING;
3296 /* Use the keying material to set up key/salt information */
3297 if ((res = dtls_srtp_setup(rtp, instance, rtcp))) {
3298 return res;
3299 }
3300 /* Notify that dtls has been established */
3302
3303 ast_debug_dtls(3, "(%p) DTLS - __rtp_recvfrom rtp=%p - established'\n", instance, rtp);
3304 } else {
3305 /* Since we've sent additional traffic start the timeout timer for retransmission */
3306 dtls_srtp_start_timeout_timer(instance, rtp, rtcp);
3307 }
3308
3309 return res;
3310 }
3311#endif
3312
3313#ifdef HAVE_PJPROJECT
3314 if (!ast_sockaddr_isnull(loop) && !ast_sockaddr_cmp(loop, sa)) {
3315 /* ICE traffic will have been handled in the TURN callback, so skip it but update the address
3316 * so it reflects the actual source and not the loopback
3317 */
3318 if (rtcp) {
3319 ast_sockaddr_copy(sa, &rtp->rtcp->them);
3320 } else {
3322 }
3323 } else if (rtp->ice) {
3324 pj_str_t combined = pj_str(ast_sockaddr_stringify(sa));
3325 pj_sockaddr address;
3326 pj_status_t status;
3327 struct ice_wrap *ice;
3328
3329 pj_thread_register_check();
3330
3331 pj_sockaddr_parse(pj_AF_UNSPEC(), 0, &combined, &address);
3332
3333 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
3334 ice = rtp->ice;
3335 ao2_ref(ice, +1);
3336 ao2_unlock(instance);
3337 status = pj_ice_sess_on_rx_pkt(ice->real_ice,
3340 pj_sockaddr_get_len(&address));
3341 ao2_ref(ice, -1);
3342 ao2_lock(instance);
3343 if (status != PJ_SUCCESS) {
3344 char err_buf[100];
3345
3346 pj_strerror(status, err_buf, sizeof(err_buf));
3347 ast_log(LOG_WARNING, "PJ ICE Rx error status code: %d '%s'.\n",
3348 (int)status, err_buf);
3349 return -1;
3350 }
3351 if (!rtp->passthrough) {
3352 /* If a unidirectional ICE negotiation occurs then lock on to the source of the
3353 * ICE traffic and use it as the target. This will occur if the remote side only
3354 * wants to receive media but never send to us.
3355 */
3356 if (!rtp->ice_active_remote_candidates && !rtp->ice_proposed_remote_candidates) {
3357 if (rtcp) {
3358 ast_sockaddr_copy(&rtp->rtcp->them, sa);
3359 } else {
3361 }
3362 }
3363 return 0;
3364 }
3365 rtp->passthrough = 0;
3366 }
3367#endif
3368
3369 return len;
3370}
3371
3372/*! \pre instance is locked */
3373static int rtcp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
3374{
3375 return __rtp_recvfrom(instance, buf, size, flags, sa, 1);
3376}
3377
3378/*! \pre instance is locked */
3379static int rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
3380{
3381 return __rtp_recvfrom(instance, buf, size, flags, sa, 0);
3382}
3383
3384/*! \pre instance is locked */
3385static int __rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp, int *via_ice, int use_srtp)
3386{
3387 int len = size;
3388 void *temp = buf;
3389 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3390 struct ast_rtp_instance *transport = rtp->bundled ? rtp->bundled : instance;
3391 struct ast_rtp *transport_rtp = ast_rtp_instance_get_data(transport);
3392 struct ast_srtp *srtp = ast_rtp_instance_get_srtp(transport, rtcp);
3393 int res;
3394
3395 *via_ice = 0;
3396
3397 if (use_srtp && res_srtp && srtp && res_srtp->protect(srtp, &temp, &len, rtcp) < 0) {
3398 return -1;
3399 }
3400
3401#ifdef HAVE_PJPROJECT
3402 if (transport_rtp->ice) {
3404 pj_status_t status;
3405 struct ice_wrap *ice;
3406
3407 /* If RTCP is sharing the same socket then use the same component */
3408 if (rtcp && rtp->rtcp->s == rtp->s) {
3409 component = AST_RTP_ICE_COMPONENT_RTP;
3410 }
3411
3412 pj_thread_register_check();
3413
3414 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
3415 ice = transport_rtp->ice;
3416 ao2_ref(ice, +1);
3417 if (instance == transport) {
3418 ao2_unlock(instance);
3419 }
3420 status = pj_ice_sess_send_data(ice->real_ice, component, temp, len);
3421 ao2_ref(ice, -1);
3422 if (instance == transport) {
3423 ao2_lock(instance);
3424 }
3425 if (status == PJ_SUCCESS) {
3426 *via_ice = 1;
3427 return len;
3428 }
3429 }
3430#endif
3431
3432 res = ast_sendto(rtcp ? transport_rtp->rtcp->s : transport_rtp->s, temp, len, flags, sa);
3433 if (res > 0) {
3434 ast_rtp_instance_set_last_tx(instance, time(NULL));
3435 }
3436
3437 return res;
3438}
3439
3440/*! \pre instance is locked */
3441static int rtcp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
3442{
3443 return __rtp_sendto(instance, buf, size, flags, sa, 1, ice, 1);
3444}
3445
3446/*! \pre instance is locked */
3447static int rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
3448{
3449 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3450 int hdrlen = 12;
3451 int res;
3452
3453 if ((res = __rtp_sendto(instance, buf, size, flags, sa, 0, ice, 1)) > 0) {
3454 rtp->txcount++;
3455 rtp->txoctetcount += (res - hdrlen);
3456 }
3457
3458 return res;
3459}
3460
3461static unsigned int ast_rtcp_calc_interval(struct ast_rtp *rtp)
3462{
3463 unsigned int interval;
3464 /*! \todo XXX Do a more reasonable calculation on this one
3465 * Look in RFC 3550 Section A.7 for an example*/
3466 interval = rtcpinterval;
3467 return interval;
3468}
3469
3470static void calc_mean_and_standard_deviation(double new_sample, double *mean, double *std_dev, unsigned int *count)
3471{
3472 double delta1;
3473 double delta2;
3474
3475 /* First convert the standard deviation back into a sum of squares. */
3476 double last_sum_of_squares = (*std_dev) * (*std_dev) * (*count ?: 1);
3477
3478 if (++(*count) == 0) {
3479 /* Avoid potential divide by zero on an overflow */
3480 *count = 1;
3481 }
3482
3483 /*
3484 * Below is an implementation of Welford's online algorithm [1] for calculating
3485 * mean and variance in a single pass.
3486 *
3487 * [1] https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
3488 */
3489
3490 delta1 = new_sample - *mean;
3491 *mean += (delta1 / *count);
3492 delta2 = new_sample - *mean;
3493
3494 /* Now calculate the new variance, and subsequent standard deviation */
3495 *std_dev = sqrt((last_sum_of_squares + (delta1 * delta2)) / *count);
3496}
3497
3498static int create_new_socket(const char *type, int af)
3499{
3500 int sock = ast_socket_nonblock(af, SOCK_DGRAM, 0);
3501
3502 if (sock < 0) {
3503 ast_log(LOG_WARNING, "Unable to allocate %s socket: %s\n", type, strerror(errno));
3504 return sock;
3505 }
3506
3507#ifdef SO_NO_CHECK
3508 if (nochecksums) {
3509 setsockopt(sock, SOL_SOCKET, SO_NO_CHECK, &nochecksums, sizeof(nochecksums));
3510 }
3511#endif
3512
3513 return sock;
3514}
3515
3516/*!
3517 * \internal
3518 * \brief Initializes sequence values and probation for learning mode.
3519 * \note This is an adaptation of pjmedia's pjmedia_rtp_seq_init function.
3520 *
3521 * \param info The learning information to track
3522 * \param seq sequence number read from the rtp header to initialize the information with
3523 */
3524static void rtp_learning_seq_init(struct rtp_learning_info *info, uint16_t seq)
3525{
3526 info->max_seq = seq;
3527 info->packets = learning_min_sequential;
3528 memset(&info->received, 0, sizeof(info->received));
3529}
3530
3531/*!
3532 * \internal
3533 * \brief Updates sequence information for learning mode and determines if probation/learning mode should remain in effect.
3534 * \note This function was adapted from pjmedia's pjmedia_rtp_seq_update function.
3535 *
3536 * \param info Structure tracking the learning progress of some address
3537 * \param seq sequence number read from the rtp header
3538 * \retval 0 if probation mode should exit for this address
3539 * \retval non-zero if probation mode should continue
3540 */
3542{
3543 if (seq == (uint16_t) (info->max_seq + 1)) {
3544 /* packet is in sequence */
3545 info->packets--;
3546 } else {
3547 /* Sequence discontinuity; reset */
3548 info->packets = learning_min_sequential - 1;
3549 info->received = ast_tvnow();
3550 }
3551
3552 /* Only check time if strictrtp is set to yes. Otherwise, we only needed to check seqno */
3553 if (strictrtp == STRICT_RTP_YES) {
3554 switch (info->stream_type) {
3557 /*
3558 * Protect against packet floods by checking that we
3559 * received the packet sequence in at least the minimum
3560 * allowed time.
3561 */
3562 if (ast_tvzero(info->received)) {
3563 info->received = ast_tvnow();
3564 } else if (!info->packets
3566 /* Packet flood; reset */
3567 info->packets = learning_min_sequential - 1;
3568 info->received = ast_tvnow();
3569 }
3570 break;
3574 case AST_MEDIA_TYPE_END:
3575 break;
3576 }
3577 }
3578
3579 info->max_seq = seq;
3580
3581 return info->packets;
3582}
3583
3584/*!
3585 * \brief Start the strictrtp learning mode.
3586 *
3587 * \param rtp RTP session description
3588 */
3589static void rtp_learning_start(struct ast_rtp *rtp)
3590{
3592 memset(&rtp->rtp_source_learn.proposed_address, 0,
3593 sizeof(rtp->rtp_source_learn.proposed_address));
3595 rtp_learning_seq_init(&rtp->rtp_source_learn, (uint16_t) rtp->lastrxseqno);
3596}
3597
3598#ifdef HAVE_PJPROJECT
3599static void acl_change_stasis_cb(void *data, struct stasis_subscription *sub, struct stasis_message *message);
3600
3601/*!
3602 * \internal
3603 * \brief Resets and ACL to empty state.
3604 */
3605static void rtp_unload_acl(ast_rwlock_t *lock, struct ast_acl_list **acl)
3606{
3610}
3611
3612/*!
3613 * \internal
3614 * \brief Checks an address against the ICE blacklist
3615 * \note If there is no ice_blacklist list, always returns 0
3616 *
3617 * \param address The address to consider
3618 * \retval 0 if address is not ICE blacklisted
3619 * \retval 1 if address is ICE blacklisted
3620 */
3621static int rtp_address_is_ice_blacklisted(const struct ast_sockaddr *address)
3622{
3623 int result = 0;
3624
3625 ast_rwlock_rdlock(&ice_acl_lock);
3627 ast_rwlock_unlock(&ice_acl_lock);
3628
3629 return result;
3630}
3631
3632/*!
3633 * \internal
3634 * \brief Checks an address against the STUN blacklist
3635 * \since 13.16.0
3636 *
3637 * \note If there is no stun_blacklist list, always returns 0
3638 *
3639 * \param addr The address to consider
3640 *
3641 * \retval 0 if address is not STUN blacklisted
3642 * \retval 1 if address is STUN blacklisted
3643 */
3644static int stun_address_is_blacklisted(const struct ast_sockaddr *addr)
3645{
3646 int result = 0;
3647
3648 ast_rwlock_rdlock(&stun_acl_lock);
3649 result |= ast_apply_acl_nolog(stun_acl, addr) == AST_SENSE_DENY;
3650 ast_rwlock_unlock(&stun_acl_lock);
3651
3652 return result;
3653}
3654
3655/*! \pre instance is locked */
3656static void rtp_add_candidates_to_ice(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_sockaddr *addr, int port, int component,
3657 int transport)
3658{
3659 unsigned int count = 0;
3660 struct ifaddrs *ifa, *ia;
3661 struct ast_sockaddr tmp;
3662 pj_sockaddr pjtmp;
3663 struct ast_ice_host_candidate *candidate;
3664 int af_inet_ok = 0, af_inet6_ok = 0;
3665 struct sockaddr_in stunaddr_copy;
3666
3667 if (ast_sockaddr_is_ipv4(addr)) {
3668 af_inet_ok = 1;
3669 } else if (ast_sockaddr_is_any(addr)) {
3670 af_inet_ok = af_inet6_ok = 1;
3671 } else {
3672 af_inet6_ok = 1;
3673 }
3674
3675 if (getifaddrs(&ifa) < 0) {
3676 /* If we can't get addresses, we can't load ICE candidates */
3677 ast_log(LOG_ERROR, "(%p) ICE Error obtaining list of local addresses: %s\n",
3678 instance, strerror(errno));
3679 } else {
3680 ast_debug_ice(2, "(%p) ICE add system candidates\n", instance);
3681 /* Iterate through the list of addresses obtained from the system,
3682 * until we've iterated through all of them, or accepted
3683 * PJ_ICE_MAX_CAND candidates */
3684 for (ia = ifa; ia && count < PJ_ICE_MAX_CAND; ia = ia->ifa_next) {
3685 /* Interface is either not UP or doesn't have an address assigned,
3686 * eg, a ppp that just completed LCP but no IPCP yet */
3687 if (!ia->ifa_addr || (ia->ifa_flags & IFF_UP) == 0) {
3688 continue;
3689 }
3690
3691 /* Filter out non-IPvX addresses, eg, link-layer */
3692 if (ia->ifa_addr->sa_family != AF_INET && ia->ifa_addr->sa_family != AF_INET6) {
3693 continue;
3694 }
3695
3696 ast_sockaddr_from_sockaddr(&tmp, ia->ifa_addr);
3697
3698 if (ia->ifa_addr->sa_family == AF_INET) {
3699 const struct sockaddr_in *sa_in = (struct sockaddr_in*)ia->ifa_addr;
3700 if (!af_inet_ok) {
3701 continue;
3702 }
3703
3704 /* Skip 127.0.0.0/8 (loopback) */
3705 /* Don't use IFF_LOOPBACK check since one could assign usable
3706 * publics to the loopback */
3707 if ((sa_in->sin_addr.s_addr & htonl(0xFF000000)) == htonl(0x7F000000)) {
3708 continue;
3709 }
3710
3711 /* Skip 0.0.0.0/8 based on RFC1122, and from pjproject */
3712 if ((sa_in->sin_addr.s_addr & htonl(0xFF000000)) == 0) {
3713 continue;
3714 }
3715 } else { /* ia->ifa_addr->sa_family == AF_INET6 */
3716 if (!af_inet6_ok) {
3717 continue;
3718 }
3719
3720 /* Filter ::1 */
3721 if (!ast_sockaddr_cmp_addr(&lo6, &tmp)) {
3722 continue;
3723 }
3724 }
3725
3726 /* Pull in the host candidates from [ice_host_candidates] */
3727 AST_RWLIST_RDLOCK(&host_candidates);
3728 AST_LIST_TRAVERSE(&host_candidates, candidate, next) {
3729 if (!ast_sockaddr_cmp(&candidate->local, &tmp)) {
3730 /* candidate->local matches actual assigned, so check if
3731 * advertised is blacklisted, if not, add it to the
3732 * advertised list. Not that it would make sense to remap
3733 * a local address to a blacklisted address, but honour it
3734 * anyway. */
3735 if (!rtp_address_is_ice_blacklisted(&candidate->advertised)) {
3736 ast_sockaddr_to_pj_sockaddr(&candidate->advertised, &pjtmp);
3737 pj_sockaddr_set_port(&pjtmp, port);
3738 ast_rtp_ice_add_cand(instance, rtp, component, transport,
3739 PJ_ICE_CAND_TYPE_HOST, 65535, &pjtmp, &pjtmp, NULL,
3740 pj_sockaddr_get_len(&pjtmp));
3741 ++count;
3742 }
3743
3744 if (!candidate->include_local) {
3745 /* We don't want to advertise the actual address */
3747 }
3748
3749 break;
3750 }
3751 }
3752 AST_RWLIST_UNLOCK(&host_candidates);
3753
3754 /* we had an entry in [ice_host_candidates] that matched, and
3755 * didn't have include_local_address set. Alternatively, adding
3756 * that match resulted in us going to PJ_ICE_MAX_CAND */
3757 if (ast_sockaddr_isnull(&tmp) || count == PJ_ICE_MAX_CAND) {
3758 continue;
3759 }
3760
3761 if (rtp_address_is_ice_blacklisted(&tmp)) {
3762 continue;
3763 }
3764
3766 pj_sockaddr_set_port(&pjtmp, port);
3767 ast_rtp_ice_add_cand(instance, rtp, component, transport,
3768 PJ_ICE_CAND_TYPE_HOST, 65535, &pjtmp, &pjtmp, NULL,
3769 pj_sockaddr_get_len(&pjtmp));
3770 ++count;
3771 }
3772 freeifaddrs(ifa);
3773 }
3774
3775 ast_rwlock_rdlock(&stunaddr_lock);
3776 memcpy(&stunaddr_copy, &stunaddr, sizeof(stunaddr));
3777 ast_rwlock_unlock(&stunaddr_lock);
3778
3779 /* If configured to use a STUN server to get our external mapped address do so */
3780 if (stunaddr_copy.sin_addr.s_addr && !stun_address_is_blacklisted(addr) &&
3781 (ast_sockaddr_is_ipv4(addr) || ast_sockaddr_is_any(addr)) &&
3782 count < PJ_ICE_MAX_CAND) {
3783 struct sockaddr_in answer;
3784 int rsp;
3785
3787 "(%p) ICE request STUN %s %s candidate\n", instance,
3788 transport == AST_TRANSPORT_UDP ? "UDP" : "TCP",
3789 component == AST_RTP_ICE_COMPONENT_RTP ? "RTP" : "RTCP");
3790
3791 /*
3792 * The instance should not be locked because we can block
3793 * waiting for a STUN respone.
3794 */
3795 ao2_unlock(instance);
3797 ? rtp->rtcp->s : rtp->s, &stunaddr_copy, NULL, &answer);
3798 ao2_lock(instance);
3799 if (!rsp) {
3800 struct ast_rtp_engine_ice_candidate *candidate;
3801 pj_sockaddr ext, base;
3802 pj_str_t mapped = pj_str(ast_strdupa(ast_inet_ntoa(answer.sin_addr)));
3803 int srflx = 1, baseset = 0;
3804 struct ao2_iterator i;
3805
3806 pj_sockaddr_init(pj_AF_INET(), &ext, &mapped, ntohs(answer.sin_port));
3807
3808 /*
3809 * If the returned address is the same as one of our host
3810 * candidates, don't send the srflx. At the same time,
3811 * we need to set the base address (raddr).
3812 */
3813 i = ao2_iterator_init(rtp->ice_local_candidates, 0);
3814 while (srflx && (candidate = ao2_iterator_next(&i))) {
3815 if (!baseset && ast_sockaddr_is_ipv4(&candidate->address)) {
3816 baseset = 1;
3817 ast_sockaddr_to_pj_sockaddr(&candidate->address, &base);
3818 }
3819
3820 if (!pj_sockaddr_cmp(&candidate->address, &ext)) {
3821 srflx = 0;
3822 }
3823
3824 ao2_ref(candidate, -1);
3825 }
3827
3828 if (srflx && baseset) {
3829 pj_sockaddr_set_port(&base, port);
3830 ast_rtp_ice_add_cand(instance, rtp, component, transport,
3831 PJ_ICE_CAND_TYPE_SRFLX, 65535, &ext, &base, &base,
3832 pj_sockaddr_get_len(&ext));
3833 }
3834 }
3835 }
3836
3837 /* If configured to use a TURN relay create a session and allocate */
3838 if (pj_strlen(&turnaddr)) {
3839 ast_rtp_ice_turn_request(instance, component, AST_TRANSPORT_TCP, pj_strbuf(&turnaddr), turnport,
3840 pj_strbuf(&turnusername), pj_strbuf(&turnpassword));
3841 }
3842}
3843#endif
3844
3845/*!
3846 * \internal
3847 * \brief Calculates the elapsed time from issue of the first tx packet in an
3848 * rtp session and a specified time
3849 *
3850 * \param rtp pointer to the rtp struct with the transmitted rtp packet
3851 * \param delivery time of delivery - if NULL or zero value, will be ast_tvnow()
3852 *
3853 * \return time elapsed in milliseconds
3854 */
3855static unsigned int calc_txstamp(struct ast_rtp *rtp, struct timeval *delivery)
3856{
3857 struct timeval t;
3858 long ms;
3859
3860 if (ast_tvzero(rtp->txcore)) {
3861 rtp->txcore = ast_tvnow();
3862 rtp->txcore.tv_usec -= rtp->txcore.tv_usec % 20000;
3863 }
3864
3865 t = (delivery && !ast_tvzero(*delivery)) ? *delivery : ast_tvnow();
3866 if ((ms = ast_tvdiff_ms(t, rtp->txcore)) < 0) {
3867 ms = 0;
3868 }
3869 rtp->txcore = t;
3870
3871 return (unsigned int) ms;
3872}
3873
3874#ifdef HAVE_PJPROJECT
3875/*!
3876 * \internal
3877 * \brief Creates an ICE session. Can be used to replace a destroyed ICE session.
3878 *
3879 * \param instance RTP instance for which the ICE session is being replaced
3880 * \param addr ast_sockaddr to use for adding RTP candidates to the ICE session
3881 * \param port port to use for adding RTP candidates to the ICE session
3882 * \param replace 0 when creating a new session, 1 when replacing a destroyed session
3883 *
3884 * \pre instance is locked
3885 *
3886 * \retval 0 on success
3887 * \retval -1 on failure
3888 */
3889static int ice_create(struct ast_rtp_instance *instance, struct ast_sockaddr *addr,
3890 int port, int replace)
3891{
3892 pj_stun_config stun_config;
3893 pj_str_t ufrag, passwd;
3894 pj_status_t status;
3895 struct ice_wrap *ice_old;
3896 struct ice_wrap *ice;
3897 pj_ice_sess *real_ice = NULL;
3898 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3899
3900 ao2_cleanup(rtp->ice_local_candidates);
3901 rtp->ice_local_candidates = NULL;
3902
3903 ast_debug_ice(2, "(%p) ICE create%s\n", instance, replace ? " and replace" : "");
3904
3905 ice = ao2_alloc_options(sizeof(*ice), ice_wrap_dtor, AO2_ALLOC_OPT_LOCK_NOLOCK);
3906 if (!ice) {
3907 ast_rtp_ice_stop(instance);
3908 return -1;
3909 }
3910
3911 pj_thread_register_check();
3912
3913 pj_stun_config_init(&stun_config, &cachingpool.factory, 0, NULL, timer_heap);
3914 if (!stun_software_attribute) {
3915 stun_config.software_name = pj_str(NULL);
3916 }
3917
3918 ufrag = pj_str(rtp->local_ufrag);
3919 passwd = pj_str(rtp->local_passwd);
3920
3921 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
3922 ao2_unlock(instance);
3923 /* Create an ICE session for ICE negotiation */
3924 status = pj_ice_sess_create(&stun_config, NULL, PJ_ICE_SESS_ROLE_UNKNOWN,
3925 rtp->ice_num_components, &ast_rtp_ice_sess_cb, &ufrag, &passwd, NULL, &real_ice);
3926 ao2_lock(instance);
3927 if (status == PJ_SUCCESS) {
3928 /* Safely complete linking the ICE session into the instance */
3929 real_ice->user_data = instance;
3930 ice->real_ice = real_ice;
3931 ice_old = rtp->ice;
3932 rtp->ice = ice;
3933 if (ice_old) {
3934 ao2_unlock(instance);
3935 ao2_ref(ice_old, -1);
3936 ao2_lock(instance);
3937 }
3938
3939 /* Add all of the available candidates to the ICE session */
3940 rtp_add_candidates_to_ice(instance, rtp, addr, port, AST_RTP_ICE_COMPONENT_RTP,
3942
3943 /* Only add the RTCP candidates to ICE when replacing the session and if
3944 * the ICE session contains more than just an RTP component. New sessions
3945 * handle this in a separate part of the setup phase */
3946 if (replace && rtp->rtcp && rtp->ice_num_components > 1) {
3947 rtp_add_candidates_to_ice(instance, rtp, &rtp->rtcp->us,
3950 }
3951
3952 return 0;
3953 }
3954
3955 /*
3956 * It is safe to unref this while instance is locked here.
3957 * It was not initialized with a real_ice pointer.
3958 */
3959 ao2_ref(ice, -1);
3960
3961 ast_rtp_ice_stop(instance);
3962 return -1;
3963
3964}
3965#endif
3966
3967static int rtp_allocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
3968{
3969 int x, startplace, i, maxloops;
3970
3972
3973 /* Create a new socket for us to listen on and use */
3974 if ((rtp->s =
3975 create_new_socket("RTP",
3976 ast_sockaddr_is_ipv4(&rtp->bind_address) ? AF_INET :
3977 ast_sockaddr_is_ipv6(&rtp->bind_address) ? AF_INET6 : -1)) < 0) {
3978 ast_log(LOG_WARNING, "Failed to create a new socket for RTP instance '%p'\n", instance);
3979 return -1;
3980 }
3981
3982 /* Now actually find a free RTP port to use */
3983 x = (ast_random() % (rtpend - rtpstart)) + rtpstart;
3984 x = x & ~1;
3985 startplace = x;
3986
3987 /* Protection against infinite loops in the case there is a potential case where the loop is not broken such as an odd
3988 start port sneaking in (even though this condition is checked at load.) */
3989 maxloops = rtpend - rtpstart;
3990 for (i = 0; i <= maxloops; i++) {
3992 /* Try to bind, this will tell us whether the port is available or not */
3993 if (!ast_bind(rtp->s, &rtp->bind_address)) {
3994 ast_debug_rtp(1, "(%p) RTP allocated port %d\n", instance, x);
3996 ast_test_suite_event_notify("RTP_PORT_ALLOCATED", "Port: %d", x);
3997 break;
3998 }
3999
4000 x += 2;
4001 if (x > rtpend) {
4002 x = (rtpstart + 1) & ~1;
4003 }
4004
4005 /* See if we ran out of ports or if the bind actually failed because of something other than the address being in use */
4006 if (x == startplace || (errno != EADDRINUSE && errno != EACCES)) {
4007 ast_log(LOG_ERROR, "Oh dear... we couldn't allocate a port for RTP instance '%p'\n", instance);
4008 close(rtp->s);
4009 rtp->s = -1;
4010 return -1;
4011 }
4012 }
4013
4014#ifdef HAVE_PJPROJECT
4015 /* Initialize synchronization aspects */
4016 ast_cond_init(&rtp->cond, NULL);
4017
4018 generate_random_string(rtp->local_ufrag, sizeof(rtp->local_ufrag));
4019 generate_random_string(rtp->local_passwd, sizeof(rtp->local_passwd));
4020
4021 /* Create an ICE session for ICE negotiation */
4022 if (icesupport) {
4023 rtp->ice_num_components = 2;
4024 ast_debug_ice(2, "(%p) ICE creating session %s (%d)\n", instance,
4026 if (ice_create(instance, &rtp->bind_address, x, 0)) {
4027 ast_log(LOG_NOTICE, "(%p) ICE failed to create session\n", instance);
4028 } else {
4029 rtp->ice_port = x;
4030 ast_sockaddr_copy(&rtp->ice_original_rtp_addr, &rtp->bind_address);
4031 }
4032 }
4033#endif
4034
4035#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
4036 rtp->rekeyid = -1;
4037 rtp->dtls.timeout_timer = -1;
4038#endif
4039
4040 return 0;
4041}
4042
4043static void rtp_deallocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
4044{
4045 int saved_rtp_s = rtp->s;
4046#ifdef HAVE_PJPROJECT
4047 struct timeval wait = ast_tvadd(ast_tvnow(), ast_samp2tv(TURN_STATE_WAIT_TIME, 1000));
4048 struct timespec ts = { .tv_sec = wait.tv_sec, .tv_nsec = wait.tv_usec * 1000, };
4049#endif
4050
4051#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
4052 ast_rtp_dtls_stop(instance);
4053#endif
4054
4055 /* Close our own socket so we no longer get packets */
4056 if (rtp->s > -1) {
4057 close(rtp->s);
4058 rtp->s = -1;
4059 }
4060
4061 /* Destroy RTCP if it was being used */
4062 if (rtp->rtcp && rtp->rtcp->s > -1) {
4063 if (saved_rtp_s != rtp->rtcp->s) {
4064 close(rtp->rtcp->s);
4065 }
4066 rtp->rtcp->s = -1;
4067 }
4068
4069#ifdef HAVE_PJPROJECT
4070 pj_thread_register_check();
4071
4072 /*
4073 * The instance lock is already held.
4074 *
4075 * Destroy the RTP TURN relay if being used
4076 */
4077 if (rtp->turn_rtp) {
4078 rtp->turn_state = PJ_TURN_STATE_NULL;
4079
4080 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
4081 ao2_unlock(instance);
4082 pj_turn_sock_destroy(rtp->turn_rtp);
4083 ao2_lock(instance);
4084 while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
4085 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
4086 }
4087 rtp->turn_rtp = NULL;
4088 }
4089
4090 /* Destroy the RTCP TURN relay if being used */
4091 if (rtp->turn_rtcp) {
4092 rtp->turn_state = PJ_TURN_STATE_NULL;
4093
4094 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
4095 ao2_unlock(instance);
4096 pj_turn_sock_destroy(rtp->turn_rtcp);
4097 ao2_lock(instance);
4098 while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
4099 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
4100 }
4101 rtp->turn_rtcp = NULL;
4102 }
4103
4104 ast_debug_ice(2, "(%p) ICE RTP transport deallocating\n", instance);
4105 /* Destroy any ICE session */
4106 ast_rtp_ice_stop(instance);
4107
4108 /* Destroy any candidates */
4109 if (rtp->ice_local_candidates) {
4110 ao2_ref(rtp->ice_local_candidates, -1);
4111 rtp->ice_local_candidates = NULL;
4112 }
4113
4114 if (rtp->ice_active_remote_candidates) {
4115 ao2_ref(rtp->ice_active_remote_candidates, -1);
4116 rtp->ice_active_remote_candidates = NULL;
4117 }
4118
4119 if (rtp->ice_proposed_remote_candidates) {
4120 ao2_ref(rtp->ice_proposed_remote_candidates, -1);
4121 rtp->ice_proposed_remote_candidates = NULL;
4122 }
4123
4124 if (rtp->ioqueue) {
4125 /*
4126 * We cannot hold the instance lock because we could wait
4127 * for the ioqueue thread to die and we might deadlock as
4128 * a result.
4129 */
4130 ao2_unlock(instance);
4131 rtp_ioqueue_thread_remove(rtp->ioqueue);
4132 ao2_lock(instance);
4133 rtp->ioqueue = NULL;
4134 }
4135#endif
4136}
4137
4138/*! \pre instance is locked */
4139static int ast_rtp_new(struct ast_rtp_instance *instance,
4140 struct ast_sched_context *sched, struct ast_sockaddr *addr,
4141 void *data)
4142{
4143 struct ast_rtp *rtp = NULL;
4144
4145 /* Create a new RTP structure to hold all of our data */
4146 if (!(rtp = ast_calloc(1, sizeof(*rtp)))) {
4147 return -1;
4148 }
4149 rtp->owner = instance;
4150 /* Set default parameters on the newly created RTP structure */
4151 rtp->ssrc = ast_random();
4152 ast_uuid_generate_str(rtp->cname, sizeof(rtp->cname));
4153 rtp->seqno = ast_random() & 0x7fff;
4154 rtp->expectedrxseqno = -1;
4155 rtp->expectedseqno = -1;
4156 rtp->rxstart = -1;
4157 rtp->sched = sched;
4158 ast_sockaddr_copy(&rtp->bind_address, addr);
4159 /* Transport creation operations can grab the RTP data from the instance, so set it */
4160 ast_rtp_instance_set_data(instance, rtp);
4161
4162 if (rtp_allocate_transport(instance, rtp)) {
4163 return -1;
4164 }
4165
4166 if (AST_VECTOR_INIT(&rtp->ssrc_mapping, 1)) {
4167 return -1;
4168 }
4169
4171 return -1;
4172 }
4173 rtp->transport_wide_cc.schedid = -1;
4174
4178 rtp->stream_num = -1;
4179
4180 return 0;
4181}
4182
4183/*!
4184 * \brief SSRC mapping comparator for AST_VECTOR_REMOVE_CMP_UNORDERED()
4185 *
4186 * \param elem Element to compare against
4187 * \param value Value to compare with the vector element.
4188 *
4189 * \retval 0 if element does not match.
4190 * \retval Non-zero if element matches.
4191 */
4192#define SSRC_MAPPING_ELEM_CMP(elem, value) ((elem).instance == (value))
4193
4194/*! \pre instance is locked */
4195static int ast_rtp_destroy(struct ast_rtp_instance *instance)
4196{
4197 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4198
4199 if (rtp->bundled) {
4200 struct ast_rtp *bundled_rtp;
4201
4202 /* We can't hold our instance lock while removing ourselves from the parent */
4203 ao2_unlock(instance);
4204
4205 ao2_lock(rtp->bundled);
4206 bundled_rtp = ast_rtp_instance_get_data(rtp->bundled);
4208 ao2_unlock(rtp->bundled);
4209
4210 ao2_lock(instance);
4211 ao2_ref(rtp->bundled, -1);
4212 }
4213
4214 rtp_deallocate_transport(instance, rtp);
4215
4216 /* Destroy the smoother that was smoothing out audio if present */
4217 if (rtp->smoother) {
4219 }
4220
4221 /* Destroy RTCP if it was being used */
4222 if (rtp->rtcp) {
4223 /*
4224 * It is not possible for there to be an active RTCP scheduler
4225 * entry at this point since it holds a reference to the
4226 * RTP instance while it's active.
4227 */
4229 ast_free(rtp->rtcp);
4230 }
4231
4232 /* Destroy RED if it was being used */
4233 if (rtp->red) {
4234 ao2_unlock(instance);
4235 AST_SCHED_DEL(rtp->sched, rtp->red->schedid);
4236 ao2_lock(instance);
4237 ast_free(rtp->red);
4238 rtp->red = NULL;
4239 }
4240
4241 /* Destroy the send buffer if it was being used */
4242 if (rtp->send_buffer) {
4244 }
4245
4246 /* Destroy the recv buffer if it was being used */
4247 if (rtp->recv_buffer) {
4249 }
4250
4252
4258
4259 /* Finally destroy ourselves */
4260 rtp->owner = NULL;
4261 ast_free(rtp);
4262
4263 return 0;
4264}
4265
4266/*! \pre instance is locked */
4267static int ast_rtp_dtmf_mode_set(struct ast_rtp_instance *instance, enum ast_rtp_dtmf_mode dtmf_mode)
4268{
4269 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4270 rtp->dtmfmode = dtmf_mode;
4271 return 0;
4272}
4273
4274/*! \pre instance is locked */
4276{
4277 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4278 return rtp->dtmfmode;
4279}
4280
4281/*! \pre instance is locked */
4282static int ast_rtp_dtmf_begin(struct ast_rtp_instance *instance, char digit)
4283{
4284 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4285 struct ast_sockaddr remote_address = { {0,} };
4286 int hdrlen = 12, res = 0, i = 0, payload = 101;
4287 unsigned int sample_rate = 8000;
4288 char data[256];
4289 unsigned int *rtpheader = (unsigned int*)data;
4290 RAII_VAR(struct ast_format *, payload_format, NULL, ao2_cleanup);
4291
4292 ast_rtp_instance_get_remote_address(instance, &remote_address);
4293
4294 /* If we have no remote address information bail out now */
4295 if (ast_sockaddr_isnull(&remote_address)) {
4296 return -1;
4297 }
4298
4299 /* Convert given digit into what we want to transmit */
4300 if ((digit <= '9') && (digit >= '0')) {
4301 digit -= '0';
4302 } else if (digit == '*') {
4303 digit = 10;
4304 } else if (digit == '#') {
4305 digit = 11;
4306 } else if ((digit >= 'A') && (digit <= 'D')) {
4307 digit = digit - 'A' + 12;
4308 } else if ((digit >= 'a') && (digit <= 'd')) {
4309 digit = digit - 'a' + 12;
4310 } else {
4311 ast_log(LOG_WARNING, "Don't know how to represent '%c'\n", digit);
4312 return -1;
4313 }
4314
4315 if (rtp->lasttxformat == ast_format_none) {
4316 /* No audio frames have been written yet so we have to lookup both the preferred payload type and bitrate. */
4318 if (payload_format) {
4319 /* If we have a preferred type, use that. Otherwise default to 8K. */
4320 sample_rate = ast_format_get_sample_rate(payload_format);
4321 }
4322 } else {
4323 sample_rate = ast_format_get_sample_rate(rtp->lasttxformat);
4324 }
4325
4326 /* Grab the matching DTMF type payload */
4328
4329 /* If this returns -1, we are using a codec with a sample rate that does not have a matching RFC 2833/4733
4330 offer. The offer may have included a default-rate one that doesn't match the codec rate, so try to use that. */
4331 if (payload == -1) {
4332 sample_rate = DEFAULT_DTMF_SAMPLE_RATE_MS;
4334 }
4335 /* No default-rate offer either, trying to send a digit outside of what was negotiated for. */
4336 if (payload == -1) {
4337 return -1;
4338 }
4339
4340 ast_test_suite_event_notify("DTMF_BEGIN", "Digit: %d\r\nPayload: %d\r\nRate: %d\r\n", digit, payload, sample_rate);
4341 ast_debug(1, "Sending digit '%d' at rate %d with payload %d\n", digit, sample_rate, payload);
4342
4343 rtp->dtmfmute = ast_tvadd(ast_tvnow(), ast_tv(0, 500000));
4344 rtp->send_duration = 160;
4345 rtp->dtmf_samplerate_ms = (sample_rate / 1000);
4346 rtp->lastts += calc_txstamp(rtp, NULL) * rtp->dtmf_samplerate_ms;
4347 rtp->lastdigitts = rtp->lastts + rtp->send_duration;
4348
4349 /* Create the actual packet that we will be sending */
4350 rtpheader[0] = htonl((2 << 30) | (1 << 23) | (payload << 16) | (rtp->seqno));
4351 rtpheader[1] = htonl(rtp->lastdigitts);
4352 rtpheader[2] = htonl(rtp->ssrc);
4353
4354 /* Actually send the packet */
4355 for (i = 0; i < 2; i++) {
4356 int ice;
4357
4358 rtpheader[3] = htonl((digit << 24) | (0xa << 16) | (rtp->send_duration));
4359 res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 4, 0, &remote_address, &ice);
4360 if (res < 0) {
4361 ast_log(LOG_ERROR, "RTP Transmission error to %s: %s\n",
4362 ast_sockaddr_stringify(&remote_address),
4363 strerror(errno));
4364 }
4365 if (rtp_debug_test_addr(&remote_address)) {
4366 ast_verbose("Sent RTP DTMF packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
4367 ast_sockaddr_stringify(&remote_address),
4368 ice ? " (via ICE)" : "",
4369 payload, rtp->seqno, rtp->lastdigitts, res - hdrlen);
4370 }
4371 rtp->seqno++;
4372 rtp->send_duration += 160;
4373 rtpheader[0] = htonl((2 << 30) | (payload << 16) | (rtp->seqno));
4374 }
4375
4376 /* Record that we are in the process of sending a digit and information needed to continue doing so */
4377 rtp->sending_digit = 1;
4378 rtp->send_digit = digit;
4379 rtp->send_payload = payload;
4380
4381 return 0;
4382}
4383
4384/*! \pre instance is locked */
4386{
4387 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4388 struct ast_sockaddr remote_address = { {0,} };
4389 int hdrlen = 12, res = 0;
4390 char data[256];
4391 unsigned int *rtpheader = (unsigned int*)data;
4392 int ice;
4393
4394 ast_rtp_instance_get_remote_address(instance, &remote_address);
4395
4396 /* Make sure we know where the other side is so we can send them the packet */
4397 if (ast_sockaddr_isnull(&remote_address)) {
4398 return -1;
4399 }
4400
4401 /* Actually create the packet we will be sending */
4402 rtpheader[0] = htonl((2 << 30) | (rtp->send_payload << 16) | (rtp->seqno));
4403 rtpheader[1] = htonl(rtp->lastdigitts);
4404 rtpheader[2] = htonl(rtp->ssrc);
4405 rtpheader[3] = htonl((rtp->send_digit << 24) | (0xa << 16) | (rtp->send_duration));
4406
4407 /* Boom, send it on out */
4408 res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 4, 0, &remote_address, &ice);
4409 if (res < 0) {
4410 ast_log(LOG_ERROR, "RTP Transmission error to %s: %s\n",
4411 ast_sockaddr_stringify(&remote_address),
4412 strerror(errno));
4413 }
4414
4415 if (rtp_debug_test_addr(&remote_address)) {
4416 ast_verbose("Sent RTP DTMF packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
4417 ast_sockaddr_stringify(&remote_address),
4418 ice ? " (via ICE)" : "",
4419 rtp->send_payload, rtp->seqno, rtp->lastdigitts, res - hdrlen);
4420 }
4421
4422 /* And now we increment some values for the next time we swing by */
4423 rtp->seqno++;
4424 rtp->send_duration += 160;
4425 rtp->lastts += calc_txstamp(rtp, NULL) * rtp->dtmf_samplerate_ms;
4426
4427 return 0;
4428}
4429
4430/*! \pre instance is locked */
4431static int ast_rtp_dtmf_end_with_duration(struct ast_rtp_instance *instance, char digit, unsigned int duration)
4432{
4433 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4434 struct ast_sockaddr remote_address = { {0,} };
4435 int hdrlen = 12, res = -1, i = 0;
4436 char data[256];
4437 unsigned int *rtpheader = (unsigned int*)data;
4438 unsigned int measured_samples;
4439
4440 ast_rtp_instance_get_remote_address(instance, &remote_address);
4441
4442 /* Make sure we know where the remote side is so we can send them the packet we construct */
4443 if (ast_sockaddr_isnull(&remote_address)) {
4444 goto cleanup;
4445 }
4446
4447 /* Convert the given digit to the one we are going to send */
4448 if ((digit <= '9') && (digit >= '0')) {
4449 digit -= '0';
4450 } else if (digit == '*') {
4451 digit = 10;
4452 } else if (digit == '#') {
4453 digit = 11;
4454 } else if ((digit >= 'A') && (digit <= 'D')) {
4455 digit = digit - 'A' + 12;
4456 } else if ((digit >= 'a') && (digit <= 'd')) {
4457 digit = digit - 'a' + 12;
4458 } else {
4459 ast_log(LOG_WARNING, "Don't know how to represent '%c'\n", digit);
4460 goto cleanup;
4461 }
4462
4463 rtp->dtmfmute = ast_tvadd(ast_tvnow(), ast_tv(0, 500000));
4464
4465 if (duration > 0 && (measured_samples = duration * ast_rtp_get_rate(rtp->f.subclass.format) / 1000) > rtp->send_duration) {
4466 ast_debug_rtp(2, "(%p) RTP adjusting final end duration from %d to %u\n",
4467 instance, rtp->send_duration, measured_samples);
4468 rtp->send_duration = measured_samples;
4469 }
4470
4471 /* Construct the packet we are going to send */
4472 rtpheader[1] = htonl(rtp->lastdigitts);
4473 rtpheader[2] = htonl(rtp->ssrc);
4474 rtpheader[3] = htonl((digit << 24) | (0xa << 16) | (rtp->send_duration));
4475 rtpheader[3] |= htonl((1 << 23));
4476
4477 /* Send it 3 times, that's the magical number */
4478 for (i = 0; i < 3; i++) {
4479 int ice;
4480
4481 rtpheader[0] = htonl((2 << 30) | (rtp->send_payload << 16) | (rtp->seqno));
4482
4483 res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 4, 0, &remote_address, &ice);
4484
4485 if (res < 0) {
4486 ast_log(LOG_ERROR, "RTP Transmission error to %s: %s\n",
4487 ast_sockaddr_stringify(&remote_address),
4488 strerror(errno));
4489 }
4490
4491 if (rtp_debug_test_addr(&remote_address)) {
4492 ast_verbose("Sent RTP DTMF packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
4493 ast_sockaddr_stringify(&remote_address),
4494 ice ? " (via ICE)" : "",
4495 rtp->send_payload, rtp->seqno, rtp->lastdigitts, res - hdrlen);
4496 }
4497
4498 rtp->seqno++;
4499 }
4500 res = 0;
4501
4502 /* Oh and we can't forget to turn off the stuff that says we are sending DTMF */
4503 rtp->lastts += calc_txstamp(rtp, NULL) * rtp->dtmf_samplerate_ms;
4504
4505 /* Reset the smoother as the delivery time stored in it is now out of date */
4506 if (rtp->smoother) {
4508 rtp->smoother = NULL;
4509 }
4510cleanup:
4511 rtp->sending_digit = 0;
4512 rtp->send_digit = 0;
4513
4514 /* Re-Learn expected seqno */
4515 rtp->expectedseqno = -1;
4516
4517 return res;
4518}
4519
4520/*! \pre instance is locked */
4521static int ast_rtp_dtmf_end(struct ast_rtp_instance *instance, char digit)
4522{
4523 return ast_rtp_dtmf_end_with_duration(instance, digit, 0);
4524}
4525
4526/*! \pre instance is locked */
4527static void ast_rtp_update_source(struct ast_rtp_instance *instance)
4528{
4529 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4530
4531 /* We simply set this bit so that the next packet sent will have the marker bit turned on */
4533 ast_debug_rtp(3, "(%p) RTP setting the marker bit due to a source update\n", instance);
4534
4535 return;
4536}
4537
4538/*! \pre instance is locked */
4539static void ast_rtp_change_source(struct ast_rtp_instance *instance)
4540{
4541 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4542 struct ast_srtp *srtp = ast_rtp_instance_get_srtp(instance, 0);
4543 struct ast_srtp *rtcp_srtp = ast_rtp_instance_get_srtp(instance, 1);
4544 unsigned int ssrc = ast_random();
4545
4546 if (rtp->lastts) {
4547 /* We simply set this bit so that the next packet sent will have the marker bit turned on */
4549 }
4550
4551 ast_debug_rtp(3, "(%p) RTP changing ssrc from %u to %u due to a source change\n",
4552 instance, rtp->ssrc, ssrc);
4553
4554 if (srtp) {
4555 ast_debug_rtp(3, "(%p) RTP changing ssrc for SRTP from %u to %u\n",
4556 instance, rtp->ssrc, ssrc);
4557 res_srtp->change_source(srtp, rtp->ssrc, ssrc);
4558 if (rtcp_srtp != srtp) {
4559 res_srtp->change_source(rtcp_srtp, rtp->ssrc, ssrc);
4560 }
4561 }
4562
4563 rtp->ssrc = ssrc;
4564
4565 /* Since the source is changing, we don't know what sequence number to expect next */
4566 rtp->expectedrxseqno = -1;
4567
4568 return;
4569}
4570
4571static void timeval2ntp(struct timeval tv, unsigned int *msw, unsigned int *lsw)
4572{
4573 unsigned int sec, usec, frac;
4574 sec = tv.tv_sec + 2208988800u; /* Sec between 1900 and 1970 */
4575 usec = tv.tv_usec;
4576 /*
4577 * Convert usec to 0.32 bit fixed point without overflow.
4578 *
4579 * = usec * 2^32 / 10^6
4580 * = usec * 2^32 / (2^6 * 5^6)
4581 * = usec * 2^26 / 5^6
4582 *
4583 * The usec value needs 20 bits to represent 999999 usec. So
4584 * splitting the 2^26 to get the most precision using 32 bit
4585 * values gives:
4586 *
4587 * = ((usec * 2^12) / 5^6) * 2^14
4588 *
4589 * Splitting the division into two stages preserves all the
4590 * available significant bits of usec over doing the division
4591 * all at once.
4592 *
4593 * = ((((usec * 2^12) / 5^3) * 2^7) / 5^3) * 2^7
4594 */
4595 frac = ((((usec << 12) / 125) << 7) / 125) << 7;
4596 *msw = sec;
4597 *lsw = frac;
4598}
4599
4600static void ntp2timeval(unsigned int msw, unsigned int lsw, struct timeval *tv)
4601{
4602 tv->tv_sec = msw - 2208988800u;
4603 /* Reverse the sequence in timeval2ntp() */
4604 tv->tv_usec = ((((lsw >> 7) * 125) >> 7) * 125) >> 12;
4605}
4606
4608 unsigned int *lost_packets,
4609 int *fraction_lost)
4610{
4611 unsigned int extended_seq_no;
4612 unsigned int expected_packets;
4613 unsigned int expected_interval;
4614 unsigned int received_interval;
4615 int lost_interval;
4616
4617 /* Compute statistics */
4618 extended_seq_no = rtp->cycles + rtp->lastrxseqno;
4619 expected_packets = extended_seq_no - rtp->seedrxseqno + 1;
4620 if (rtp->rxcount > expected_packets) {
4621 expected_packets += rtp->rxcount - expected_packets;
4622 }
4623 *lost_packets = expected_packets - rtp->rxcount;
4624 expected_interval = expected_packets - rtp->rtcp->expected_prior;
4625 received_interval = rtp->rxcount - rtp->rtcp->received_prior;
4626 if (received_interval > expected_interval) {
4627 /* If we receive some late packets it is possible for the packets
4628 * we received in this interval to exceed the number we expected.
4629 * We update the expected so that the packet loss calculations
4630 * show that no packets are lost.
4631 */
4632 expected_interval = received_interval;
4633 }
4634 lost_interval = expected_interval - received_interval;
4635 if (expected_interval == 0 || lost_interval <= 0) {
4636 *fraction_lost = 0;
4637 } else {
4638 *fraction_lost = (lost_interval << 8) / expected_interval;
4639 }
4640
4641 /* Update RTCP statistics */
4642 rtp->rtcp->received_prior = rtp->rxcount;
4643 rtp->rtcp->expected_prior = expected_packets;
4644
4645 /*
4646 * While rxlost represents the number of packets lost since the last report was sent, for
4647 * the calculations below it should be thought of as a single sample. Thus min/max are the
4648 * lowest/highest sample value seen, and the mean is the average number of packets lost
4649 * between each report. As such rxlost_count only needs to be incremented per report.
4650 */
4651 if (lost_interval <= 0) {
4652 rtp->rtcp->rxlost = 0;
4653 } else {
4654 rtp->rtcp->rxlost = lost_interval;
4655 }
4656 if (rtp->rtcp->rxlost_count == 0) {
4657 rtp->rtcp->minrxlost = rtp->rtcp->rxlost;
4658 }
4659 if (lost_interval && lost_interval < rtp->rtcp->minrxlost) {
4660 rtp->rtcp->minrxlost = rtp->rtcp->rxlost;
4661 }
4662 if (lost_interval > rtp->rtcp->maxrxlost) {
4663 rtp->rtcp->maxrxlost = rtp->rtcp->rxlost;
4664 }
4665
4666 calc_mean_and_standard_deviation(rtp->rtcp->rxlost, &rtp->rtcp->normdev_rxlost,
4667 &rtp->rtcp->stdev_rxlost, &rtp->rtcp->rxlost_count);
4668}
4669
4670static int ast_rtcp_generate_report(struct ast_rtp_instance *instance, unsigned char *rtcpheader,
4671 struct ast_rtp_rtcp_report *rtcp_report, int *sr)
4672{
4673 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4674 int len = 0;
4675 struct timeval now;
4676 unsigned int now_lsw;
4677 unsigned int now_msw;
4678 unsigned int lost_packets;
4679 int fraction_lost;
4680 struct timeval dlsr = { 0, };
4681 struct ast_rtp_rtcp_report_block *report_block = NULL;
4682
4683 if (!rtp || !rtp->rtcp) {
4684 return 0;
4685 }
4686
4687 if (ast_sockaddr_isnull(&rtp->rtcp->them)) { /* This'll stop rtcp for this rtp session */
4688 /* RTCP was stopped. */
4689 return 0;
4690 }
4691
4692 if (!rtcp_report) {
4693 return 1;
4694 }
4695
4696 *sr = rtp->txcount > rtp->rtcp->lastsrtxcount ? 1 : 0;
4697
4698 /* Compute statistics */
4699 calculate_lost_packet_statistics(rtp, &lost_packets, &fraction_lost);
4700 /*
4701 * update_local_mes_stats must be called AFTER
4702 * calculate_lost_packet_statistics
4703 */
4705
4706 gettimeofday(&now, NULL);
4707 rtcp_report->reception_report_count = rtp->themssrc_valid ? 1 : 0;
4708 rtcp_report->ssrc = rtp->ssrc;
4709 rtcp_report->type = *sr ? RTCP_PT_SR : RTCP_PT_RR;
4710 if (*sr) {
4711 rtcp_report->sender_information.ntp_timestamp = now;
4712 rtcp_report->sender_information.rtp_timestamp = rtp->lastts;
4713 rtcp_report->sender_information.packet_count = rtp->txcount;
4714 rtcp_report->sender_information.octet_count = rtp->txoctetcount;
4715 }
4716
4717 if (rtp->themssrc_valid) {
4718 report_block = ast_calloc(1, sizeof(*report_block));
4719 if (!report_block) {
4720 return 1;
4721 }
4722
4723 rtcp_report->report_block[0] = report_block;
4724 report_block->source_ssrc = rtp->themssrc;
4725 report_block->lost_count.fraction = (fraction_lost & 0xff);
4726 report_block->lost_count.packets = (lost_packets & 0xffffff);
4727 report_block->highest_seq_no = (rtp->cycles | (rtp->lastrxseqno & 0xffff));
4728 report_block->ia_jitter = (unsigned int)rtp->rxjitter_samples;
4729 report_block->lsr = rtp->rtcp->themrxlsr;
4730 /* If we haven't received an SR report, DLSR should be 0 */
4731 if (!ast_tvzero(rtp->rtcp->rxlsr)) {
4732 timersub(&now, &rtp->rtcp->rxlsr, &dlsr);
4733 report_block->dlsr = (((dlsr.tv_sec * 1000) + (dlsr.tv_usec / 1000)) * 65536) / 1000;
4734 }
4735 }
4736 timeval2ntp(rtcp_report->sender_information.ntp_timestamp, &now_msw, &now_lsw);
4737 put_unaligned_uint32(rtcpheader + 4, htonl(rtcp_report->ssrc)); /* Our SSRC */
4738 len += 8;
4739 if (*sr) {
4740 put_unaligned_uint32(rtcpheader + len, htonl(now_msw)); /* now, MSW. gettimeofday() + SEC_BETWEEN_1900_AND_1970 */
4741 put_unaligned_uint32(rtcpheader + len + 4, htonl(now_lsw)); /* now, LSW */
4742 put_unaligned_uint32(rtcpheader + len + 8, htonl(rtcp_report->sender_information.rtp_timestamp));
4743 put_unaligned_uint32(rtcpheader + len + 12, htonl(rtcp_report->sender_information.packet_count));
4744 put_unaligned_uint32(rtcpheader + len + 16, htonl(rtcp_report->sender_information.octet_count));
4745 len += 20;
4746 }
4747 if (report_block) {
4748 put_unaligned_uint32(rtcpheader + len, htonl(report_block->source_ssrc)); /* Their SSRC */
4749 put_unaligned_uint32(rtcpheader + len + 4, htonl((report_block->lost_count.fraction << 24) | report_block->lost_count.packets));
4750 put_unaligned_uint32(rtcpheader + len + 8, htonl(report_block->highest_seq_no));
4751 put_unaligned_uint32(rtcpheader + len + 12, htonl(report_block->ia_jitter));
4752 put_unaligned_uint32(rtcpheader + len + 16, htonl(report_block->lsr));
4753 put_unaligned_uint32(rtcpheader + len + 20, htonl(report_block->dlsr));
4754 len += 24;
4755 }
4756
4757 put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (rtcp_report->reception_report_count << 24)
4758 | ((*sr ? RTCP_PT_SR : RTCP_PT_RR) << 16) | ((len/4)-1)));
4759
4760 return len;
4761}
4762
4764 struct ast_rtp_rtcp_report *rtcp_report, struct ast_sockaddr remote_address, int ice, int sr)
4765{
4766 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4767 struct ast_rtp_rtcp_report_block *report_block = NULL;
4768 RAII_VAR(struct ast_json *, message_blob, NULL, ast_json_unref);
4769
4770 if (!rtp || !rtp->rtcp) {
4771 return 0;
4772 }
4773
4774 if (ast_sockaddr_isnull(&rtp->rtcp->them)) {
4775 return 0;
4776 }
4777
4778 if (!rtcp_report) {
4779 return -1;
4780 }
4781
4782 report_block = rtcp_report->report_block[0];
4783
4784 if (sr) {
4785 rtp->rtcp->txlsr = rtcp_report->sender_information.ntp_timestamp;
4786 rtp->rtcp->sr_count++;
4787 rtp->rtcp->lastsrtxcount = rtp->txcount;
4788 } else {
4789 rtp->rtcp->rr_count++;
4790 }
4791
4792 if (rtcp_debug_test_addr(&rtp->rtcp->them)) {
4793 ast_verbose("* Sent RTCP %s to %s%s\n", sr ? "SR" : "RR",
4794 ast_sockaddr_stringify(&remote_address), ice ? " (via ICE)" : "");
4795 ast_verbose(" Our SSRC: %u\n", rtcp_report->ssrc);
4796 if (sr) {
4797 ast_verbose(" Sent(NTP): %u.%06u\n",
4798 (unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_sec,
4799 (unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_usec);
4800 ast_verbose(" Sent(RTP): %u\n", rtcp_report->sender_information.rtp_timestamp);
4801 ast_verbose(" Sent packets: %u\n", rtcp_report->sender_information.packet_count);
4802 ast_verbose(" Sent octets: %u\n", rtcp_report->sender_information.octet_count);
4803 }
4804 if (report_block) {
4805 int rate = ast_rtp_get_rate(rtp->f.subclass.format);
4806 ast_verbose(" Report block:\n");
4807 ast_verbose(" Their SSRC: %u\n", report_block->source_ssrc);
4808 ast_verbose(" Fraction lost: %d\n", report_block->lost_count.fraction);
4809 ast_verbose(" Cumulative loss: %u\n", report_block->lost_count.packets);
4810 ast_verbose(" Highest seq no: %u\n", report_block->highest_seq_no);
4811 ast_verbose(" IA jitter (samp): %u\n", report_block->ia_jitter);
4812 ast_verbose(" IA jitter (secs): %.6f\n", ast_samp2sec(report_block->ia_jitter, rate));
4813 ast_verbose(" Their last SR: %u\n", report_block->lsr);
4814 ast_verbose(" DLSR: %4.4f (sec)\n\n", (double)(report_block->dlsr / 65536.0));
4815 }
4816 }
4817
4818 message_blob = ast_json_pack("{s: s, s: s, s: f}",
4819 "to", ast_sockaddr_stringify(&remote_address),
4820 "from", rtp->rtcp->local_addr_str,
4821 "mes", rtp->rxmes);
4822
4824 rtcp_report, message_blob);
4825
4826 return 1;
4827}
4828
4829static int ast_rtcp_generate_sdes(struct ast_rtp_instance *instance, unsigned char *rtcpheader,
4830 struct ast_rtp_rtcp_report *rtcp_report)
4831{
4832 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4833 int len = 0;
4834 uint16_t sdes_packet_len_bytes;
4835 uint16_t sdes_packet_len_rounded;
4836
4837 if (!rtp || !rtp->rtcp) {
4838 return 0;
4839 }
4840
4841 if (ast_sockaddr_isnull(&rtp->rtcp->them)) {
4842 return 0;
4843 }
4844
4845 if (!rtcp_report) {
4846 return -1;
4847 }
4848
4849 sdes_packet_len_bytes =
4850 4 + /* RTCP Header */
4851 4 + /* SSRC */
4852 1 + /* Type (CNAME) */
4853 1 + /* Text Length */
4854 AST_UUID_STR_LEN /* Text and NULL terminator */
4855 ;
4856
4857 /* Round to 32 bit boundary */
4858 sdes_packet_len_rounded = (sdes_packet_len_bytes + 3) & ~0x3;
4859
4860 put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (1 << 24) | (RTCP_PT_SDES << 16) | ((sdes_packet_len_rounded / 4) - 1)));
4861 put_unaligned_uint32(rtcpheader + 4, htonl(rtcp_report->ssrc));
4862 rtcpheader[8] = 0x01; /* CNAME */
4863 rtcpheader[9] = AST_UUID_STR_LEN - 1; /* Number of bytes of text */
4864 memcpy(rtcpheader + 10, rtp->cname, AST_UUID_STR_LEN);
4865 len += 10 + AST_UUID_STR_LEN;
4866
4867 /* Padding - Note that we don't set the padded bit on the packet. From
4868 * RFC 3550 Section 6.5:
4869 *
4870 * No length octet follows the null item type octet, but additional null
4871 * octets MUST be included if needd to pad until the next 32-bit
4872 * boundary. Note that this padding is separate from that indicated by
4873 * the P bit in the RTCP header.
4874 *
4875 * These bytes will already be zeroed out during array initialization.
4876 */
4877 len += (sdes_packet_len_rounded - sdes_packet_len_bytes);
4878
4879 return len;
4880}
4881
4882/* Lock instance before calling this if it isn't already
4883 *
4884 * If successful, the overall packet length is returned
4885 * If not, then 0 is returned
4886 */
4887static int ast_rtcp_generate_compound_prefix(struct ast_rtp_instance *instance, unsigned char *rtcpheader,
4888 struct ast_rtp_rtcp_report *report, int *sr)
4889{
4890 int packet_len = 0;
4891 int res;
4892
4893 /* Every RTCP packet needs to be sent out with a SR/RR and SDES prefixing it.
4894 * At the end of this function, rtcpheader should contain both of those packets,
4895 * and will return the length of the overall packet. This can be used to determine
4896 * where further packets can be inserted in the compound packet.
4897 */
4898 res = ast_rtcp_generate_report(instance, rtcpheader, report, sr);
4899
4900 if (res == 0 || res == 1) {
4901 ast_debug_rtcp(1, "(%p) RTCP failed to generate %s report!\n", instance, sr ? "SR" : "RR");
4902 return 0;
4903 }
4904
4905 packet_len += res;
4906
4907 res = ast_rtcp_generate_sdes(instance, rtcpheader + packet_len, report);
4908
4909 if (res == 0 || res == 1) {
4910 ast_debug_rtcp(1, "(%p) RTCP failed to generate SDES!\n", instance);
4911 return 0;
4912 }
4913
4914 return packet_len + res;
4915}
4916
4917static int ast_rtcp_generate_nack(struct ast_rtp_instance *instance, unsigned char *rtcpheader)
4918{
4919 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4920 int packet_len;
4921 int blp_index = -1;
4922 int current_seqno;
4923 unsigned int fci = 0;
4924 size_t remaining_missing_seqno;
4925
4926 if (!rtp || !rtp->rtcp) {
4927 return 0;
4928 }
4929
4930 if (ast_sockaddr_isnull(&rtp->rtcp->them)) {
4931 return 0;
4932 }
4933
4934 current_seqno = rtp->expectedrxseqno;
4935 remaining_missing_seqno = AST_VECTOR_SIZE(&rtp->missing_seqno);
4936 packet_len = 12; /* The header length is 12 (version line, packet source SSRC, media source SSRC) */
4937
4938 /* If there are no missing sequence numbers then don't bother sending a NACK needlessly */
4939 if (!remaining_missing_seqno) {
4940 return 0;
4941 }
4942
4943 /* This iterates through the possible forward sequence numbers seeing which ones we
4944 * have no packet for, adding it to the NACK until we are out of missing packets.
4945 */
4946 while (remaining_missing_seqno) {
4947 int *missing_seqno;
4948
4949 /* On the first entry to this loop blp_index will be -1, so this will become 0
4950 * and the sequence number will be placed into the packet as the PID.
4951 */
4952 blp_index++;
4953
4954 missing_seqno = AST_VECTOR_GET_CMP(&rtp->missing_seqno, current_seqno,
4956 if (missing_seqno) {
4957 /* We hit the max blp size, reset */
4958 if (blp_index >= 17) {
4959 put_unaligned_uint32(rtcpheader + packet_len, htonl(fci));
4960 fci = 0;
4961 blp_index = 0;
4962 packet_len += 4;
4963 }
4964
4965 if (blp_index == 0) {
4966 fci |= (current_seqno << 16);
4967 } else {
4968 fci |= (1 << (blp_index - 1));
4969 }
4970
4971 /* Since we've used a missing sequence number, we're down one */
4972 remaining_missing_seqno--;
4973 }
4974
4975 /* Handle cycling of the sequence number */
4976 current_seqno++;
4977 if (current_seqno == SEQNO_CYCLE_OVER) {
4978 current_seqno = 0;
4979 }
4980 }
4981
4982 put_unaligned_uint32(rtcpheader + packet_len, htonl(fci));
4983 packet_len += 4;
4984
4985 /* Length MUST be 2+n, where n is the number of NACKs. Same as length in words minus 1 */
4986 put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (AST_RTP_RTCP_FMT_NACK << 24)
4987 | (AST_RTP_RTCP_RTPFB << 16) | ((packet_len / 4) - 1)));
4988 put_unaligned_uint32(rtcpheader + 4, htonl(rtp->ssrc));
4989 put_unaligned_uint32(rtcpheader + 8, htonl(rtp->themssrc));
4990
4991 return packet_len;
4992}
4993
4994/*!
4995 * \brief Write a RTCP packet to the far end
4996 *
4997 * \note Decide if we are going to send an SR (with Reception Block) or RR
4998 * RR is sent if we have not sent any rtp packets in the previous interval
4999 *
5000 * Scheduler callback
5001 */
5002static int ast_rtcp_write(const void *data)
5003{
5004 struct ast_rtp_instance *instance = (struct ast_rtp_instance *) data;
5005 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5006 int res;
5007 int sr = 0;
5008 int packet_len = 0;
5009 int ice;
5010 struct ast_sockaddr remote_address = { { 0, } };
5011 unsigned char *rtcpheader;
5012 unsigned char bdata[AST_UUID_STR_LEN + 128] = ""; /* More than enough */
5013 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report, NULL, ao2_cleanup);
5014
5015 if (!rtp || !rtp->rtcp || rtp->rtcp->schedid == -1) {
5016 ao2_ref(instance, -1);
5017 return 0;
5018 }
5019
5020 ao2_lock(instance);
5021 rtcpheader = bdata;
5022 rtcp_report = ast_rtp_rtcp_report_alloc(rtp->themssrc_valid ? 1 : 0);
5023 res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
5024
5025 if (res == 0 || res == 1) {
5026 goto cleanup;
5027 }
5028
5029 packet_len += res;
5030
5031 if (rtp->bundled) {
5032 ast_rtp_instance_get_remote_address(instance, &remote_address);
5033 } else {
5034 ast_sockaddr_copy(&remote_address, &rtp->rtcp->them);
5035 }
5036
5037 res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len, 0, &remote_address, &ice);
5038 if (res < 0) {
5039 ast_log(LOG_ERROR, "RTCP %s transmission error to %s, rtcp halted %s\n",
5040 sr ? "SR" : "RR",
5042 strerror(errno));
5043 res = 0;
5044 } else {
5045 ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, remote_address, ice, sr);
5046 }
5047
5048cleanup:
5049 ao2_unlock(instance);
5050
5051 if (!res) {
5052 /*
5053 * Not being rescheduled.
5054 */
5055 rtp->rtcp->schedid = -1;
5056 ao2_ref(instance, -1);
5057 }
5058
5059 return res;
5060}
5061
5062static void put_unaligned_time24(void *p, uint32_t time_msw, uint32_t time_lsw)
5063{
5064 unsigned char *cp = p;
5065 uint32_t datum;
5066
5067 /* Convert the time to 6.18 format */
5068 datum = (time_msw << 18) & 0x00fc0000;
5069 datum |= (time_lsw >> 14) & 0x0003ffff;
5070
5071 cp[0] = datum >> 16;
5072 cp[1] = datum >> 8;
5073 cp[2] = datum;
5074}
5075
5076/*! \pre instance is locked */
5077static int rtp_raw_write(struct ast_rtp_instance *instance, struct ast_frame *frame, int codec)
5078{
5079 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5080 int pred, mark = 0;
5081 unsigned int ms = calc_txstamp(rtp, &frame->delivery);
5082 struct ast_sockaddr remote_address = { {0,} };
5083 int rate = ast_rtp_get_rate(frame->subclass.format) / 1000;
5084 unsigned int seqno;
5085#ifdef TEST_FRAMEWORK
5086 struct ast_rtp_engine_test *test = ast_rtp_instance_get_test(instance);
5087#endif
5088
5090 frame->samples /= 2;
5091 }
5092
5093 if (rtp->sending_digit) {
5094 return 0;
5095 }
5096
5097#ifdef TEST_FRAMEWORK
5098 if (test && test->send_report) {
5099 test->send_report = 0;
5100 ast_rtcp_write(instance);
5101 return 0;
5102 }
5103#endif
5104
5105 if (frame->frametype == AST_FRAME_VOICE) {
5106 pred = rtp->lastts + frame->samples;
5107
5108 /* Re-calculate last TS */
5109 rtp->lastts = rtp->lastts + ms * rate;
5110 if (ast_tvzero(frame->delivery)) {
5111 /* If this isn't an absolute delivery time, Check if it is close to our prediction,
5112 and if so, go with our prediction */
5113 if (abs((int)rtp->lastts - pred) < MAX_TIMESTAMP_SKEW) {
5114 rtp->lastts = pred;
5115 } else {
5116 ast_debug_rtp(3, "(%p) RTP audio difference is %d, ms is %u\n",
5117 instance, abs((int)rtp->lastts - pred), ms);
5118 mark = 1;
5119 }
5120 }
5121 } else if (frame->frametype == AST_FRAME_VIDEO) {
5122 mark = frame->subclass.frame_ending;
5123 pred = rtp->lastovidtimestamp + frame->samples;
5124 /* Re-calculate last TS */
5125 rtp->lastts = rtp->lastts + ms * 90;
5126 /* If it's close to our prediction, go for it */
5127 if (ast_tvzero(frame->delivery)) {
5128 if (abs((int)rtp->lastts - pred) < 7200) {
5129 rtp->lastts = pred;
5130 rtp->lastovidtimestamp += frame->samples;
5131 } else {
5132 ast_debug_rtp(3, "(%p) RTP video difference is %d, ms is %u (%u), pred/ts/samples %u/%d/%d\n",
5133 instance, abs((int)rtp->lastts - pred), ms, ms * 90, rtp->lastts, pred, frame->samples);
5134 rtp->lastovidtimestamp = rtp->lastts;
5135 }
5136 }
5137 } else {
5138 pred = rtp->lastotexttimestamp + frame->samples;
5139 /* Re-calculate last TS */
5140 rtp->lastts = rtp->lastts + ms;
5141 /* If it's close to our prediction, go for it */
5142 if (ast_tvzero(frame->delivery)) {
5143 if (abs((int)rtp->lastts - pred) < 7200) {
5144 rtp->lastts = pred;
5145 rtp->lastotexttimestamp += frame->samples;
5146 } else {
5147 ast_debug_rtp(3, "(%p) RTP other difference is %d, ms is %u, pred/ts/samples %u/%d/%d\n",
5148 instance, abs((int)rtp->lastts - pred), ms, rtp->lastts, pred, frame->samples);
5149 rtp->lastotexttimestamp = rtp->lastts;
5150 }
5151 }
5152 }
5153
5154 /* If we have been explicitly told to set the marker bit then do so */
5156 mark = 1;
5158 }
5159
5160 /* If the timestamp for non-digt packets has moved beyond the timestamp for digits, update the digit timestamp */
5161 if (rtp->lastts > rtp->lastdigitts) {
5162 rtp->lastdigitts = rtp->lastts;
5163 }
5164
5165 /* Assume that the sequence number we expect to use is what will be used until proven otherwise */
5166 seqno = rtp->seqno;
5167
5168 /* If the frame contains sequence number information use it to influence our sequence number */
5170 if (rtp->expectedseqno != -1) {
5171 /* Determine where the frame from the core is in relation to where we expected */
5172 int difference = frame->seqno - rtp->expectedseqno;
5173
5174 /* If there is a substantial difference then we've either got packets really out
5175 * of order, or the source is RTP and it has cycled. If this happens we resync
5176 * the sequence number adjustments to this frame. If we also have packet loss
5177 * things won't be reflected correctly but it will sort itself out after a bit.
5178 */
5179 if (abs(difference) > 100) {
5180 difference = 0;
5181 }
5182
5183 /* Adjust the sequence number being used for this packet accordingly */
5184 seqno += difference;
5185
5186 if (difference >= 0) {
5187 /* This frame is on time or in the future */
5188 rtp->expectedseqno = frame->seqno + 1;
5189 rtp->seqno += difference;
5190 }
5191 } else {
5192 /* This is the first frame with sequence number we've seen, so start keeping track */
5193 rtp->expectedseqno = frame->seqno + 1;
5194 }
5195 } else {
5196 rtp->expectedseqno = -1;
5197 }
5198
5200 rtp->lastts = frame->ts * rate;
5201 }
5202
5203 ast_rtp_instance_get_remote_address(instance, &remote_address);
5204
5205 /* If we know the remote address construct a packet and send it out */
5206 if (!ast_sockaddr_isnull(&remote_address)) {
5207 int hdrlen = 12;
5208 int res;
5209 int ice;
5210 int ext = 0;
5211 int abs_send_time_id;
5212 int packet_len;
5213 unsigned char *rtpheader;
5214
5215 /* If the abs-send-time extension has been negotiated determine how much space we need */
5217 if (abs_send_time_id != -1) {
5218 /* 4 bytes for the shared information, 1 byte for identifier, 3 bytes for abs-send-time */
5219 hdrlen += 8;
5220 ext = 1;
5221 }
5222
5223 packet_len = frame->datalen + hdrlen;
5224 rtpheader = (unsigned char *)(frame->data.ptr - hdrlen);
5225
5226 put_unaligned_uint32(rtpheader, htonl((2 << 30) | (ext << 28) | (codec << 16) | (seqno) | (mark << 23)));
5227 put_unaligned_uint32(rtpheader + 4, htonl(rtp->lastts));
5228 put_unaligned_uint32(rtpheader + 8, htonl(rtp->ssrc));
5229
5230 /* We assume right now that we will only ever have the abs-send-time extension in the packet
5231 * which simplifies things a bit.
5232 */
5233 if (abs_send_time_id != -1) {
5234 unsigned int now_msw;
5235 unsigned int now_lsw;
5236
5237 /* This happens before being placed into the retransmission buffer so that when we
5238 * retransmit we only have to update the timestamp, not everything else.
5239 */
5240 put_unaligned_uint32(rtpheader + 12, htonl((0xBEDE << 16) | 1));
5241 rtpheader[16] = (abs_send_time_id << 4) | 2;
5242
5243 timeval2ntp(ast_tvnow(), &now_msw, &now_lsw);
5244 put_unaligned_time24(rtpheader + 17, now_msw, now_lsw);
5245 }
5246
5247 /* If retransmissions are enabled, we need to store this packet for future use */
5248 if (rtp->send_buffer) {
5249 struct ast_rtp_rtcp_nack_payload *payload;
5250
5251 payload = ast_malloc(sizeof(*payload) + packet_len);
5252 if (payload) {
5253 payload->size = packet_len;
5254 memcpy(payload->buf, rtpheader, packet_len);
5255 if (ast_data_buffer_put(rtp->send_buffer, rtp->seqno, payload) == -1) {
5256 ast_free(payload);
5257 }
5258 }
5259 }
5260
5261 res = rtp_sendto(instance, (void *)rtpheader, packet_len, 0, &remote_address, &ice);
5262 if (res < 0) {
5264 ast_debug_rtp(1, "(%p) RTP transmission error of packet %d to %s: %s\n",
5265 instance, rtp->seqno,
5266 ast_sockaddr_stringify(&remote_address),
5267 strerror(errno));
5269 /* Only give this error message once if we are not RTP debugging */
5271 ast_debug(0, "(%p) RTP NAT: Can't write RTP to private address %s, waiting for other end to send audio...\n",
5272 instance, ast_sockaddr_stringify(&remote_address));
5274 }
5275 } else {
5276 if (rtp->rtcp && rtp->rtcp->schedid < 0) {
5277 ast_debug_rtcp(2, "(%s) RTCP starting transmission in %u ms\n",
5279 ao2_ref(instance, +1);
5281 if (rtp->rtcp->schedid < 0) {
5282 ao2_ref(instance, -1);
5283 ast_log(LOG_WARNING, "scheduling RTCP transmission failed.\n");
5284 }
5285 }
5286 }
5287
5288 if (rtp_debug_test_addr(&remote_address)) {
5289 ast_verbose("Sent RTP packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
5290 ast_sockaddr_stringify(&remote_address),
5291 ice ? " (via ICE)" : "",
5292 codec, rtp->seqno, rtp->lastts, res - hdrlen);
5293 }
5294 }
5295
5296 /* If the sequence number that has been used doesn't match what we expected then this is an out of
5297 * order late packet, so we don't need to increment as we haven't yet gotten the expected frame from
5298 * the core.
5299 */
5300 if (seqno == rtp->seqno) {
5301 rtp->seqno++;
5302 }
5303
5304 return 0;
5305}
5306
5307static struct ast_frame *red_t140_to_red(struct rtp_red *red)
5308{
5309 unsigned char *data = red->t140red.data.ptr;
5310 int len = 0;
5311 int i;
5312
5313 /* replace most aged generation */
5314 if (red->len[0]) {
5315 for (i = 1; i < red->num_gen+1; i++)
5316 len += red->len[i];
5317
5318 memmove(&data[red->hdrlen], &data[red->hdrlen+red->len[0]], len);
5319 }
5320
5321 /* Store length of each generation and primary data length*/
5322 for (i = 0; i < red->num_gen; i++)
5323 red->len[i] = red->len[i+1];
5324 red->len[i] = red->t140.datalen;
5325
5326 /* write each generation length in red header */
5327 len = red->hdrlen;
5328 for (i = 0; i < red->num_gen; i++) {
5329 len += data[i*4+3] = red->len[i];
5330 }
5331
5332 /* add primary data to buffer */
5333 memcpy(&data[len], red->t140.data.ptr, red->t140.datalen);
5334 red->t140red.datalen = len + red->t140.datalen;
5335
5336 /* no primary data and no generations to send */
5337 if (len == red->hdrlen && !red->t140.datalen) {
5338 return NULL;
5339 }
5340
5341 /* reset t.140 buffer */
5342 red->t140.datalen = 0;
5343
5344 return &red->t140red;
5345}
5346
5347static void rtp_write_rtcp_fir(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_sockaddr *remote_address)
5348{
5349 unsigned char *rtcpheader;
5350 unsigned char bdata[1024];
5351 int packet_len = 0;
5352 int fir_len = 20;
5353 int ice;
5354 int res;
5355 int sr;
5356 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report, NULL, ao2_cleanup);
5357
5358 if (!rtp || !rtp->rtcp) {
5359 return;
5360 }
5361
5362 if (ast_sockaddr_isnull(&rtp->rtcp->them) || rtp->rtcp->schedid < 0) {
5363 /*
5364 * RTCP was stopped.
5365 */
5366 return;
5367 }
5368
5369 if (!rtp->themssrc_valid) {
5370 /* We don't know their SSRC value so we don't know who to update. */
5371 return;
5372 }
5373
5374 /* Prepare RTCP FIR (PT=206, FMT=4) */
5375 rtp->rtcp->firseq++;
5376 if(rtp->rtcp->firseq == 256) {
5377 rtp->rtcp->firseq = 0;
5378 }
5379
5380 rtcpheader = bdata;
5381
5382 ao2_lock(instance);
5383 rtcp_report = ast_rtp_rtcp_report_alloc(rtp->themssrc_valid ? 1 : 0);
5384 res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
5385
5386 if (res == 0 || res == 1) {
5387 ao2_unlock(instance);
5388 return;
5389 }
5390
5391 packet_len += res;
5392
5393 put_unaligned_uint32(rtcpheader + packet_len + 0, htonl((2 << 30) | (4 << 24) | (RTCP_PT_PSFB << 16) | ((fir_len/4)-1)));
5394 put_unaligned_uint32(rtcpheader + packet_len + 4, htonl(rtp->ssrc));
5395 put_unaligned_uint32(rtcpheader + packet_len + 8, htonl(rtp->themssrc));
5396 put_unaligned_uint32(rtcpheader + packet_len + 12, htonl(rtp->themssrc)); /* FCI: SSRC */
5397 put_unaligned_uint32(rtcpheader + packet_len + 16, htonl(rtp->rtcp->firseq << 24)); /* FCI: Sequence number */
5398 res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len + fir_len, 0, rtp->bundled ? remote_address : &rtp->rtcp->them, &ice);
5399 if (res < 0) {
5400 ast_log(LOG_ERROR, "RTCP FIR transmission error: %s\n", strerror(errno));
5401 } else {
5402 ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, rtp->bundled ? *remote_address : rtp->rtcp->them, ice, sr);
5403 }
5404
5405 ao2_unlock(instance);
5406}
5407
5408static void rtp_write_rtcp_psfb(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_frame *frame, struct ast_sockaddr *remote_address)
5409{
5410 struct ast_rtp_rtcp_feedback *feedback = frame->data.ptr;
5411 unsigned char *rtcpheader;
5412 unsigned char bdata[1024];
5413 int remb_len = 24;
5414 int ice;
5415 int res;
5416 int sr = 0;
5417 int packet_len = 0;
5418 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report, NULL, ao2_cleanup);
5419
5420 if (feedback->fmt != AST_RTP_RTCP_FMT_REMB) {
5421 ast_debug_rtcp(1, "(%p) RTCP provided feedback frame of format %d to write, but only REMB is supported\n",
5422 instance, feedback->fmt);
5423 return;
5424 }
5425
5426 if (!rtp || !rtp->rtcp) {
5427 return;
5428 }
5429
5430 /* If REMB support is not enabled don't send this RTCP packet */
5432 ast_debug_rtcp(1, "(%p) RTCP provided feedback REMB report to write, but REMB support not enabled\n",
5433 instance);
5434 return;
5435 }
5436
5437 if (ast_sockaddr_isnull(&rtp->rtcp->them) || rtp->rtcp->schedid < 0) {
5438 /*
5439 * RTCP was stopped.
5440 */
5441 return;
5442 }
5443
5444 rtcpheader = bdata;
5445
5446 ao2_lock(instance);
5447 rtcp_report = ast_rtp_rtcp_report_alloc(rtp->themssrc_valid ? 1 : 0);
5448 res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
5449
5450 if (res == 0 || res == 1) {
5451 ao2_unlock(instance);
5452 return;
5453 }
5454
5455 packet_len += res;
5456
5457 put_unaligned_uint32(rtcpheader + packet_len + 0, htonl((2 << 30) | (AST_RTP_RTCP_FMT_REMB << 24) | (RTCP_PT_PSFB << 16) | ((remb_len/4)-1)));
5458 put_unaligned_uint32(rtcpheader + packet_len + 4, htonl(rtp->ssrc));
5459 put_unaligned_uint32(rtcpheader + packet_len + 8, htonl(0)); /* Per the draft, this should always be 0 */
5460 put_unaligned_uint32(rtcpheader + packet_len + 12, htonl(('R' << 24) | ('E' << 16) | ('M' << 8) | ('B'))); /* Unique identifier 'R' 'E' 'M' 'B' */
5461 put_unaligned_uint32(rtcpheader + packet_len + 16, htonl((1 << 24) | (feedback->remb.br_exp << 18) | (feedback->remb.br_mantissa))); /* Number of SSRCs / BR Exp / BR Mantissa */
5462 put_unaligned_uint32(rtcpheader + packet_len + 20, htonl(rtp->ssrc)); /* The SSRC this feedback message applies to */
5463 res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len + remb_len, 0, rtp->bundled ? remote_address : &rtp->rtcp->them, &ice);
5464 if (res < 0) {
5465 ast_log(LOG_ERROR, "RTCP PSFB transmission error: %s\n", strerror(errno));
5466 } else {
5467 ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, rtp->bundled ? *remote_address : rtp->rtcp->them, ice, sr);
5468 }
5469
5470 ao2_unlock(instance);
5471}
5472
5473/*! \pre instance is locked */
5474static int ast_rtp_write(struct ast_rtp_instance *instance, struct ast_frame *frame)
5475{
5476 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5477 struct ast_sockaddr remote_address = { {0,} };
5478 struct ast_format *format;
5479 int codec;
5480
5481 ast_rtp_instance_get_remote_address(instance, &remote_address);
5482
5483 /* If we don't actually know the remote address don't even bother doing anything */
5484 if (ast_sockaddr_isnull(&remote_address)) {
5485 ast_debug_rtp(1, "(%p) RTP no remote address on instance, so dropping frame\n", instance);
5486 return 0;
5487 }
5488
5489 /* VP8: is this a request to send a RTCP FIR? */
5491 rtp_write_rtcp_fir(instance, rtp, &remote_address);
5492 return 0;
5493 } else if (frame->frametype == AST_FRAME_RTCP) {
5494 if (frame->subclass.integer == AST_RTP_RTCP_PSFB) {
5495 rtp_write_rtcp_psfb(instance, rtp, frame, &remote_address);
5496 }
5497 return 0;
5498 }
5499
5500 /* If there is no data length we can't very well send the packet */
5501 if (!frame->datalen) {
5502 ast_debug_rtp(1, "(%p) RTP received frame with no data for instance, so dropping frame\n", instance);
5503 return 0;
5504 }
5505
5506 /* If the packet is not one our RTP stack supports bail out */
5507 if (frame->frametype != AST_FRAME_VOICE && frame->frametype != AST_FRAME_VIDEO && frame->frametype != AST_FRAME_TEXT) {
5508 ast_log(LOG_WARNING, "RTP can only send voice, video, and text\n");
5509 return -1;
5510 }
5511
5512 if (rtp->red) {
5513 /* return 0; */
5514 /* no primary data or generations to send */
5515 if ((frame = red_t140_to_red(rtp->red)) == NULL)
5516 return 0;
5517 }
5518
5519 /* Grab the subclass and look up the payload we are going to use */
5521 1, frame->subclass.format, 0);
5522 if (codec < 0) {
5523 ast_log(LOG_WARNING, "Don't know how to send format %s packets with RTP\n",
5525 return -1;
5526 }
5527
5528 /* Note that we do not increase the ref count here as this pointer
5529 * will not be held by any thing explicitly. The format variable is
5530 * merely a convenience reference to frame->subclass.format */
5531 format = frame->subclass.format;
5533 /* Oh dear, if the format changed we will have to set up a new smoother */
5534 ast_debug_rtp(1, "(%s) RTP ooh, format changed from %s to %s\n",
5538 ao2_replace(rtp->lasttxformat, format);
5539 if (rtp->smoother) {
5541 rtp->smoother = NULL;
5542 }
5543 }
5544
5545 /* If no smoother is present see if we have to set one up */
5546 if (!rtp->smoother && ast_format_can_be_smoothed(format)) {
5547 unsigned int smoother_flags = ast_format_get_smoother_flags(format);
5548 unsigned int framing_ms = ast_rtp_codecs_get_framing(ast_rtp_instance_get_codecs(instance));
5549
5550 if (!framing_ms && (smoother_flags & AST_SMOOTHER_FLAG_FORCED)) {
5551 framing_ms = ast_format_get_default_ms(format);
5552 }
5553
5554 if (framing_ms) {
5556 if (!rtp->smoother) {
5557 ast_log(LOG_WARNING, "Unable to create smoother: format %s ms: %u len: %u\n",
5558 ast_format_get_name(format), framing_ms, ast_format_get_minimum_bytes(format));
5559 return -1;
5560 }
5561 ast_smoother_set_flags(rtp->smoother, smoother_flags);
5562 }
5563 }
5564
5565 /* Feed audio frames into the actual function that will create a frame and send it */
5566 if (rtp->smoother) {
5567 struct ast_frame *f;
5568
5570 ast_smoother_feed_be(rtp->smoother, frame);
5571 } else {
5572 ast_smoother_feed(rtp->smoother, frame);
5573 }
5574
5575 while ((f = ast_smoother_read(rtp->smoother)) && (f->data.ptr)) {
5576 rtp_raw_write(instance, f, codec);
5577 }
5578 } else {
5579 int hdrlen = 12;
5580 struct ast_frame *f = NULL;
5581
5582 if (frame->offset < hdrlen) {
5583 f = ast_frdup(frame);
5584 } else {
5585 f = frame;
5586 }
5587 if (f->data.ptr) {
5588 rtp_raw_write(instance, f, codec);
5589 }
5590 if (f != frame) {
5591 ast_frfree(f);
5592 }
5593
5594 }
5595
5596 return 0;
5597}
5598
5599static void calc_rxstamp_and_jitter(struct timeval *tv,
5600 struct ast_rtp *rtp, unsigned int rx_rtp_ts,
5601 int mark)
5602{
5603 int rate = ast_rtp_get_rate(rtp->f.subclass.format);
5604
5605 double jitter = 0.0;
5606 double prev_jitter = 0.0;
5607 struct timeval now;
5608 struct timeval tmp;
5609 double rxnow;
5610 double arrival_sec;
5611 unsigned int arrival;
5612 int transit;
5613 int d;
5614
5615 gettimeofday(&now,NULL);
5616
5617 if (rtp->rxcount == 1 || mark) {
5618 rtp->rxstart = ast_tv2double(&now);
5619 rtp->remote_seed_rx_rtp_ts = rx_rtp_ts;
5620
5621 /*
5622 * "tv" is placed in the received frame's
5623 * "delivered" field and when this frame is
5624 * sent out again on the other side, it's
5625 * used to calculate the timestamp on the
5626 * outgoing RTP packets.
5627 *
5628 * NOTE: We need to do integer math here
5629 * because double math rounding issues can
5630 * generate incorrect timestamps.
5631 */
5632 rtp->rxcore = now;
5633 tmp = ast_samp2tv(rx_rtp_ts, rate);
5634 rtp->rxcore = ast_tvsub(rtp->rxcore, tmp);
5635 rtp->rxcore.tv_usec -= rtp->rxcore.tv_usec % 100;
5636 *tv = ast_tvadd(rtp->rxcore, tmp);
5637
5638 ast_debug_rtcp(3, "%s: "
5639 "Seed ts: %u current time: %f\n",
5641 , rx_rtp_ts
5642 , rtp->rxstart
5643 );
5644
5645 return;
5646 }
5647
5648 tmp = ast_samp2tv(rx_rtp_ts, rate);
5649 /* See the comment about "tv" above. Even if
5650 * we don't use this received packet for jitter
5651 * calculations, we still need to set tv so the
5652 * timestamp will be correct when this packet is
5653 * sent out again.
5654 */
5655 *tv = ast_tvadd(rtp->rxcore, tmp);
5656
5657 /*
5658 * The first few packets are generally unstable so let's
5659 * not use them in the calculations.
5660 */
5662 ast_debug_rtcp(3, "%s: Packet %d < %d. Ignoring\n",
5664 , rtp->rxcount
5666 );
5667
5668 return;
5669 }
5670
5671 /*
5672 * First good packet. Capture the start time and timestamp
5673 * but don't actually use this packet for calculation.
5674 */
5676 rtp->rxstart_stable = ast_tv2double(&now);
5677 rtp->remote_seed_rx_rtp_ts_stable = rx_rtp_ts;
5678 rtp->last_transit_time_samples = -rx_rtp_ts;
5679
5680 ast_debug_rtcp(3, "%s: "
5681 "pkt: %5u Stable Seed ts: %u current time: %f\n",
5683 , rtp->rxcount
5684 , rx_rtp_ts
5685 , rtp->rxstart_stable
5686 );
5687
5688 return;
5689 }
5690
5691 /*
5692 * If the current packet isn't in sequence, don't
5693 * use it in any calculations as remote_current_rx_rtp_ts
5694 * is not going to be correct.
5695 */
5696 if (rtp->lastrxseqno != rtp->prevrxseqno + 1) {
5697 ast_debug_rtcp(3, "%s: Current packet seq %d != last packet seq %d + 1. Ignoring\n",
5699 , rtp->lastrxseqno
5700 , rtp->prevrxseqno
5701 );
5702
5703 return;
5704 }
5705
5706 /*
5707 * The following calculations are taken from
5708 * https://www.rfc-editor.org/rfc/rfc3550#appendix-A.8
5709 *
5710 * The received rtp timestamp is the random "seed"
5711 * timestamp chosen by the sender when they sent the
5712 * first packet, plus the number of samples since then.
5713 *
5714 * To get our arrival time in the same units, we
5715 * calculate the time difference in seconds between
5716 * when we received the first packet and when we
5717 * received this packet and convert that to samples.
5718 */
5719 rxnow = ast_tv2double(&now);
5720 arrival_sec = rxnow - rtp->rxstart_stable;
5721 arrival = ast_sec2samp(arrival_sec, rate);
5722
5723 /*
5724 * Now we can use the exact formula in
5725 * https://www.rfc-editor.org/rfc/rfc3550#appendix-A.8 :
5726 *
5727 * int transit = arrival - r->ts;
5728 * int d = transit - s->transit;
5729 * s->transit = transit;
5730 * if (d < 0) d = -d;
5731 * s->jitter += (1./16.) * ((double)d - s->jitter);
5732 *
5733 * Our rx_rtp_ts is their r->ts.
5734 * Our rtp->last_transit_time_samples is their s->transit.
5735 * Our rtp->rxjitter is their s->jitter.
5736 */
5737 transit = arrival - rx_rtp_ts;
5738 d = transit - rtp->last_transit_time_samples;
5739
5740 if (d < 0) {
5741 d = -d;
5742 }
5743
5744 prev_jitter = rtp->rxjitter_samples;
5745 jitter = (1.0/16.0) * (((double)d) - prev_jitter);
5746 rtp->rxjitter_samples = prev_jitter + jitter;
5747
5748 /*
5749 * We need to hang on to jitter in both samples and seconds.
5750 */
5751 rtp->rxjitter = ast_samp2sec(rtp->rxjitter_samples, rate);
5752
5753 ast_debug_rtcp(3, "%s: pkt: %5u "
5754 "Arrival sec: %7.3f Arrival ts: %10u RX ts: %10u "
5755 "Transit samp: %6d Last transit samp: %6d d: %4d "
5756 "Curr jitter: %7.0f(%7.3f) Prev Jitter: %7.0f(%7.3f) New Jitter: %7.0f(%7.3f)\n",
5758 , rtp->rxcount
5759 , arrival_sec
5760 , arrival
5761 , rx_rtp_ts
5762 , transit
5764 , d
5765 , jitter
5766 , ast_samp2sec(jitter, rate)
5767 , prev_jitter
5768 , ast_samp2sec(prev_jitter, rate)
5769 , rtp->rxjitter_samples
5770 , rtp->rxjitter
5771 );
5772
5773 rtp->last_transit_time_samples = transit;
5774
5775 /*
5776 * Update all the stats.
5777 */
5778 if (rtp->rtcp) {
5779 if (rtp->rxjitter > rtp->rtcp->maxrxjitter)
5780 rtp->rtcp->maxrxjitter = rtp->rxjitter;
5781 if (rtp->rtcp->rxjitter_count == 1)
5782 rtp->rtcp->minrxjitter = rtp->rxjitter;
5783 if (rtp->rtcp && rtp->rxjitter < rtp->rtcp->minrxjitter)
5784 rtp->rtcp->minrxjitter = rtp->rxjitter;
5785
5788 &rtp->rtcp->rxjitter_count);
5789 }
5790
5791 return;
5792}
5793
5794static struct ast_frame *create_dtmf_frame(struct ast_rtp_instance *instance, enum ast_frame_type type, int compensate)
5795{
5796 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5797 struct ast_sockaddr remote_address = { {0,} };
5798
5799 ast_rtp_instance_get_remote_address(instance, &remote_address);
5800
5801 if (((compensate && type == AST_FRAME_DTMF_END) || (type == AST_FRAME_DTMF_BEGIN)) && ast_tvcmp(ast_tvnow(), rtp->dtmfmute) < 0) {
5802 ast_debug_rtp(1, "(%p) RTP ignore potential DTMF echo from '%s'\n",
5803 instance, ast_sockaddr_stringify(&remote_address));
5804 rtp->resp = 0;
5805 rtp->dtmfsamples = 0;
5806 return &ast_null_frame;
5807 } else if (type == AST_FRAME_DTMF_BEGIN && rtp->resp == 'X') {
5808 ast_debug_rtp(1, "(%p) RTP ignore flash begin from '%s'\n",
5809 instance, ast_sockaddr_stringify(&remote_address));
5810 rtp->resp = 0;
5811 rtp->dtmfsamples = 0;
5812 return &ast_null_frame;
5813 }
5814
5815 if (rtp->resp == 'X') {
5816 ast_debug_rtp(1, "(%p) RTP creating flash Frame at %s\n",
5817 instance, ast_sockaddr_stringify(&remote_address));
5820 } else {
5821 ast_debug_rtp(1, "(%p) RTP creating %s DTMF Frame: %d (%c), at %s\n",
5822 instance, type == AST_FRAME_DTMF_END ? "END" : "BEGIN",
5823 rtp->resp, rtp->resp,
5824 ast_sockaddr_stringify(&remote_address));
5825 rtp->f.frametype = type;
5826 rtp->f.subclass.integer = rtp->resp;
5827 }
5828 rtp->f.datalen = 0;
5829 rtp->f.samples = 0;
5830 rtp->f.mallocd = 0;
5831 rtp->f.src = "RTP";
5832 AST_LIST_NEXT(&rtp->f, frame_list) = NULL;
5833
5834 return &rtp->f;
5835}
5836
5837static void process_dtmf_rfc2833(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark, struct frame_list *frames)
5838{
5839 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5840 struct ast_sockaddr remote_address = { {0,} };
5841 unsigned int event, event_end, samples;
5842 char resp = 0;
5843 struct ast_frame *f = NULL;
5844
5845 ast_rtp_instance_get_remote_address(instance, &remote_address);
5846
5847 /* Figure out event, event end, and samples */
5848 event = ntohl(*((unsigned int *)(data)));
5849 event >>= 24;
5850 event_end = ntohl(*((unsigned int *)(data)));
5851 event_end <<= 8;
5852 event_end >>= 24;
5853 samples = ntohl(*((unsigned int *)(data)));
5854 samples &= 0xFFFF;
5855
5856 if (rtp_debug_test_addr(&remote_address)) {
5857 ast_verbose("Got RTP RFC2833 from %s (type %-2.2d, seq %-6.6u, ts %-6.6u, len %-6.6d, mark %d, event %08x, end %d, duration %-5.5u) \n",
5858 ast_sockaddr_stringify(&remote_address),
5859 payloadtype, seqno, timestamp, len, (mark?1:0), event, ((event_end & 0x80)?1:0), samples);
5860 }
5861
5862 /* Print out debug if turned on */
5864 ast_debug(0, "- RTP 2833 Event: %08x (len = %d)\n", event, len);
5865
5866 /* Figure out what digit was pressed */
5867 if (event < 10) {
5868 resp = '0' + event;
5869 } else if (event < 11) {
5870 resp = '*';
5871 } else if (event < 12) {
5872 resp = '#';
5873 } else if (event < 16) {
5874 resp = 'A' + (event - 12);
5875 } else if (event < 17) { /* Event 16: Hook flash */
5876 resp = 'X';
5877 } else {
5878 /* Not a supported event */
5879 ast_debug_rtp(1, "(%p) RTP ignoring RTP 2833 Event: %08x. Not a DTMF Digit.\n", instance, event);
5880 return;
5881 }
5882
5884 if (!rtp->last_end_timestamp.is_set || rtp->last_end_timestamp.ts != timestamp || (rtp->resp && rtp->resp != resp)) {
5885 rtp->resp = resp;
5886 rtp->dtmf_timeout = 0;
5888 f->len = 0;
5889 rtp->last_end_timestamp.ts = timestamp;
5890 rtp->last_end_timestamp.is_set = 1;
5892 }
5893 } else {
5894 /* The duration parameter measures the complete
5895 duration of the event (from the beginning) - RFC2833.
5896 Account for the fact that duration is only 16 bits long
5897 (about 8 seconds at 8000 Hz) and can wrap is digit
5898 is hold for too long. */
5899 unsigned int new_duration = rtp->dtmf_duration;
5900 unsigned int last_duration = new_duration & 0xFFFF;
5901
5902 if (last_duration > 64000 && samples < last_duration) {
5903 new_duration += 0xFFFF + 1;
5904 }
5905 new_duration = (new_duration & ~0xFFFF) | samples;
5906
5907 if (event_end & 0x80) {
5908 /* End event */
5909 if (rtp->last_seqno != seqno && (!rtp->last_end_timestamp.is_set || timestamp > rtp->last_end_timestamp.ts)) {
5910 rtp->last_end_timestamp.ts = timestamp;
5911 rtp->last_end_timestamp.is_set = 1;
5912 rtp->dtmf_duration = new_duration;
5913 rtp->resp = resp;
5916 rtp->resp = 0;
5917 rtp->dtmf_duration = rtp->dtmf_timeout = 0;
5920 ast_debug_rtp(1, "(%p) RTP dropping duplicate or out of order DTMF END frame (seqno: %u, ts %u, digit %c)\n",
5921 instance, seqno, timestamp, resp);
5922 }
5923 } else {
5924 /* Begin/continuation */
5925
5926 /* The second portion of the seqno check is to not mistakenly
5927 * stop accepting DTMF if the seqno rolls over beyond
5928 * 65535.
5929 */
5930 if ((rtp->last_seqno > seqno && rtp->last_seqno - seqno < 50)
5931 || (rtp->last_end_timestamp.is_set
5932 && timestamp <= rtp->last_end_timestamp.ts)) {
5933 /* Out of order frame. Processing this can cause us to
5934 * improperly duplicate incoming DTMF, so just drop
5935 * this.
5936 */
5938 ast_debug(0, "Dropping out of order DTMF frame (seqno %u, ts %u, digit %c)\n",
5939 seqno, timestamp, resp);
5940 }
5941 return;
5942 }
5943
5944 if (rtp->resp && rtp->resp != resp) {
5945 /* Another digit already began. End it */
5948 rtp->resp = 0;
5949 rtp->dtmf_duration = rtp->dtmf_timeout = 0;
5951 }
5952
5953 if (rtp->resp) {
5954 /* Digit continues */
5955 rtp->dtmf_duration = new_duration;
5956 } else {
5957 /* New digit began */
5958 rtp->resp = resp;
5960 rtp->dtmf_duration = samples;
5962 }
5963
5964 rtp->dtmf_timeout = timestamp + rtp->dtmf_duration + dtmftimeout;
5965 }
5966
5967 rtp->last_seqno = seqno;
5968 }
5969
5970 rtp->dtmfsamples = samples;
5971
5972 return;
5973}
5974
5975static struct ast_frame *process_dtmf_cisco(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
5976{
5977 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5978 unsigned int event, flags, power;
5979 char resp = 0;
5980 unsigned char seq;
5981 struct ast_frame *f = NULL;
5982
5983 if (len < 4) {
5984 return NULL;
5985 }
5986
5987 /* The format of Cisco RTP DTMF packet looks like next:
5988 +0 - sequence number of DTMF RTP packet (begins from 1,
5989 wrapped to 0)
5990 +1 - set of flags
5991 +1 (bit 0) - flaps by different DTMF digits delimited by audio
5992 or repeated digit without audio???
5993 +2 (+4,+6,...) - power level? (rises from 0 to 32 at begin of tone
5994 then falls to 0 at its end)
5995 +3 (+5,+7,...) - detected DTMF digit (0..9,*,#,A-D,...)
5996 Repeated DTMF information (bytes 4/5, 6/7) is history shifted right
5997 by each new packet and thus provides some redundancy.
5998
5999 Sample of Cisco RTP DTMF packet is (all data in hex):
6000 19 07 00 02 12 02 20 02
6001 showing end of DTMF digit '2'.
6002
6003 The packets
6004 27 07 00 02 0A 02 20 02
6005 28 06 20 02 00 02 0A 02
6006 shows begin of new digit '2' with very short pause (20 ms) after
6007 previous digit '2'. Bit +1.0 flips at begin of new digit.
6008
6009 Cisco RTP DTMF packets comes as replacement of audio RTP packets
6010 so its uses the same sequencing and timestamping rules as replaced
6011 audio packets. Repeat interval of DTMF packets is 20 ms and not rely
6012 on audio framing parameters. Marker bit isn't used within stream of
6013 DTMFs nor audio stream coming immediately after DTMF stream. Timestamps
6014 are not sequential at borders between DTMF and audio streams,
6015 */
6016
6017 seq = data[0];
6018 flags = data[1];
6019 power = data[2];
6020 event = data[3] & 0x1f;
6021
6023 ast_debug(0, "Cisco DTMF Digit: %02x (len=%d, seq=%d, flags=%02x, power=%u, history count=%d)\n", event, len, seq, flags, power, (len - 4) / 2);
6024 if (event < 10) {
6025 resp = '0' + event;
6026 } else if (event < 11) {
6027 resp = '*';
6028 } else if (event < 12) {
6029 resp = '#';
6030 } else if (event < 16) {
6031 resp = 'A' + (event - 12);
6032 } else if (event < 17) {
6033 resp = 'X';
6034 }
6035 if ((!rtp->resp && power) || (rtp->resp && (rtp->resp != resp))) {
6036 rtp->resp = resp;
6037 /* Why we should care on DTMF compensation at reception? */
6039 f = create_dtmf_frame(instance, AST_FRAME_DTMF_BEGIN, 0);
6040 rtp->dtmfsamples = 0;
6041 }
6042 } else if ((rtp->resp == resp) && !power) {
6044 f->samples = rtp->dtmfsamples * (ast_rtp_get_rate(rtp->lastrxformat) / 1000);
6045 rtp->resp = 0;
6046 } else if (rtp->resp == resp) {
6047 rtp->dtmfsamples += 20 * (ast_rtp_get_rate(rtp->lastrxformat) / 1000);
6048 }
6049
6050 rtp->dtmf_timeout = 0;
6051
6052 return f;
6053}
6054
6055static struct ast_frame *process_cn_rfc3389(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
6056{
6057 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
6058
6059 /* Convert comfort noise into audio with various codecs. Unfortunately this doesn't
6060 totally help us out because we don't have an engine to keep it going and we are not
6061 guaranteed to have it every 20ms or anything */
6063 ast_debug(0, "- RTP 3389 Comfort noise event: Format %s (len = %d)\n",
6065 }
6066
6067 if (!ast_test_flag(rtp, FLAG_3389_WARNING)) {
6068 struct ast_sockaddr remote_address = { {0,} };
6069
6070 ast_rtp_instance_get_remote_address(instance, &remote_address);
6071
6072 ast_log(LOG_NOTICE, "Comfort noise support incomplete in Asterisk (RFC 3389). Please turn off on client if possible. Client address: %s\n",
6073 ast_sockaddr_stringify(&remote_address));
6075 }
6076
6077 /* Must have at least one byte */
6078 if (!len) {
6079 return NULL;
6080 }
6081 if (len < 24) {
6082 rtp->f.data.ptr = rtp->rawdata + AST_FRIENDLY_OFFSET;
6083 rtp->f.datalen = len - 1;
6085 memcpy(rtp->f.data.ptr, data + 1, len - 1);
6086 } else {
6087 rtp->f.data.ptr = NULL;
6088 rtp->f.offset = 0;
6089 rtp->f.datalen = 0;
6090 }
6091 rtp->f.frametype = AST_FRAME_CNG;
6092 rtp->f.subclass.integer = data[0] & 0x7f;
6093 rtp->f.samples = 0;
6094 rtp->f.delivery.tv_usec = rtp->f.delivery.tv_sec = 0;
6095
6096 return &rtp->f;
6097}
6098
6099static int update_rtt_stats(struct ast_rtp *rtp, unsigned int lsr, unsigned int dlsr)
6100{
6101 struct timeval now;
6102 struct timeval rtt_tv;
6103 unsigned int msw;
6104 unsigned int lsw;
6105 unsigned int rtt_msw;
6106 unsigned int rtt_lsw;
6107 unsigned int lsr_a;
6108 unsigned int rtt;
6109
6110 gettimeofday(&now, NULL);
6111 timeval2ntp(now, &msw, &lsw);
6112
6113 lsr_a = ((msw & 0x0000ffff) << 16) | ((lsw & 0xffff0000) >> 16);
6114 rtt = lsr_a - lsr - dlsr;
6115 rtt_msw = (rtt & 0xffff0000) >> 16;
6116 rtt_lsw = (rtt & 0x0000ffff);
6117 rtt_tv.tv_sec = rtt_msw;
6118 /*
6119 * Convert 16.16 fixed point rtt_lsw to usec without
6120 * overflow.
6121 *
6122 * = rtt_lsw * 10^6 / 2^16
6123 * = rtt_lsw * (2^6 * 5^6) / 2^16
6124 * = rtt_lsw * 5^6 / 2^10
6125 *
6126 * The rtt_lsw value is in 16.16 fixed point format and 5^6
6127 * requires 14 bits to represent. We have enough space to
6128 * directly do the conversion because there is no integer
6129 * component in rtt_lsw.
6130 */
6131 rtt_tv.tv_usec = (rtt_lsw * 15625) >> 10;
6132 rtp->rtcp->rtt = (double)rtt_tv.tv_sec + ((double)rtt_tv.tv_usec / 1000000);
6133 if (lsr_a - dlsr < lsr) {
6134 return 1;
6135 }
6136
6137 rtp->rtcp->accumulated_transit += rtp->rtcp->rtt;
6138 if (rtp->rtcp->rtt_count == 0 || rtp->rtcp->minrtt > rtp->rtcp->rtt) {
6139 rtp->rtcp->minrtt = rtp->rtcp->rtt;
6140 }
6141 if (rtp->rtcp->maxrtt < rtp->rtcp->rtt) {
6142 rtp->rtcp->maxrtt = rtp->rtcp->rtt;
6143 }
6144
6146 &rtp->rtcp->stdevrtt, &rtp->rtcp->rtt_count);
6147
6148 return 0;
6149}
6150
6151/*!
6152 * \internal
6153 * \brief Update RTCP interarrival jitter stats
6154 */
6155static void update_jitter_stats(struct ast_rtp *rtp, unsigned int ia_jitter)
6156{
6157 int rate = ast_rtp_get_rate(rtp->f.subclass.format);
6158
6159 rtp->rtcp->reported_jitter = ast_samp2sec(ia_jitter, rate);
6160
6161 if (rtp->rtcp->reported_jitter_count == 0) {
6163 }
6164 if (rtp->rtcp->reported_jitter < rtp->rtcp->reported_minjitter) {
6166 }
6167 if (rtp->rtcp->reported_jitter > rtp->rtcp->reported_maxjitter) {
6169 }
6170
6174}
6175
6176/*!
6177 * \internal
6178 * \brief Update RTCP lost packet stats
6179 */
6180static void update_lost_stats(struct ast_rtp *rtp, unsigned int lost_packets)
6181{
6182 double reported_lost;
6183
6184 rtp->rtcp->reported_lost = lost_packets;
6185 reported_lost = (double)rtp->rtcp->reported_lost;
6186 if (rtp->rtcp->reported_lost_count == 0) {
6187 rtp->rtcp->reported_minlost = reported_lost;
6188 }
6189 if (reported_lost < rtp->rtcp->reported_minlost) {
6190 rtp->rtcp->reported_minlost = reported_lost;
6191 }
6192 if (reported_lost > rtp->rtcp->reported_maxlost) {
6193 rtp->rtcp->reported_maxlost = reported_lost;
6194 }
6195
6198}
6199
6200#define RESCALE(in, inmin, inmax, outmin, outmax) ((((in - inmin)/(inmax-inmin))*(outmax-outmin))+outmin)
6201/*!
6202 * \brief Calculate a "media experience score" based on given data
6203 *
6204 * Technically, a mean opinion score (MOS) cannot be calculated without the involvement
6205 * of human eyes (video) and ears (audio). Thus instead we'll approximate an opinion
6206 * using the given parameters, and call it a media experience score.
6207 *
6208 * The tallied score is based upon recommendations and formulas from ITU-T G.107,
6209 * ITU-T G.109, ITU-T G.113, and other various internet sources.
6210 *
6211 * \param instance RTP instance
6212 * \param normdevrtt The average round trip time
6213 * \param normdev_rxjitter The smoothed jitter
6214 * \param stdev_rxjitter The jitter standard deviation value
6215 * \param normdev_rxlost The average number of packets lost since last check
6216 *
6217 * \return A media experience score.
6218 *
6219 * \note The calculations in this function could probably be simplified
6220 * but calculating a MOS using the information available publicly,
6221 * then re-scaling it to 0.0 -> 100.0 makes the process clearer and
6222 * easier to troubleshoot or change.
6223 */
6224static double calc_media_experience_score(struct ast_rtp_instance *instance,
6225 double normdevrtt, double normdev_rxjitter, double stdev_rxjitter,
6226 double normdev_rxlost)
6227{
6228 double r_value;
6229 double pseudo_mos;
6230 double mes = 0;
6231
6232 /*
6233 * While the media itself might be okay, a significant enough delay could make
6234 * for an unpleasant user experience.
6235 *
6236 * Calculate the effective latency by using the given round trip time, and adding
6237 * jitter scaled according to its standard deviation. The scaling is done in order
6238 * to increase jitter's weight since a higher deviation can result in poorer overall
6239 * quality.
6240 */
6241 double effective_latency = (normdevrtt * 1000)
6242 + ((normdev_rxjitter * 2) * (stdev_rxjitter / 3))
6243 + 10;
6244
6245 /*
6246 * Using the defaults for the standard transmission rating factor ("R" value)
6247 * one arrives at 93.2 (see ITU-T G.107 for more details), so we'll use that
6248 * as the starting value and subtract deficiencies that could affect quality.
6249 *
6250 * Calculate the impact of the effective latency. Influence increases with
6251 * values over 160 as the significant "lag" can degrade user experience.
6252 */
6253 if (effective_latency < 160) {
6254 r_value = 93.2 - (effective_latency / 40);
6255 } else {
6256 r_value = 93.2 - (effective_latency - 120) / 10;
6257 }
6258
6259 /* Next evaluate the impact of lost packets */
6260 r_value = r_value - (normdev_rxlost * 2.0);
6261
6262 /*
6263 * Finally convert the "R" value into a opinion/quality score between 1 (really anything
6264 * below 3 should be considered poor) and 4.5 (the highest achievable for VOIP).
6265 */
6266 if (r_value < 0) {
6267 pseudo_mos = 1.0;
6268 } else if (r_value > 100) {
6269 pseudo_mos = 4.5;
6270 } else {
6271 pseudo_mos = 1 + (0.035 * r_value) + (r_value * (r_value - 60) * (100 - r_value) * 0.000007);
6272 }
6273
6274 /*
6275 * We're going to rescale the 0.0->5.0 pseudo_mos to the 0.0->100.0 MES.
6276 * For those ranges, we could actually just multiply the pseudo_mos
6277 * by 20 but we may want to change the scale later.
6278 */
6279 mes = RESCALE(pseudo_mos, 0.0, 5.0, 0.0, 100.0);
6280
6281 return mes;
6282}
6283
6284/*!
6285 * \internal
6286 * \brief Update MES stats based on info received in an SR or RR.
6287 * This is RTP we sent and they received.
6288 */
6289static void update_reported_mes_stats(struct ast_rtp *rtp)
6290{
6291 double mes = calc_media_experience_score(rtp->owner,
6292 rtp->rtcp->normdevrtt,
6293 rtp->rtcp->reported_jitter,
6296
6297 rtp->rtcp->reported_mes = mes;
6298 if (rtp->rtcp->reported_mes_count == 0) {
6299 rtp->rtcp->reported_minmes = mes;
6300 }
6301 if (mes < rtp->rtcp->reported_minmes) {
6302 rtp->rtcp->reported_minmes = mes;
6303 }
6304 if (mes > rtp->rtcp->reported_maxmes) {
6305 rtp->rtcp->reported_maxmes = mes;
6306 }
6307
6310
6311 ast_debug_rtcp(2, "%s: rtt: %.9f j: %.9f sjh: %.9f lost: %.9f mes: %4.1f\n",
6313 rtp->rtcp->normdevrtt,
6314 rtp->rtcp->reported_jitter,
6316 rtp->rtcp->reported_normdev_lost, mes);
6317}
6318
6319/*!
6320 * \internal
6321 * \brief Update MES stats based on info we will send in an SR or RR.
6322 * This is RTP they sent and we received.
6323 */
6324static void update_local_mes_stats(struct ast_rtp *rtp)
6325{
6327 rtp->rtcp->normdevrtt,
6328 rtp->rxjitter,
6329 rtp->rtcp->stdev_rxjitter,
6330 rtp->rtcp->normdev_rxlost);
6331
6332 if (rtp->rtcp->rxmes_count == 0) {
6333 rtp->rtcp->minrxmes = rtp->rxmes;
6334 }
6335 if (rtp->rxmes < rtp->rtcp->minrxmes) {
6336 rtp->rtcp->minrxmes = rtp->rxmes;
6337 }
6338 if (rtp->rxmes > rtp->rtcp->maxrxmes) {
6339 rtp->rtcp->maxrxmes = rtp->rxmes;
6340 }
6341
6343 &rtp->rtcp->stdev_rxmes, &rtp->rtcp->rxmes_count);
6344
6345 ast_debug_rtcp(2, " %s: rtt: %.9f j: %.9f sjh: %.9f lost: %.9f mes: %4.1f\n",
6347 rtp->rtcp->normdevrtt,
6348 rtp->rxjitter,
6349 rtp->rtcp->stdev_rxjitter,
6350 rtp->rtcp->normdev_rxlost, rtp->rxmes);
6351}
6352
6353/*! \pre instance is locked */
6355 struct ast_rtp *rtp, unsigned int ssrc, int source)
6356{
6357 int index;
6358
6359 if (!AST_VECTOR_SIZE(&rtp->ssrc_mapping)) {
6360 /* This instance is not bundled */
6361 return instance;
6362 }
6363
6364 /* Find the bundled child instance */
6365 for (index = 0; index < AST_VECTOR_SIZE(&rtp->ssrc_mapping); ++index) {
6366 struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&rtp->ssrc_mapping, index);
6367 unsigned int mapping_ssrc = source ? ast_rtp_get_ssrc(mapping->instance) : mapping->ssrc;
6368
6369 if (mapping->ssrc_valid && mapping_ssrc == ssrc) {
6370 return mapping->instance;
6371 }
6372 }
6373
6374 /* Does the SSRC match the bundled parent? */
6375 if (rtp->themssrc_valid && rtp->themssrc == ssrc) {
6376 return instance;
6377 }
6378 return NULL;
6379}
6380
6381/*! \pre instance is locked */
6383 struct ast_rtp *rtp, unsigned int ssrc)
6384{
6385 return __rtp_find_instance_by_ssrc(instance, rtp, ssrc, 0);
6386}
6387
6388/*! \pre instance is locked */
6390 struct ast_rtp *rtp, unsigned int ssrc)
6391{
6392 return __rtp_find_instance_by_ssrc(instance, rtp, ssrc, 1);
6393}
6394
6395static const char *rtcp_payload_type2str(unsigned int pt)
6396{
6397 const char *str;
6398
6399 switch (pt) {
6400 case RTCP_PT_SR:
6401 str = "Sender Report";
6402 break;
6403 case RTCP_PT_RR:
6404 str = "Receiver Report";
6405 break;
6406 case RTCP_PT_FUR:
6407 /* Full INTRA-frame Request / Fast Update Request */
6408 str = "H.261 FUR";
6409 break;
6410 case RTCP_PT_PSFB:
6411 /* Payload Specific Feed Back */
6412 str = "PSFB";
6413 break;
6414 case RTCP_PT_SDES:
6415 str = "Source Description";
6416 break;
6417 case RTCP_PT_BYE:
6418 str = "BYE";
6419 break;
6420 default:
6421 str = "Unknown";
6422 break;
6423 }
6424 return str;
6425}
6426
6427static const char *rtcp_payload_subtype2str(unsigned int pt, unsigned int subtype)
6428{
6429 switch (pt) {
6430 case AST_RTP_RTCP_RTPFB:
6431 if (subtype == AST_RTP_RTCP_FMT_NACK) {
6432 return "NACK";
6433 }
6434 break;
6435 case RTCP_PT_PSFB:
6436 if (subtype == AST_RTP_RTCP_FMT_REMB) {
6437 return "REMB";
6438 }
6439 break;
6440 default:
6441 break;
6442 }
6443
6444 return NULL;
6445}
6446
6447/*! \pre instance is locked */
6448static int ast_rtp_rtcp_handle_nack(struct ast_rtp_instance *instance, unsigned int *nackdata, unsigned int position,
6449 unsigned int length)
6450{
6451 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
6452 int res = 0;
6453 int blp_index;
6454 int packet_index;
6455 int ice;
6456 struct ast_rtp_rtcp_nack_payload *payload;
6457 unsigned int current_word;
6458 unsigned int pid; /* Packet ID which refers to seqno of lost packet */
6459 unsigned int blp; /* Bitmask of following lost packets */
6460 struct ast_sockaddr remote_address = { {0,} };
6461 int abs_send_time_id;
6462 unsigned int now_msw = 0;
6463 unsigned int now_lsw = 0;
6464 unsigned int packets_not_found = 0;
6465
6466 if (!rtp->send_buffer) {
6467 ast_debug_rtcp(1, "(%p) RTCP tried to handle NACK request, "
6468 "but we don't have a RTP packet storage!\n", instance);
6469 return res;
6470 }
6471
6473 if (abs_send_time_id != -1) {
6474 timeval2ntp(ast_tvnow(), &now_msw, &now_lsw);
6475 }
6476
6477 ast_rtp_instance_get_remote_address(instance, &remote_address);
6478
6479 /*
6480 * We use index 3 because with feedback messages, the FCI (Feedback Control Information)
6481 * does not begin until after the version, packet SSRC, and media SSRC words.
6482 */
6483 for (packet_index = 3; packet_index < length; packet_index++) {
6484 current_word = ntohl(nackdata[position + packet_index]);
6485 pid = current_word >> 16;
6486 /* We know the remote end is missing this packet. Go ahead and send it if we still have it. */
6487 payload = (struct ast_rtp_rtcp_nack_payload *)ast_data_buffer_get(rtp->send_buffer, pid);
6488 if (payload) {
6489 if (abs_send_time_id != -1) {
6490 /* On retransmission we need to update the timestamp within the packet, as it
6491 * is supposed to contain when the packet was actually sent.
6492 */
6493 put_unaligned_time24(payload->buf + 17, now_msw, now_lsw);
6494 }
6495 res += rtp_sendto(instance, payload->buf, payload->size, 0, &remote_address, &ice);
6496 } else {
6497 ast_debug_rtcp(1, "(%p) RTCP received NACK request for RTP packet with seqno %d, "
6498 "but we don't have it\n", instance, pid);
6499 packets_not_found++;
6500 }
6501 /*
6502 * The bitmask. Denoting the least significant bit as 1 and its most significant bit
6503 * as 16, then bit i of the bitmask is set to 1 if the receiver has not received RTP
6504 * packet (pid+i)(modulo 2^16). Otherwise, it is set to 0. We cannot assume bits set
6505 * to 0 after a bit set to 1 have actually been received.
6506 */
6507 blp = current_word & 0xffff;
6508 blp_index = 1;
6509 while (blp) {
6510 if (blp & 1) {
6511 /* Packet (pid + i)(modulo 2^16) is missing too. */
6512 unsigned int seqno = (pid + blp_index) % 65536;
6513 payload = (struct ast_rtp_rtcp_nack_payload *)ast_data_buffer_get(rtp->send_buffer, seqno);
6514 if (payload) {
6515 if (abs_send_time_id != -1) {
6516 put_unaligned_time24(payload->buf + 17, now_msw, now_lsw);
6517 }
6518 res += rtp_sendto(instance, payload->buf, payload->size, 0, &remote_address, &ice);
6519 } else {
6520 ast_debug_rtcp(1, "(%p) RTCP remote end also requested RTP packet with seqno %d, "
6521 "but we don't have it\n", instance, seqno);
6522 packets_not_found++;
6523 }
6524 }
6525 blp >>= 1;
6526 blp_index++;
6527 }
6528 }
6529
6530 if (packets_not_found) {
6531 /* Grow the send buffer based on how many packets were not found in the buffer, but
6532 * enforce a maximum.
6533 */
6535 ast_data_buffer_max(rtp->send_buffer) + packets_not_found));
6536 ast_debug_rtcp(2, "(%p) RTCP send buffer on RTP instance is now at maximum of %zu\n",
6537 instance, ast_data_buffer_max(rtp->send_buffer));
6538 }
6539
6540 return res;
6541}
6542
6543/*
6544 * Unshifted RTCP header bit field masks
6545 */
6546#define RTCP_LENGTH_MASK 0xFFFF
6547#define RTCP_PAYLOAD_TYPE_MASK 0xFF
6548#define RTCP_REPORT_COUNT_MASK 0x1F
6549#define RTCP_PADDING_MASK 0x01
6550#define RTCP_VERSION_MASK 0x03
6551
6552/*
6553 * RTCP header bit field shift offsets
6554 */
6555#define RTCP_LENGTH_SHIFT 0
6556#define RTCP_PAYLOAD_TYPE_SHIFT 16
6557#define RTCP_REPORT_COUNT_SHIFT 24
6558#define RTCP_PADDING_SHIFT 29
6559#define RTCP_VERSION_SHIFT 30
6560
6561#define RTCP_VERSION 2U
6562#define RTCP_VERSION_SHIFTED (RTCP_VERSION << RTCP_VERSION_SHIFT)
6563#define RTCP_VERSION_MASK_SHIFTED (RTCP_VERSION_MASK << RTCP_VERSION_SHIFT)
6564
6565/*
6566 * RTCP first packet record validity header mask and value.
6567 *
6568 * RFC3550 intentionally defines the encoding of RTCP_PT_SR and RTCP_PT_RR
6569 * such that they differ in the least significant bit. Either of these two
6570 * payload types MUST be the first RTCP packet record in a compound packet.
6571 *
6572 * RFC3550 checks the padding bit in the algorithm they use to check the
6573 * RTCP packet for validity. However, we aren't masking the padding bit
6574 * to check since we don't know if it is a compound RTCP packet or not.
6575 */
6576#define RTCP_VALID_MASK (RTCP_VERSION_MASK_SHIFTED | (((RTCP_PAYLOAD_TYPE_MASK & ~0x1)) << RTCP_PAYLOAD_TYPE_SHIFT))
6577#define RTCP_VALID_VALUE (RTCP_VERSION_SHIFTED | (RTCP_PT_SR << RTCP_PAYLOAD_TYPE_SHIFT))
6578
6579#define RTCP_SR_BLOCK_WORD_LENGTH 5
6580#define RTCP_RR_BLOCK_WORD_LENGTH 6
6581#define RTCP_HEADER_SSRC_LENGTH 2
6582#define RTCP_FB_REMB_BLOCK_WORD_LENGTH 4
6583#define RTCP_FB_NACK_BLOCK_WORD_LENGTH 2
6584
6585static struct ast_frame *ast_rtcp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp,
6586 const unsigned char *rtcpdata, size_t size, struct ast_sockaddr *addr)
6587{
6588 struct ast_rtp_instance *transport = instance;
6589 struct ast_rtp *transport_rtp = ast_rtp_instance_get_data(instance);
6590 int len = size;
6591 unsigned int *rtcpheader = (unsigned int *)(rtcpdata);
6592 unsigned int packetwords;
6593 unsigned int position;
6594 unsigned int first_word;
6595 /*! True if we have seen an acceptable SSRC to learn the remote RTCP address */
6596 unsigned int ssrc_seen;
6597 struct ast_rtp_rtcp_report_block *report_block;
6598 struct ast_frame *f = &ast_null_frame;
6599#ifdef TEST_FRAMEWORK
6600 struct ast_rtp_engine_test *test_engine;
6601#endif
6602
6603 /* If this is encrypted then decrypt the payload */
6604 if ((*rtcpheader & 0xC0) && res_srtp && srtp && res_srtp->unprotect(
6605 srtp, rtcpheader, &len, 1 | (srtp_replay_protection << 1)) < 0) {
6606 return &ast_null_frame;
6607 }
6608
6609 packetwords = len / 4;
6610
6611 ast_debug_rtcp(2, "(%s) RTCP got report of %d bytes from %s\n",
6614
6615 /*
6616 * Validate the RTCP packet according to an adapted and slightly
6617 * modified RFC3550 validation algorithm.
6618 */
6619 if (packetwords < RTCP_HEADER_SSRC_LENGTH) {
6620 ast_debug_rtcp(2, "(%s) RTCP %p -- from %s: Frame size (%u words) is too short\n",
6622 transport_rtp, ast_sockaddr_stringify(addr), packetwords);
6623 return &ast_null_frame;
6624 }
6625 position = 0;
6626 first_word = ntohl(rtcpheader[position]);
6627 if ((first_word & RTCP_VALID_MASK) != RTCP_VALID_VALUE) {
6628 ast_debug_rtcp(2, "(%s) RTCP %p -- from %s: Failed first packet validity check\n",
6630 transport_rtp, ast_sockaddr_stringify(addr));
6631 return &ast_null_frame;
6632 }
6633 do {
6634 position += ((first_word >> RTCP_LENGTH_SHIFT) & RTCP_LENGTH_MASK) + 1;
6635 if (packetwords <= position) {
6636 break;
6637 }
6638 first_word = ntohl(rtcpheader[position]);
6639 } while ((first_word & RTCP_VERSION_MASK_SHIFTED) == RTCP_VERSION_SHIFTED);
6640 if (position != packetwords) {
6641 ast_debug_rtcp(2, "(%s) RTCP %p -- from %s: Failed packet version or length check\n",
6643 transport_rtp, ast_sockaddr_stringify(addr));
6644 return &ast_null_frame;
6645 }
6646
6647 /*
6648 * Note: RFC3605 points out that true NAT (vs NAPT) can cause RTCP
6649 * to have a different IP address and port than RTP. Otherwise, when
6650 * strictrtp is enabled we could reject RTCP packets not coming from
6651 * the learned RTP IP address if it is available.
6652 */
6653
6654 /*
6655 * strictrtp safety needs SSRC to match before we use the
6656 * sender's address for symmetrical RTP to send our RTCP
6657 * reports.
6658 *
6659 * If strictrtp is not enabled then claim to have already seen
6660 * a matching SSRC so we'll accept this packet's address for
6661 * symmetrical RTP.
6662 */
6663 ssrc_seen = transport_rtp->strict_rtp_state == STRICT_RTP_OPEN;
6664
6665 position = 0;
6666 while (position < packetwords) {
6667 unsigned int i;
6668 unsigned int pt;
6669 unsigned int rc;
6670 unsigned int ssrc;
6671 /*! True if the ssrc value we have is valid and not garbage because it doesn't exist. */
6672 unsigned int ssrc_valid;
6673 unsigned int length;
6674 unsigned int min_length;
6675 /*! Always use packet source SSRC to find the rtp instance unless explicitly told not to. */
6676 unsigned int use_packet_source = 1;
6677
6678 struct ast_json *message_blob;
6679 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report, NULL, ao2_cleanup);
6680 struct ast_rtp_instance *child;
6681 struct ast_rtp *rtp;
6682 struct ast_rtp_rtcp_feedback *feedback;
6683
6684 i = position;
6685 first_word = ntohl(rtcpheader[i]);
6686 pt = (first_word >> RTCP_PAYLOAD_TYPE_SHIFT) & RTCP_PAYLOAD_TYPE_MASK;
6687 rc = (first_word >> RTCP_REPORT_COUNT_SHIFT) & RTCP_REPORT_COUNT_MASK;
6688 /* RFC3550 says 'length' is the number of words in the packet - 1 */
6689 length = ((first_word >> RTCP_LENGTH_SHIFT) & RTCP_LENGTH_MASK) + 1;
6690
6691 /* Check expected RTCP packet record length */
6692 min_length = RTCP_HEADER_SSRC_LENGTH;
6693 switch (pt) {
6694 case RTCP_PT_SR:
6695 min_length += RTCP_SR_BLOCK_WORD_LENGTH;
6696 /* fall through */
6697 case RTCP_PT_RR:
6698 min_length += (rc * RTCP_RR_BLOCK_WORD_LENGTH);
6699 use_packet_source = 0;
6700 break;
6701 case RTCP_PT_FUR:
6702 break;
6703 case AST_RTP_RTCP_RTPFB:
6704 switch (rc) {
6706 min_length += RTCP_FB_NACK_BLOCK_WORD_LENGTH;
6707 break;
6708 default:
6709 break;
6710 }
6711 use_packet_source = 0;
6712 break;
6713 case RTCP_PT_PSFB:
6714 switch (rc) {
6716 min_length += RTCP_FB_REMB_BLOCK_WORD_LENGTH;
6717 break;
6718 default:
6719 break;
6720 }
6721 break;
6722 case RTCP_PT_SDES:
6723 case RTCP_PT_BYE:
6724 /*
6725 * There may not be a SSRC/CSRC present. The packet is
6726 * useless but still valid if it isn't present.
6727 *
6728 * We don't know what min_length should be so disable the check
6729 */
6730 min_length = length;
6731 break;
6732 default:
6733 ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: %u(%s) skipping record\n",
6734 instance, transport_rtp, ast_sockaddr_stringify(addr), pt, rtcp_payload_type2str(pt));
6735 if (rtcp_debug_test_addr(addr)) {
6736 ast_verbose("\n");
6737 ast_verbose("RTCP from %s: %u(%s) skipping record\n",
6739 }
6740 position += length;
6741 continue;
6742 }
6743 if (length < min_length) {
6744 ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: %u(%s) length field less than expected minimum. Min:%u Got:%u\n",
6745 instance, transport_rtp, ast_sockaddr_stringify(addr), pt, rtcp_payload_type2str(pt),
6746 min_length - 1, length - 1);
6747 return &ast_null_frame;
6748 }
6749
6750 /* Get the RTCP record SSRC if defined for the record */
6751 ssrc_valid = 1;
6752 switch (pt) {
6753 case RTCP_PT_SR:
6754 case RTCP_PT_RR:
6755 rtcp_report = ast_rtp_rtcp_report_alloc(rc);
6756 if (!rtcp_report) {
6757 return &ast_null_frame;
6758 }
6759 rtcp_report->reception_report_count = rc;
6760
6761 ssrc = ntohl(rtcpheader[i + 2]);
6762 rtcp_report->ssrc = ssrc;
6763 break;
6764 case RTCP_PT_FUR:
6765 case RTCP_PT_PSFB:
6766 ssrc = ntohl(rtcpheader[i + 1]);
6767 break;
6768 case AST_RTP_RTCP_RTPFB:
6769 ssrc = ntohl(rtcpheader[i + 2]);
6770 break;
6771 case RTCP_PT_SDES:
6772 case RTCP_PT_BYE:
6773 default:
6774 ssrc = 0;
6775 ssrc_valid = 0;
6776 break;
6777 }
6778
6779 if (rtcp_debug_test_addr(addr)) {
6780 const char *subtype = rtcp_payload_subtype2str(pt, rc);
6781
6782 ast_verbose("\n");
6783 ast_verbose("RTCP from %s\n", ast_sockaddr_stringify(addr));
6784 ast_verbose("PT: %u (%s)\n", pt, rtcp_payload_type2str(pt));
6785 if (subtype) {
6786 ast_verbose("Packet Subtype: %u (%s)\n", rc, subtype);
6787 } else {
6788 ast_verbose("Reception reports: %u\n", rc);
6789 }
6790 ast_verbose("SSRC of sender: %u\n", ssrc);
6791 }
6792
6793 /* Determine the appropriate instance for this */
6794 if (ssrc_valid) {
6795 /*
6796 * Depending on the payload type, either the packet source or media source
6797 * SSRC is used.
6798 */
6799 if (use_packet_source) {
6800 child = rtp_find_instance_by_packet_source_ssrc(transport, transport_rtp, ssrc);
6801 } else {
6802 child = rtp_find_instance_by_media_source_ssrc(transport, transport_rtp, ssrc);
6803 }
6804 if (child && child != transport) {
6805 /*
6806 * It is safe to hold the child lock while holding the parent lock.
6807 * We guarantee that the locking order is always parent->child or
6808 * that the child lock is not held when acquiring the parent lock.
6809 */
6810 ao2_lock(child);
6811 instance = child;
6812 rtp = ast_rtp_instance_get_data(instance);
6813 } else {
6814 /* The child is the parent! We don't need to unlock it. */
6815 child = NULL;
6816 rtp = transport_rtp;
6817 }
6818 } else {
6819 child = NULL;
6820 rtp = transport_rtp;
6821 }
6822
6823 if (ssrc_valid && rtp->themssrc_valid) {
6824 /*
6825 * If the SSRC is 1, we still need to handle RTCP since this could be a
6826 * special case. For example, if we have a unidirectional video stream, the
6827 * SSRC may be set to 1 by the browser (in the case of chromium), and requests
6828 * will still need to be processed so that video can flow as expected. This
6829 * should only be done for PLI and FUR, since there is not a way to get the
6830 * appropriate rtp instance when the SSRC is 1.
6831 */
6832 int exception = (ssrc == 1 && !((pt == RTCP_PT_PSFB && rc == AST_RTP_RTCP_FMT_PLI) || pt == RTCP_PT_FUR));
6833 if ((ssrc != rtp->themssrc && use_packet_source && ssrc != 1)
6834 || exception) {
6835 /*
6836 * Skip over this RTCP record as it does not contain the
6837 * correct SSRC. We should not act upon RTCP records
6838 * for a different stream.
6839 */
6840 position += length;
6841 ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: Skipping record, received SSRC '%u' != expected '%u'\n",
6842 instance, rtp, ast_sockaddr_stringify(addr), ssrc, rtp->themssrc);
6843 if (child) {
6844 ao2_unlock(child);
6845 }
6846 continue;
6847 }
6848 ssrc_seen = 1;
6849 }
6850
6851 if (ssrc_seen && ast_rtp_instance_get_prop(instance, AST_RTP_PROPERTY_NAT)) {
6852 /* Send to whoever sent to us */
6853 if (ast_sockaddr_cmp(&rtp->rtcp->them, addr)) {
6854 ast_sockaddr_copy(&rtp->rtcp->them, addr);
6856 ast_debug(0, "(%p) RTCP NAT: Got RTCP from other end. Now sending to address %s\n",
6857 instance, ast_sockaddr_stringify(addr));
6858 }
6859 }
6860 }
6861
6862 i += RTCP_HEADER_SSRC_LENGTH; /* Advance past header and ssrc */
6863 switch (pt) {
6864 case RTCP_PT_SR:
6865 gettimeofday(&rtp->rtcp->rxlsr, NULL);
6866 rtp->rtcp->themrxlsr = ((ntohl(rtcpheader[i]) & 0x0000ffff) << 16) | ((ntohl(rtcpheader[i + 1]) & 0xffff0000) >> 16);
6867 rtp->rtcp->spc = ntohl(rtcpheader[i + 3]);
6868 rtp->rtcp->soc = ntohl(rtcpheader[i + 4]);
6869
6870 rtcp_report->type = RTCP_PT_SR;
6871 rtcp_report->sender_information.packet_count = rtp->rtcp->spc;
6872 rtcp_report->sender_information.octet_count = rtp->rtcp->soc;
6873 ntp2timeval((unsigned int)ntohl(rtcpheader[i]),
6874 (unsigned int)ntohl(rtcpheader[i + 1]),
6875 &rtcp_report->sender_information.ntp_timestamp);
6876 rtcp_report->sender_information.rtp_timestamp = ntohl(rtcpheader[i + 2]);
6877 if (rtcp_debug_test_addr(addr)) {
6878 ast_verbose("NTP timestamp: %u.%06u\n",
6879 (unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_sec,
6880 (unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_usec);
6881 ast_verbose("RTP timestamp: %u\n", rtcp_report->sender_information.rtp_timestamp);
6882 ast_verbose("SPC: %u\tSOC: %u\n",
6883 rtcp_report->sender_information.packet_count,
6884 rtcp_report->sender_information.octet_count);
6885 }
6887 /* Intentional fall through */
6888 case RTCP_PT_RR:
6889 if (rtcp_report->type != RTCP_PT_SR) {
6890 rtcp_report->type = RTCP_PT_RR;
6891 }
6892
6893 if (rc > 0) {
6894 /* Don't handle multiple reception reports (rc > 1) yet */
6895 report_block = ast_calloc(1, sizeof(*report_block));
6896 if (!report_block) {
6897 if (child) {
6898 ao2_unlock(child);
6899 }
6900 return &ast_null_frame;
6901 }
6902 rtcp_report->report_block[0] = report_block;
6903 report_block->source_ssrc = ntohl(rtcpheader[i]);
6904 report_block->lost_count.packets = ntohl(rtcpheader[i + 1]) & 0x00ffffff;
6905 report_block->lost_count.fraction = ((ntohl(rtcpheader[i + 1]) & 0xff000000) >> 24);
6906 report_block->highest_seq_no = ntohl(rtcpheader[i + 2]);
6907 report_block->ia_jitter = ntohl(rtcpheader[i + 3]);
6908 report_block->lsr = ntohl(rtcpheader[i + 4]);
6909 report_block->dlsr = ntohl(rtcpheader[i + 5]);
6910 if (report_block->lsr) {
6911 int skewed = update_rtt_stats(rtp, report_block->lsr, report_block->dlsr);
6912 if (skewed && rtcp_debug_test_addr(addr)) {
6913 struct timeval now;
6914 unsigned int lsr_now, lsw, msw;
6915 gettimeofday(&now, NULL);
6916 timeval2ntp(now, &msw, &lsw);
6917 lsr_now = (((msw & 0xffff) << 16) | ((lsw & 0xffff0000) >> 16));
6918 ast_verbose("Internal RTCP NTP clock skew detected: "
6919 "lsr=%u, now=%u, dlsr=%u (%u:%03ums), "
6920 "diff=%u\n",
6921 report_block->lsr, lsr_now, report_block->dlsr, report_block->dlsr / 65536,
6922 (report_block->dlsr % 65536) * 1000 / 65536,
6923 report_block->dlsr - (lsr_now - report_block->lsr));
6924 }
6925 }
6926 update_jitter_stats(rtp, report_block->ia_jitter);
6927 update_lost_stats(rtp, report_block->lost_count.packets);
6928 /*
6929 * update_reported_mes_stats must be called AFTER
6930 * update_rtt_stats, update_jitter_stats and
6931 * update_lost_stats.
6932 */
6934
6935 if (rtcp_debug_test_addr(addr)) {
6936 int rate = ast_rtp_get_rate(rtp->f.subclass.format);
6937
6938 ast_verbose(" Fraction lost: %d\n", report_block->lost_count.fraction);
6939 ast_verbose(" Packets lost so far: %u\n", report_block->lost_count.packets);
6940 ast_verbose(" Highest sequence number: %u\n", report_block->highest_seq_no & 0x0000ffff);
6941 ast_verbose(" Sequence number cycles: %u\n", report_block->highest_seq_no >> 16);
6942 ast_verbose(" Interarrival jitter (samp): %u\n", report_block->ia_jitter);
6943 ast_verbose(" Interarrival jitter (secs): %.6f\n", ast_samp2sec(report_block->ia_jitter, rate));
6944 ast_verbose(" Last SR(our NTP): %lu.%010lu\n",(unsigned long)(report_block->lsr) >> 16,((unsigned long)(report_block->lsr) << 16) * 4096);
6945 ast_verbose(" DLSR: %4.4f (sec)\n",(double)report_block->dlsr / 65536.0);
6946 ast_verbose(" RTT: %4.4f(sec)\n", rtp->rtcp->rtt);
6947 ast_verbose(" MES: %4.1f\n", rtp->rtcp->reported_mes);
6948 }
6949 }
6950 /* If and when we handle more than one report block, this should occur outside
6951 * this loop.
6952 */
6953
6954 message_blob = ast_json_pack("{s: s, s: s, s: f, s: f}",
6955 "from", ast_sockaddr_stringify(addr),
6956 "to", transport_rtp->rtcp->local_addr_str,
6957 "rtt", rtp->rtcp->rtt,
6958 "mes", rtp->rtcp->reported_mes);
6960 rtcp_report,
6961 message_blob);
6962 ast_json_unref(message_blob);
6963
6964 /* Return an AST_FRAME_RTCP frame with the ast_rtp_rtcp_report
6965 * object as a its data */
6966 transport_rtp->f.frametype = AST_FRAME_RTCP;
6967 transport_rtp->f.subclass.integer = pt;
6968 transport_rtp->f.data.ptr = rtp->rtcp->frame_buf + AST_FRIENDLY_OFFSET;
6969 memcpy(transport_rtp->f.data.ptr, rtcp_report, sizeof(struct ast_rtp_rtcp_report));
6970 transport_rtp->f.datalen = sizeof(struct ast_rtp_rtcp_report);
6971 if (rc > 0) {
6972 /* There's always a single report block stored, here */
6973 struct ast_rtp_rtcp_report *rtcp_report2;
6974 report_block = transport_rtp->f.data.ptr + transport_rtp->f.datalen + sizeof(struct ast_rtp_rtcp_report_block *);
6975 memcpy(report_block, rtcp_report->report_block[0], sizeof(struct ast_rtp_rtcp_report_block));
6976 rtcp_report2 = (struct ast_rtp_rtcp_report *)transport_rtp->f.data.ptr;
6977 rtcp_report2->report_block[0] = report_block;
6978 transport_rtp->f.datalen += sizeof(struct ast_rtp_rtcp_report_block);
6979 }
6980 transport_rtp->f.offset = AST_FRIENDLY_OFFSET;
6981 transport_rtp->f.samples = 0;
6982 transport_rtp->f.mallocd = 0;
6983 transport_rtp->f.delivery.tv_sec = 0;
6984 transport_rtp->f.delivery.tv_usec = 0;
6985 transport_rtp->f.src = "RTP";
6986 transport_rtp->f.stream_num = rtp->stream_num;
6987 f = &transport_rtp->f;
6988 break;
6989 case AST_RTP_RTCP_RTPFB:
6990 switch (rc) {
6992 /* If retransmissions are not enabled ignore this message */
6993 if (!rtp->send_buffer) {
6994 break;
6995 }
6996
6997 if (rtcp_debug_test_addr(addr)) {
6998 ast_verbose("Received generic RTCP NACK message\n");
6999 }
7000
7001 ast_rtp_rtcp_handle_nack(instance, rtcpheader, position, length);
7002 break;
7003 default:
7004 break;
7005 }
7006 break;
7007 case RTCP_PT_FUR:
7008 /* Handle RTCP FUR as FIR by setting the format to 4 */
7010 case RTCP_PT_PSFB:
7011 switch (rc) {
7014 if (rtcp_debug_test_addr(addr)) {
7015 ast_verbose("Received an RTCP Fast Update Request\n");
7016 }
7017 transport_rtp->f.frametype = AST_FRAME_CONTROL;
7018 transport_rtp->f.subclass.integer = AST_CONTROL_VIDUPDATE;
7019 transport_rtp->f.datalen = 0;
7020 transport_rtp->f.samples = 0;
7021 transport_rtp->f.mallocd = 0;
7022 transport_rtp->f.src = "RTP";
7023 f = &transport_rtp->f;
7024 break;
7026 /* If REMB support is not enabled ignore this message */
7028 break;
7029 }
7030
7031 if (rtcp_debug_test_addr(addr)) {
7032 ast_verbose("Received REMB report\n");
7033 }
7034 transport_rtp->f.frametype = AST_FRAME_RTCP;
7035 transport_rtp->f.subclass.integer = pt;
7036 transport_rtp->f.stream_num = rtp->stream_num;
7037 transport_rtp->f.data.ptr = rtp->rtcp->frame_buf + AST_FRIENDLY_OFFSET;
7038 feedback = transport_rtp->f.data.ptr;
7039 feedback->fmt = rc;
7040
7041 /* We don't actually care about the SSRC information in the feedback message */
7042 first_word = ntohl(rtcpheader[i + 2]);
7043 feedback->remb.br_exp = (first_word >> 18) & ((1 << 6) - 1);
7044 feedback->remb.br_mantissa = first_word & ((1 << 18) - 1);
7045
7046 transport_rtp->f.datalen = sizeof(struct ast_rtp_rtcp_feedback);
7047 transport_rtp->f.offset = AST_FRIENDLY_OFFSET;
7048 transport_rtp->f.samples = 0;
7049 transport_rtp->f.mallocd = 0;
7050 transport_rtp->f.delivery.tv_sec = 0;
7051 transport_rtp->f.delivery.tv_usec = 0;
7052 transport_rtp->f.src = "RTP";
7053 f = &transport_rtp->f;
7054 break;
7055 default:
7056 break;
7057 }
7058 break;
7059 case RTCP_PT_SDES:
7060 if (rtcp_debug_test_addr(addr)) {
7061 ast_verbose("Received an SDES from %s\n",
7063 }
7064#ifdef TEST_FRAMEWORK
7065 if ((test_engine = ast_rtp_instance_get_test(instance))) {
7066 test_engine->sdes_received = 1;
7067 }
7068#endif
7069 break;
7070 case RTCP_PT_BYE:
7071 if (rtcp_debug_test_addr(addr)) {
7072 ast_verbose("Received a BYE from %s\n",
7074 }
7075 break;
7076 default:
7077 break;
7078 }
7079 position += length;
7080 rtp->rtcp->rtcp_info = 1;
7081
7082 if (child) {
7083 ao2_unlock(child);
7084 }
7085 }
7086
7087 return f;
7088}
7089
7090/*! \pre instance is locked */
7091static struct ast_frame *ast_rtcp_read(struct ast_rtp_instance *instance)
7092{
7093 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
7094 struct ast_srtp *srtp = ast_rtp_instance_get_srtp(instance, 1);
7095 struct ast_sockaddr addr;
7096 unsigned char rtcpdata[8192 + AST_FRIENDLY_OFFSET];
7097 unsigned char *read_area = rtcpdata + AST_FRIENDLY_OFFSET;
7098 size_t read_area_size = sizeof(rtcpdata) - AST_FRIENDLY_OFFSET;
7099 int res;
7100
7101 /* Read in RTCP data from the socket */
7102 if ((res = rtcp_recvfrom(instance, read_area, read_area_size,
7103 0, &addr)) < 0) {
7104 if (res == RTP_DTLS_ESTABLISHED) {
7107 return &rtp->f;
7108 }
7109
7110 ast_assert(errno != EBADF);
7111 if (errno != EAGAIN) {
7112 ast_log(LOG_WARNING, "RTCP Read error: %s. Hanging up.\n",
7113 (errno) ? strerror(errno) : "Unspecified");
7114 return NULL;
7115 }
7116 return &ast_null_frame;
7117 }
7118
7119 /* If this was handled by the ICE session don't do anything further */
7120 if (!res) {
7121 return &ast_null_frame;
7122 }
7123
7124 if (!*read_area) {
7125 struct sockaddr_in addr_tmp;
7126 struct ast_sockaddr addr_v4;
7127
7128 if (ast_sockaddr_is_ipv4(&addr)) {
7129 ast_sockaddr_to_sin(&addr, &addr_tmp);
7130 } else if (ast_sockaddr_ipv4_mapped(&addr, &addr_v4)) {
7131 ast_debug_stun(2, "(%p) STUN using IPv6 mapped address %s\n",
7132 instance, ast_sockaddr_stringify(&addr));
7133 ast_sockaddr_to_sin(&addr_v4, &addr_tmp);
7134 } else {
7135 ast_debug_stun(2, "(%p) STUN cannot do for non IPv4 address %s\n",
7136 instance, ast_sockaddr_stringify(&addr));
7137 return &ast_null_frame;
7138 }
7139 if ((ast_stun_handle_packet(rtp->rtcp->s, &addr_tmp, read_area, res, NULL, NULL) == AST_STUN_ACCEPT)) {
7140 ast_sockaddr_from_sin(&addr, &addr_tmp);
7141 ast_sockaddr_copy(&rtp->rtcp->them, &addr);
7142 }
7143 return &ast_null_frame;
7144 }
7145
7146 return ast_rtcp_interpret(instance, srtp, read_area, res, &addr);
7147}
7148
7149/*! \pre instance is locked */
7150static int bridge_p2p_rtp_write(struct ast_rtp_instance *instance,
7151 struct ast_rtp_instance *instance1, unsigned int *rtpheader, int len, int hdrlen)
7152{
7153 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
7154 struct ast_rtp *bridged;
7155 int res = 0, payload = 0, bridged_payload = 0, mark;
7156 RAII_VAR(struct ast_rtp_payload_type *, payload_type, NULL, ao2_cleanup);
7157 int reconstruct = ntohl(rtpheader[0]);
7158 struct ast_sockaddr remote_address = { {0,} };
7159 int ice;
7160 unsigned int timestamp = ntohl(rtpheader[1]);
7161
7162 /* Get fields from packet */
7163 payload = (reconstruct & 0x7f0000) >> 16;
7164 mark = (reconstruct & 0x800000) >> 23;
7165
7166 /* Check what the payload value should be */
7167 payload_type = ast_rtp_codecs_get_payload(ast_rtp_instance_get_codecs(instance), payload);
7168 if (!payload_type) {
7169 return -1;
7170 }
7171
7172 /* Otherwise adjust bridged payload to match */
7174 payload_type->asterisk_format, payload_type->format, payload_type->rtp_code);
7175
7176 /* If no codec could be matched between instance and instance1, then somehow things were made incompatible while we were still bridged. Bail. */
7177 if (bridged_payload < 0) {
7178 return -1;
7179 }
7180
7181 /* If the payload coming in is not one of the negotiated ones then send it to the core, this will cause formats to change and the bridge to break */
7182 if (ast_rtp_codecs_find_payload_code(ast_rtp_instance_get_codecs(instance1), bridged_payload) == -1) {
7183 ast_debug_rtp(1, "(%p, %p) RTP unsupported payload type received\n", instance, instance1);
7184 return -1;
7185 }
7186
7187 /*
7188 * Even if we are no longer in dtmf, we could still be receiving
7189 * re-transmissions of the last dtmf end still. Feed those to the
7190 * core so they can be filtered accordingly.
7191 */
7192 if (rtp->last_end_timestamp.is_set && rtp->last_end_timestamp.ts == timestamp) {
7193 ast_debug_rtp(1, "(%p, %p) RTP feeding packet with duplicate timestamp to core\n", instance, instance1);
7194 return -1;
7195 }
7196
7197 if (payload_type->asterisk_format) {
7198 ao2_replace(rtp->lastrxformat, payload_type->format);
7199 }
7200
7201 /*
7202 * We have now determined that we need to send the RTP packet
7203 * out the bridged instance to do local bridging so we must unlock
7204 * the receiving instance to prevent deadlock with the bridged
7205 * instance.
7206 *
7207 * Technically we should grab a ref to instance1 so it won't go
7208 * away on us. However, we should be safe because the bridged
7209 * instance won't change without both channels involved being
7210 * locked and we currently have the channel lock for the receiving
7211 * instance.
7212 */
7213 ao2_unlock(instance);
7214 ao2_lock(instance1);
7215
7216 /*
7217 * Get the peer rtp pointer now to emphasize that using it
7218 * must happen while instance1 is locked.
7219 */
7220 bridged = ast_rtp_instance_get_data(instance1);
7221
7222
7223 /* If bridged peer is in dtmf, feed all packets to core until it finishes to avoid infinite dtmf */
7224 if (bridged->sending_digit) {
7225 ast_debug_rtp(1, "(%p, %p) RTP Feeding packet to core until DTMF finishes\n", instance, instance1);
7226 ao2_unlock(instance1);
7227 ao2_lock(instance);
7228 return -1;
7229 }
7230
7231 if (payload_type->asterisk_format) {
7232 /*
7233 * If bridged peer has already received rtp, perform the asymmetric codec check
7234 * if that feature has been activated
7235 */
7236 if (!bridged->asymmetric_codec
7237 && bridged->lastrxformat != ast_format_none
7238 && ast_format_cmp(payload_type->format, bridged->lastrxformat) == AST_FORMAT_CMP_NOT_EQUAL) {
7239 ast_debug_rtp(1, "(%p, %p) RTP asymmetric RTP codecs detected (TX: %s, RX: %s) sending frame to core\n",
7240 instance, instance1, ast_format_get_name(payload_type->format),
7242 ao2_unlock(instance1);
7243 ao2_lock(instance);
7244 return -1;
7245 }
7246
7247 ao2_replace(bridged->lasttxformat, payload_type->format);
7248 }
7249
7250 ast_rtp_instance_get_remote_address(instance1, &remote_address);
7251
7252 if (ast_sockaddr_isnull(&remote_address)) {
7253 ast_debug_rtp(5, "(%p, %p) RTP remote address is null, most likely RTP has been stopped\n",
7254 instance, instance1);
7255 ao2_unlock(instance1);
7256 ao2_lock(instance);
7257 return 0;
7258 }
7259
7260 /* If the marker bit has been explicitly set turn it on */
7261 if (ast_test_flag(bridged, FLAG_NEED_MARKER_BIT)) {
7262 mark = 1;
7264 }
7265
7266 /* Set the marker bit for the first local bridged packet which has the first bridged peer's SSRC. */
7268 mark = 1;
7270 }
7271
7272 /* Reconstruct part of the packet */
7273 reconstruct &= 0xFF80FFFF;
7274 reconstruct |= (bridged_payload << 16);
7275 reconstruct |= (mark << 23);
7276 rtpheader[0] = htonl(reconstruct);
7277
7278 if (mark) {
7279 /* make this rtp instance aware of the new ssrc it is sending */
7280 bridged->ssrc = ntohl(rtpheader[2]);
7281 }
7282
7283 /* Send the packet back out */
7284 res = rtp_sendto(instance1, (void *)rtpheader, len, 0, &remote_address, &ice);
7285 if (res < 0) {
7288 "RTP Transmission error of packet to %s: %s\n",
7289 ast_sockaddr_stringify(&remote_address),
7290 strerror(errno));
7294 "RTP NAT: Can't write RTP to private "
7295 "address %s, waiting for other end to "
7296 "send audio...\n",
7297 ast_sockaddr_stringify(&remote_address));
7298 }
7300 }
7301 ao2_unlock(instance1);
7302 ao2_lock(instance);
7303 return 0;
7304 }
7305
7306 if (rtp_debug_test_addr(&remote_address)) {
7307 ast_verbose("Sent RTP P2P packet to %s%s (type %-2.2d, len %-6.6d)\n",
7308 ast_sockaddr_stringify(&remote_address),
7309 ice ? " (via ICE)" : "",
7310 bridged_payload, len - hdrlen);
7311 }
7312
7313 ao2_unlock(instance1);
7314 ao2_lock(instance);
7315 return 0;
7316}
7317
7318static void rtp_instance_unlock(struct ast_rtp_instance *instance)
7319{
7320 if (instance) {
7321 ao2_unlock(instance);
7322 }
7323}
7324
7327{
7328 return a.seqno - b.seqno;
7329}
7330
7331static void rtp_transport_wide_cc_feedback_status_vector_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits,
7332 uint16_t *status_vector_chunk, int status)
7333{
7334 /* Appending this status will use up 2 bits */
7335 *status_vector_chunk_bits -= 2;
7336
7337 /* We calculate which bits we want to update the status of. Since a status vector
7338 * is 16 bits we take away 2 (for the header), and then we take away any that have
7339 * already been used.
7340 */
7341 *status_vector_chunk |= (status << (16 - 2 - (14 - *status_vector_chunk_bits)));
7342
7343 /* If there are still bits available we can return early */
7344 if (*status_vector_chunk_bits) {
7345 return;
7346 }
7347
7348 /* Otherwise we have to place this chunk into the packet */
7349 put_unaligned_uint16(rtcpheader + *packet_len, htons(*status_vector_chunk));
7350 *status_vector_chunk_bits = 14;
7351
7352 /* The first bit being 1 indicates that this is a status vector chunk and the second
7353 * bit being 1 indicates that we are using 2 bits to represent each status for a
7354 * packet.
7355 */
7356 *status_vector_chunk = (1 << 15) | (1 << 14);
7357 *packet_len += 2;
7358}
7359
7360static void rtp_transport_wide_cc_feedback_status_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits,
7361 uint16_t *status_vector_chunk, int *run_length_chunk_count, int *run_length_chunk_status, int status)
7362{
7363 if (*run_length_chunk_status != status) {
7364 while (*run_length_chunk_count > 0 && *run_length_chunk_count < 8) {
7365 /* Realistically it only makes sense to use a run length chunk if there were 8 or more
7366 * consecutive packets of the same type, otherwise we could end up making the packet larger
7367 * if we have lots of small blocks of the same type. To help with this we backfill the status
7368 * vector (since it always represents 7 packets). Best case we end up with only that single
7369 * status vector and the rest are run length chunks.
7370 */
7371 rtp_transport_wide_cc_feedback_status_vector_append(rtcpheader, packet_len, status_vector_chunk_bits,
7372 status_vector_chunk, *run_length_chunk_status);
7373 *run_length_chunk_count -= 1;
7374 }
7375
7376 if (*run_length_chunk_count) {
7377 /* There is a run length chunk which needs to be written out */
7378 put_unaligned_uint16(rtcpheader + *packet_len, htons((0 << 15) | (*run_length_chunk_status << 13) | *run_length_chunk_count));
7379 *packet_len += 2;
7380 }
7381
7382 /* In all cases the run length chunk has to be reset */
7383 *run_length_chunk_count = 0;
7384 *run_length_chunk_status = -1;
7385
7386 if (*status_vector_chunk_bits == 14) {
7387 /* We aren't in the middle of a status vector so we can try for a run length chunk */
7388 *run_length_chunk_status = status;
7389 *run_length_chunk_count = 1;
7390 } else {
7391 /* We're doing a status vector so populate it accordingly */
7392 rtp_transport_wide_cc_feedback_status_vector_append(rtcpheader, packet_len, status_vector_chunk_bits,
7393 status_vector_chunk, status);
7394 }
7395 } else {
7396 /* This is easy, the run length chunk count can just get bumped up */
7397 *run_length_chunk_count += 1;
7398 }
7399}
7400
7401static int rtp_transport_wide_cc_feedback_produce(const void *data)
7402{
7403 struct ast_rtp_instance *instance = (struct ast_rtp_instance *) data;
7404 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
7405 unsigned char *rtcpheader;
7406 char bdata[1024];
7407 struct rtp_transport_wide_cc_packet_statistics *first_packet;
7408 struct rtp_transport_wide_cc_packet_statistics *previous_packet;
7409 int i;
7410 int status_vector_chunk_bits = 14;
7411 uint16_t status_vector_chunk = (1 << 15) | (1 << 14);
7412 int run_length_chunk_count = 0;
7413 int run_length_chunk_status = -1;
7414 int packet_len = 20;
7415 int delta_len = 0;
7416 int packet_count = 0;
7417 unsigned int received_msw;
7418 unsigned int received_lsw;
7419 struct ast_sockaddr remote_address = { { 0, } };
7420 int res;
7421 int ice;
7422 unsigned int large_delta_count = 0;
7423 unsigned int small_delta_count = 0;
7424 unsigned int lost_count = 0;
7425
7426 if (!rtp || !rtp->rtcp || rtp->transport_wide_cc.schedid == -1) {
7427 ao2_ref(instance, -1);
7428 return 0;
7429 }
7430
7431 ao2_lock(instance);
7432
7433 /* If no packets have been received then do nothing */
7435 ao2_unlock(instance);
7436 return 1000;
7437 }
7438
7439 rtcpheader = (unsigned char *)bdata;
7440
7441 /* The first packet in the vector acts as our base sequence number and reference time */
7443 previous_packet = first_packet;
7444
7445 /* We go through each packet that we have statistics for, adding it either to a status
7446 * vector chunk or a run length chunk. The code tries to be as efficient as possible to
7447 * reduce packet size and will favor run length chunks when it makes sense.
7448 */
7449 for (i = 0; i < AST_VECTOR_SIZE(&rtp->transport_wide_cc.packet_statistics); ++i) {
7451 int lost = 0;
7452 int res = 0;
7453
7455
7456 packet_count++;
7457
7458 if (first_packet != statistics) {
7459 /* The vector stores statistics in a sorted fashion based on the sequence
7460 * number. This ensures we can detect any packets that have been lost/not
7461 * received by comparing the sequence numbers.
7462 */
7463 lost = statistics->seqno - (previous_packet->seqno + 1);
7464 lost_count += lost;
7465 }
7466
7467 while (lost) {
7468 /* We append a not received status until all the lost packets have been accounted for */
7469 rtp_transport_wide_cc_feedback_status_append(rtcpheader, &packet_len, &status_vector_chunk_bits,
7470 &status_vector_chunk, &run_length_chunk_count, &run_length_chunk_status, 0);
7471 packet_count++;
7472
7473 /* If there is no more room left for storing packets stop now, we leave 20
7474 * extra bits at the end just in case.
7475 */
7476 if (packet_len + delta_len + 20 > sizeof(bdata)) {
7477 res = -1;
7478 break;
7479 }
7480
7481 lost--;
7482 }
7483
7484 /* If the lost packet appending bailed out because we have no more space, then exit here too */
7485 if (res) {
7486 break;
7487 }
7488
7489 /* Per the spec the delta is in increments of 250 */
7490 statistics->delta = ast_tvdiff_us(statistics->received, previous_packet->received) / 250;
7491
7492 /* Based on the delta determine the status of this packet */
7493 if (statistics->delta < 0 || statistics->delta > 127) {
7494 /* Large or negative delta */
7495 rtp_transport_wide_cc_feedback_status_append(rtcpheader, &packet_len, &status_vector_chunk_bits,
7496 &status_vector_chunk, &run_length_chunk_count, &run_length_chunk_status, 2);
7497 delta_len += 2;
7498 large_delta_count++;
7499 } else {
7500 /* Small delta */
7501 rtp_transport_wide_cc_feedback_status_append(rtcpheader, &packet_len, &status_vector_chunk_bits,
7502 &status_vector_chunk, &run_length_chunk_count, &run_length_chunk_status, 1);
7503 delta_len += 1;
7504 small_delta_count++;
7505 }
7506
7507 previous_packet = statistics;
7508
7509 /* If there is no more room left in the packet stop handling of any subsequent packets */
7510 if (packet_len + delta_len + 20 > sizeof(bdata)) {
7511 break;
7512 }
7513 }
7514
7515 if (status_vector_chunk_bits != 14) {
7516 /* If the status vector chunk has packets in it then place it in the RTCP packet */
7517 put_unaligned_uint16(rtcpheader + packet_len, htons(status_vector_chunk));
7518 packet_len += 2;
7519 } else if (run_length_chunk_count) {
7520 /* If there is a run length chunk in progress then place it in the RTCP packet */
7521 put_unaligned_uint16(rtcpheader + packet_len, htons((0 << 15) | (run_length_chunk_status << 13) | run_length_chunk_count));
7522 packet_len += 2;
7523 }
7524
7525 /* We iterate again to build delta chunks */
7526 for (i = 0; i < AST_VECTOR_SIZE(&rtp->transport_wide_cc.packet_statistics); ++i) {
7528
7530
7531 if (statistics->delta < 0 || statistics->delta > 127) {
7532 /* We need 2 bytes to store this delta */
7533 put_unaligned_uint16(rtcpheader + packet_len, htons(statistics->delta));
7534 packet_len += 2;
7535 } else {
7536 /* We can store this delta in 1 byte */
7537 rtcpheader[packet_len] = statistics->delta;
7538 packet_len += 1;
7539 }
7540
7541 /* If this is the last packet handled by the run length chunk or status vector chunk code
7542 * then we can go no further.
7543 */
7544 if (statistics == previous_packet) {
7545 break;
7546 }
7547 }
7548
7549 /* Zero pad the end of the packet */
7550 while (packet_len % 4) {
7551 rtcpheader[packet_len++] = 0;
7552 }
7553
7554 /* Add the general RTCP header information */
7555 put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (AST_RTP_RTCP_FMT_TRANSPORT_WIDE_CC << 24)
7556 | (AST_RTP_RTCP_RTPFB << 16) | ((packet_len / 4) - 1)));
7557 put_unaligned_uint32(rtcpheader + 4, htonl(rtp->ssrc));
7558 put_unaligned_uint32(rtcpheader + 8, htonl(rtp->themssrc));
7559
7560 /* Add the transport-cc specific header information */
7561 put_unaligned_uint32(rtcpheader + 12, htonl((first_packet->seqno << 16) | packet_count));
7562
7563 timeval2ntp(first_packet->received, &received_msw, &received_lsw);
7564 put_unaligned_time24(rtcpheader + 16, received_msw, received_lsw);
7565 rtcpheader[19] = rtp->transport_wide_cc.feedback_count;
7566
7567 /* The packet is now fully constructed so send it out */
7568 ast_sockaddr_copy(&remote_address, &rtp->rtcp->them);
7569
7570 ast_debug_rtcp(2, "(%p) RTCP sending transport-cc feedback packet of size '%d' on '%s' with packet count of %d (small = %d, large = %d, lost = %d)\n",
7571 instance, packet_len, ast_rtp_instance_get_channel_id(instance), packet_count, small_delta_count, large_delta_count, lost_count);
7572
7573 res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len, 0, &remote_address, &ice);
7574 if (res < 0) {
7575 ast_log(LOG_ERROR, "RTCP transport-cc feedback error to %s due to %s\n",
7576 ast_sockaddr_stringify(&remote_address), strerror(errno));
7577 }
7578
7580
7582
7583 ao2_unlock(instance);
7584
7585 return 1000;
7586}
7587
7588static void rtp_instance_parse_transport_wide_cc(struct ast_rtp_instance *instance, struct ast_rtp *rtp,
7589 unsigned char *data, int len)
7590{
7591 uint16_t *seqno = (uint16_t *)data;
7593 struct ast_rtp_instance *transport = rtp->bundled ? rtp->bundled : instance;
7594 struct ast_rtp *transport_rtp = ast_rtp_instance_get_data(transport);
7595
7596 /* If the sequence number has cycled over then record it as such */
7597 if (((int)transport_rtp->transport_wide_cc.last_seqno - (int)ntohs(*seqno)) > 100) {
7598 transport_rtp->transport_wide_cc.cycles += RTP_SEQ_MOD;
7599 }
7600
7601 /* Populate the statistics information for this packet */
7602 statistics.seqno = transport_rtp->transport_wide_cc.cycles + ntohs(*seqno);
7603 statistics.received = ast_tvnow();
7604
7605 /* We allow at a maximum 1000 packet statistics in play at a time, if we hit the
7606 * limit we give up and start fresh.
7607 */
7608 if (AST_VECTOR_SIZE(&transport_rtp->transport_wide_cc.packet_statistics) > 1000) {
7610 }
7611
7612 if (!AST_VECTOR_SIZE(&transport_rtp->transport_wide_cc.packet_statistics) ||
7613 statistics.seqno > transport_rtp->transport_wide_cc.last_extended_seqno) {
7614 /* This is the expected path */
7616 return;
7617 }
7618
7619 transport_rtp->transport_wide_cc.last_extended_seqno = statistics.seqno;
7620 transport_rtp->transport_wide_cc.last_seqno = ntohs(*seqno);
7621 } else {
7622 /* This packet was out of order, so reorder it within the vector accordingly */
7625 return;
7626 }
7627 }
7628
7629 /* If we have not yet scheduled the periodic sending of feedback for this transport then do so */
7630 if (transport_rtp->transport_wide_cc.schedid < 0 && transport_rtp->rtcp) {
7631 ast_debug_rtcp(1, "(%p) RTCP starting transport-cc feedback transmission on RTP instance '%p'\n", instance, transport);
7632 ao2_ref(transport, +1);
7633 transport_rtp->transport_wide_cc.schedid = ast_sched_add(rtp->sched, 1000,
7635 if (transport_rtp->transport_wide_cc.schedid < 0) {
7636 ao2_ref(transport, -1);
7637 ast_log(LOG_WARNING, "Scheduling RTCP transport-cc feedback transmission failed on RTP instance '%p'\n",
7638 transport);
7639 }
7640 }
7641}
7642
7643static void rtp_instance_parse_extmap_extensions(struct ast_rtp_instance *instance, struct ast_rtp *rtp,
7644 unsigned char *extension, int len)
7645{
7646 int transport_wide_cc_id = ast_rtp_instance_extmap_get_id(instance, AST_RTP_EXTENSION_TRANSPORT_WIDE_CC);
7647 int pos = 0;
7648
7649 /* We currently only care about the transport-cc extension, so if that's not negotiated then do nothing */
7650 if (transport_wide_cc_id == -1) {
7651 return;
7652 }
7653
7654 /* Only while we do not exceed available extension data do we continue */
7655 while (pos < len) {
7656 int id = extension[pos] >> 4;
7657 int extension_len = (extension[pos] & 0xF) + 1;
7658
7659 /* We've handled the first byte as it contains the extension id and length, so always
7660 * skip ahead now
7661 */
7662 pos += 1;
7663
7664 if (id == 0) {
7665 /* From the RFC:
7666 * In both forms, padding bytes have the value of 0 (zero). They may be
7667 * placed between extension elements, if desired for alignment, or after
7668 * the last extension element, if needed for padding. A padding byte
7669 * does not supply the ID of an element, nor the length field. When a
7670 * padding byte is found, it is ignored and the parser moves on to
7671 * interpreting the next byte.
7672 */
7673 continue;
7674 } else if (id == 15) {
7675 /* From the RFC:
7676 * The local identifier value 15 is reserved for future extension and
7677 * MUST NOT be used as an identifier. If the ID value 15 is
7678 * encountered, its length field should be ignored, processing of the
7679 * entire extension should terminate at that point, and only the
7680 * extension elements present prior to the element with ID 15
7681 * considered.
7682 */
7683 break;
7684 } else if ((pos + extension_len) > len) {
7685 /* The extension is corrupted and is stating that it contains more data than is
7686 * available in the extensions data.
7687 */
7688 break;
7689 }
7690
7691 /* If this is transport-cc then we need to parse it further */
7692 if (id == transport_wide_cc_id) {
7693 rtp_instance_parse_transport_wide_cc(instance, rtp, extension + pos, extension_len);
7694 }
7695
7696 /* Skip ahead to the next extension */
7697 pos += extension_len;
7698 }
7699}
7700
7701static struct ast_frame *ast_rtp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp,
7702 const struct ast_sockaddr *remote_address, unsigned char *read_area, int length, int prev_seqno,
7703 unsigned int bundled)
7704{
7705 unsigned int *rtpheader = (unsigned int*)(read_area);
7706 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
7707 struct ast_rtp_instance *instance1;
7708 int res = length, hdrlen = 12, ssrc, seqno, payloadtype, padding, mark, ext, cc;
7709 unsigned int timestamp;
7710 RAII_VAR(struct ast_rtp_payload_type *, payload, NULL, ao2_cleanup);
7711 struct frame_list frames;
7712
7713 /* If this payload is encrypted then decrypt it using the given SRTP instance */
7714 if ((*read_area & 0xC0) && res_srtp && srtp && res_srtp->unprotect(
7715 srtp, read_area, &res, 0 | (srtp_replay_protection << 1)) < 0) {
7716 return &ast_null_frame;
7717 }
7718
7719 /* If we are currently sending DTMF to the remote party send a continuation packet */
7720 if (rtp->sending_digit) {
7721 ast_rtp_dtmf_continuation(instance);
7722 }
7723
7724 /* Pull out the various other fields we will need */
7725 ssrc = ntohl(rtpheader[2]);
7726 seqno = ntohl(rtpheader[0]);
7727 payloadtype = (seqno & 0x7f0000) >> 16;
7728 padding = seqno & (1 << 29);
7729 mark = seqno & (1 << 23);
7730 ext = seqno & (1 << 28);
7731 cc = (seqno & 0xF000000) >> 24;
7732 seqno &= 0xffff;
7733 timestamp = ntohl(rtpheader[1]);
7734
7736
7737 /* Remove any padding bytes that may be present */
7738 if (padding) {
7739 res -= read_area[res - 1];
7740 }
7741
7742 /* Skip over any CSRC fields */
7743 if (cc) {
7744 hdrlen += cc * 4;
7745 }
7746
7747 /* Look for any RTP extensions, currently we do not support any */
7748 if (ext) {
7749 int extensions_size = (ntohl(rtpheader[hdrlen/4]) & 0xffff) << 2;
7750 unsigned int profile;
7751 profile = (ntohl(rtpheader[3]) & 0xffff0000) >> 16;
7752
7753 if (profile == 0xbede) {
7754 /* We skip over the first 4 bytes as they are just for the one byte extension header */
7755 rtp_instance_parse_extmap_extensions(instance, rtp, read_area + hdrlen + 4, extensions_size);
7756 } else if (DEBUG_ATLEAST(1)) {
7757 if (profile == 0x505a) {
7758 ast_log(LOG_DEBUG, "Found Zfone extension in RTP stream - zrtp - not supported.\n");
7759 } else {
7760 /* SDP negotiated RTP extensions can not currently be output in logging */
7761 ast_log(LOG_DEBUG, "Found unknown RTP Extensions %x\n", profile);
7762 }
7763 }
7764
7765 hdrlen += extensions_size;
7766 hdrlen += 4;
7767 }
7768
7769 /* Make sure after we potentially mucked with the header length that it is once again valid */
7770 if (res < hdrlen) {
7771 ast_log(LOG_WARNING, "RTP Read too short (%d, expecting %d\n", res, hdrlen);
7773 }
7774
7775 /* Only non-bundled instances can change/learn the remote's SSRC implicitly. */
7776 if (!bundled) {
7777 /* Force a marker bit and change SSRC if the SSRC changes */
7778 if (rtp->themssrc_valid && rtp->themssrc != ssrc) {
7779 struct ast_frame *f, srcupdate = {
7781 .subclass.integer = AST_CONTROL_SRCCHANGE,
7782 };
7783
7784 if (!mark) {
7786 ast_debug(0, "(%p) RTP forcing Marker bit, because SSRC has changed\n", instance);
7787 }
7788 mark = 1;
7789 }
7790
7791 f = ast_frisolate(&srcupdate);
7793
7794 rtp->seedrxseqno = 0;
7795 rtp->rxcount = 0;
7796 rtp->rxoctetcount = 0;
7797 rtp->cycles = 0;
7798 prev_seqno = 0;
7799 rtp->last_seqno = 0;
7800 rtp->last_end_timestamp.ts = 0;
7801 rtp->last_end_timestamp.is_set = 0;
7802 if (rtp->rtcp) {
7803 rtp->rtcp->expected_prior = 0;
7804 rtp->rtcp->received_prior = 0;
7805 }
7806 }
7807
7808 rtp->themssrc = ssrc; /* Record their SSRC to put in future RR */
7809 rtp->themssrc_valid = 1;
7810 }
7811
7812 rtp->rxcount++;
7813 rtp->rxoctetcount += (res - hdrlen);
7814 if (rtp->rxcount == 1) {
7815 rtp->seedrxseqno = seqno;
7816 }
7817
7818 /* Do not schedule RR if RTCP isn't run */
7819 if (rtp->rtcp && !ast_sockaddr_isnull(&rtp->rtcp->them) && rtp->rtcp->schedid < 0) {
7820 /* Schedule transmission of Receiver Report */
7821 ao2_ref(instance, +1);
7823 if (rtp->rtcp->schedid < 0) {
7824 ao2_ref(instance, -1);
7825 ast_log(LOG_WARNING, "scheduling RTCP transmission failed.\n");
7826 }
7827 }
7828 if ((int)prev_seqno - (int)seqno > 100) /* if so it would indicate that the sender cycled; allow for misordering */
7829 rtp->cycles += RTP_SEQ_MOD;
7830
7831 /* If we are directly bridged to another instance send the audio directly out,
7832 * but only after updating core information about the received traffic so that
7833 * outgoing RTCP reflects it.
7834 */
7835 instance1 = ast_rtp_instance_get_bridged(instance);
7836 if (instance1
7837 && !bridge_p2p_rtp_write(instance, instance1, rtpheader, res, hdrlen)) {
7838 struct timeval rxtime;
7839 struct ast_frame *f;
7840
7841 /* Update statistics for jitter so they are correct in RTCP */
7842 calc_rxstamp_and_jitter(&rxtime, rtp, timestamp, mark);
7843
7844
7845 /* When doing P2P we don't need to raise any frames about SSRC change to the core */
7846 while ((f = AST_LIST_REMOVE_HEAD(&frames, frame_list)) != NULL) {
7847 ast_frfree(f);
7848 }
7849
7850 return &ast_null_frame;
7851 }
7852
7853 payload = ast_rtp_codecs_get_payload(ast_rtp_instance_get_codecs(instance), payloadtype);
7854 if (!payload) {
7855 /* Unknown payload type. */
7857 }
7858
7859 /* If the payload is not actually an Asterisk one but a special one pass it off to the respective handler */
7860 if (!payload->asterisk_format) {
7861 struct ast_frame *f = NULL;
7862 if (payload->rtp_code == AST_RTP_DTMF) {
7863 /* process_dtmf_rfc2833 may need to return multiple frames. We do this
7864 * by passing the pointer to the frame list to it so that the method
7865 * can append frames to the list as needed.
7866 */
7867 process_dtmf_rfc2833(instance, read_area + hdrlen, res - hdrlen, seqno, timestamp, payloadtype, mark, &frames);
7868 } else if (payload->rtp_code == AST_RTP_CISCO_DTMF) {
7869 f = process_dtmf_cisco(instance, read_area + hdrlen, res - hdrlen, seqno, timestamp, payloadtype, mark);
7870 } else if (payload->rtp_code == AST_RTP_CN) {
7871 f = process_cn_rfc3389(instance, read_area + hdrlen, res - hdrlen, seqno, timestamp, payloadtype, mark);
7872 } else {
7873 ast_log(LOG_NOTICE, "Unknown RTP codec %d received from '%s'\n",
7874 payloadtype,
7875 ast_sockaddr_stringify(remote_address));
7876 }
7877
7878 if (f) {
7880 }
7881 /* Even if no frame was returned by one of the above methods,
7882 * we may have a frame to return in our frame list
7883 */
7885 }
7886
7887 ao2_replace(rtp->lastrxformat, payload->format);
7888 ao2_replace(rtp->f.subclass.format, payload->format);
7889 switch (ast_format_get_type(rtp->f.subclass.format)) {
7892 break;
7895 break;
7897 rtp->f.frametype = AST_FRAME_TEXT;
7898 break;
7900 /* Fall through */
7901 default:
7902 ast_log(LOG_WARNING, "Unknown or unsupported media type: %s\n",
7904 return &ast_null_frame;
7905 }
7906
7907 if (rtp->dtmf_timeout && rtp->dtmf_timeout < timestamp) {
7908 rtp->dtmf_timeout = 0;
7909
7910 if (rtp->resp) {
7911 struct ast_frame *f;
7912 f = create_dtmf_frame(instance, AST_FRAME_DTMF_END, 0);
7914 rtp->resp = 0;
7915 rtp->dtmf_timeout = rtp->dtmf_duration = 0;
7917 return AST_LIST_FIRST(&frames);
7918 }
7919 }
7920
7921 rtp->f.src = "RTP";
7922 rtp->f.mallocd = 0;
7923 rtp->f.datalen = res - hdrlen;
7924 rtp->f.data.ptr = read_area + hdrlen;
7925 rtp->f.offset = hdrlen + AST_FRIENDLY_OFFSET;
7927 rtp->f.seqno = seqno;
7928 rtp->f.stream_num = rtp->stream_num;
7929
7931 && ((int)seqno - (prev_seqno + 1) > 0)
7932 && ((int)seqno - (prev_seqno + 1) < 10)) {
7933 unsigned char *data = rtp->f.data.ptr;
7934
7935 memmove(rtp->f.data.ptr+3, rtp->f.data.ptr, rtp->f.datalen);
7936 rtp->f.datalen +=3;
7937 *data++ = 0xEF;
7938 *data++ = 0xBF;
7939 *data = 0xBD;
7940 }
7941
7943 unsigned char *data = rtp->f.data.ptr;
7944 unsigned char *header_end;
7945 int num_generations;
7946 int header_length;
7947 int len;
7948 int diff =(int)seqno - (prev_seqno+1); /* if diff = 0, no drop*/
7949 int x;
7950
7952 header_end = memchr(data, ((*data) & 0x7f), rtp->f.datalen);
7953 if (header_end == NULL) {
7955 }
7956 header_end++;
7957
7958 header_length = header_end - data;
7959 num_generations = header_length / 4;
7960 len = header_length;
7961
7962 if (!diff) {
7963 for (x = 0; x < num_generations; x++)
7964 len += data[x * 4 + 3];
7965
7966 if (!(rtp->f.datalen - len))
7968
7969 rtp->f.data.ptr += len;
7970 rtp->f.datalen -= len;
7971 } else if (diff > num_generations && diff < 10) {
7972 len -= 3;
7973 rtp->f.data.ptr += len;
7974 rtp->f.datalen -= len;
7975
7976 data = rtp->f.data.ptr;
7977 *data++ = 0xEF;
7978 *data++ = 0xBF;
7979 *data = 0xBD;
7980 } else {
7981 for ( x = 0; x < num_generations - diff; x++)
7982 len += data[x * 4 + 3];
7983
7984 rtp->f.data.ptr += len;
7985 rtp->f.datalen -= len;
7986 }
7987 }
7988
7990 rtp->f.samples = ast_codec_samples_count(&rtp->f);
7992 ast_frame_byteswap_be(&rtp->f);
7993 }
7994 calc_rxstamp_and_jitter(&rtp->f.delivery, rtp, timestamp, mark);
7995 /* Add timing data to let ast_generic_bridge() put the frame into a jitterbuf */
7997 rtp->f.ts = timestamp / (ast_rtp_get_rate(rtp->f.subclass.format) / 1000);
7998 rtp->f.len = rtp->f.samples / ((ast_format_get_sample_rate(rtp->f.subclass.format) / 1000));
8000 /* Video -- samples is # of samples vs. 90000 */
8001 if (!rtp->lastividtimestamp)
8002 rtp->lastividtimestamp = timestamp;
8003 calc_rxstamp_and_jitter(&rtp->f.delivery, rtp, timestamp, mark);
8005 rtp->f.ts = timestamp / (ast_rtp_get_rate(rtp->f.subclass.format) / 1000);
8006 rtp->f.samples = timestamp - rtp->lastividtimestamp;
8007 rtp->lastividtimestamp = timestamp;
8008 rtp->f.delivery.tv_sec = 0;
8009 rtp->f.delivery.tv_usec = 0;
8010 /* Pass the RTP marker bit as bit */
8011 rtp->f.subclass.frame_ending = mark ? 1 : 0;
8013 /* TEXT -- samples is # of samples vs. 1000 */
8014 if (!rtp->lastitexttimestamp)
8015 rtp->lastitexttimestamp = timestamp;
8016 rtp->f.samples = timestamp - rtp->lastitexttimestamp;
8017 rtp->lastitexttimestamp = timestamp;
8018 rtp->f.delivery.tv_sec = 0;
8019 rtp->f.delivery.tv_usec = 0;
8020 } else {
8021 ast_log(LOG_WARNING, "Unknown or unsupported media type: %s\n",
8023 return &ast_null_frame;
8024 }
8025
8027 return AST_LIST_FIRST(&frames);
8028}
8029
8030#ifdef AST_DEVMODE
8031
8032struct rtp_drop_packets_data {
8033 /* Whether or not to randomize the number of packets to drop. */
8034 unsigned int use_random_num;
8035 /* Whether or not to randomize the time interval between packets drops. */
8036 unsigned int use_random_interval;
8037 /* The total number of packets to drop. If 'use_random_num' is true then this
8038 * value becomes the upper bound for a number of random packets to drop. */
8039 unsigned int num_to_drop;
8040 /* The current number of packets that have been dropped during an interval. */
8041 unsigned int num_dropped;
8042 /* The optional interval to use between packet drops. If 'use_random_interval'
8043 * is true then this values becomes the upper bound for a random interval used. */
8044 struct timeval interval;
8045 /* The next time a packet drop should be triggered. */
8046 struct timeval next;
8047 /* An optional IP address from which to drop packets from. */
8048 struct ast_sockaddr addr;
8049 /* The optional port from which to drop packets from. */
8050 unsigned int port;
8051};
8052
8053static struct rtp_drop_packets_data drop_packets_data;
8054
8055static void drop_packets_data_update(struct timeval tv)
8056{
8057 /*
8058 * num_dropped keeps up with the number of packets that have been dropped for a
8059 * given interval. Once the specified number of packets have been dropped and
8060 * the next time interval is ready to trigger then set this number to zero (drop
8061 * the next 'n' packets up to 'num_to_drop'), or if 'use_random_num' is set to
8062 * true then set to a random number between zero and 'num_to_drop'.
8063 */
8064 drop_packets_data.num_dropped = drop_packets_data.use_random_num ?
8065 ast_random() % drop_packets_data.num_to_drop : 0;
8066
8067 /*
8068 * A specified number of packets can be dropped at a given interval (e.g every
8069 * 30 seconds). If 'use_random_interval' is false simply add the interval to
8070 * the given time to get the next trigger point. If set to true, then get a
8071 * random time between the given time and up to the specified interval.
8072 */
8073 if (drop_packets_data.use_random_interval) {
8074 /* Calculate as a percentage of the specified drop packets interval */
8075 struct timeval interval = ast_time_create_by_unit(ast_time_tv_to_usec(
8076 &drop_packets_data.interval) * ((double)(ast_random() % 100 + 1) / 100),
8078
8079 drop_packets_data.next = ast_tvadd(tv, interval);
8080 } else {
8081 drop_packets_data.next = ast_tvadd(tv, drop_packets_data.interval);
8082 }
8083}
8084
8085static int should_drop_packets(struct ast_sockaddr *addr)
8086{
8087 struct timeval tv;
8088
8089 if (!drop_packets_data.num_to_drop) {
8090 return 0;
8091 }
8092
8093 /*
8094 * If an address has been specified then filter on it, and also the port if
8095 * it too was included.
8096 */
8097 if (!ast_sockaddr_isnull(&drop_packets_data.addr) &&
8098 (drop_packets_data.port ?
8099 ast_sockaddr_cmp(&drop_packets_data.addr, addr) :
8100 ast_sockaddr_cmp_addr(&drop_packets_data.addr, addr)) != 0) {
8101 /* Address and/or port does not match */
8102 return 0;
8103 }
8104
8105 /* Keep dropping packets until we've reached the total to drop */
8106 if (drop_packets_data.num_dropped < drop_packets_data.num_to_drop) {
8107 ++drop_packets_data.num_dropped;
8108 return 1;
8109 }
8110
8111 /*
8112 * Once the set number of packets has been dropped check to see if it's
8113 * time to drop more.
8114 */
8115
8116 if (ast_tvzero(drop_packets_data.interval)) {
8117 /* If no interval then drop specified number of packets and be done */
8118 drop_packets_data.num_to_drop = 0;
8119 return 0;
8120 }
8121
8122 tv = ast_tvnow();
8123 if (ast_tvcmp(tv, drop_packets_data.next) == -1) {
8124 /* Still waiting for the next time interval to elapse */
8125 return 0;
8126 }
8127
8128 /*
8129 * The next time interval has elapsed so update the tracking structure
8130 * in order to start dropping more packets, and figure out when the next
8131 * time interval is.
8132 */
8133 drop_packets_data_update(tv);
8134 return 1;
8135}
8136
8137#endif
8138
8139/*! \pre instance is locked */
8140static struct ast_frame *ast_rtp_read(struct ast_rtp_instance *instance, int rtcp)
8141{
8142 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
8143 struct ast_srtp *srtp;
8145 struct ast_sockaddr addr;
8146 int res, hdrlen = 12, version, payloadtype;
8147 unsigned char *read_area = rtp->rawdata + AST_FRIENDLY_OFFSET;
8148 size_t read_area_size = sizeof(rtp->rawdata) - AST_FRIENDLY_OFFSET;
8149 unsigned int *rtpheader = (unsigned int*)(read_area), seqno, ssrc, timestamp, prev_seqno;
8150 struct ast_sockaddr remote_address = { {0,} };
8151 struct frame_list frames;
8152 struct ast_frame *frame;
8153 unsigned int bundled;
8154
8155 /* If this is actually RTCP let's hop on over and handle it */
8156 if (rtcp) {
8157 if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
8158 return ast_rtcp_read(instance);
8159 }
8160 return &ast_null_frame;
8161 }
8162
8163 /* Actually read in the data from the socket */
8164 if ((res = rtp_recvfrom(instance, read_area, read_area_size, 0,
8165 &addr)) < 0) {
8166 if (res == RTP_DTLS_ESTABLISHED) {
8169 return &rtp->f;
8170 }
8171
8172 ast_assert(errno != EBADF);
8173 if (errno != EAGAIN) {
8174 ast_log(LOG_WARNING, "RTP Read error: %s. Hanging up.\n",
8175 (errno) ? strerror(errno) : "Unspecified");
8176 return NULL;
8177 }
8178 return &ast_null_frame;
8179 }
8180
8181 /* If this was handled by the ICE session don't do anything */
8182 if (!res) {
8183 return &ast_null_frame;
8184 }
8185
8186 /* This could be a multiplexed RTCP packet. If so, be sure to interpret it correctly */
8187 if (rtcp_mux(rtp, read_area)) {
8188 return ast_rtcp_interpret(instance, ast_rtp_instance_get_srtp(instance, 1), read_area, res, &addr);
8189 }
8190
8191 /* Make sure the data that was read in is actually enough to make up an RTP packet */
8192 if (res < hdrlen) {
8193 /* If this is a keepalive containing only nulls, don't bother with a warning */
8194 int i;
8195 for (i = 0; i < res; ++i) {
8196 if (read_area[i] != '\0') {
8197 ast_log(LOG_WARNING, "RTP Read too short\n");
8198 return &ast_null_frame;
8199 }
8200 }
8201 return &ast_null_frame;
8202 }
8203
8204 /* Get fields and verify this is an RTP packet */
8205 seqno = ntohl(rtpheader[0]);
8206
8207 ast_rtp_instance_get_remote_address(instance, &remote_address);
8208
8209 if (!(version = (seqno & 0xC0000000) >> 30)) {
8210 struct sockaddr_in addr_tmp;
8211 struct ast_sockaddr addr_v4;
8212 if (ast_sockaddr_is_ipv4(&addr)) {
8213 ast_sockaddr_to_sin(&addr, &addr_tmp);
8214 } else if (ast_sockaddr_ipv4_mapped(&addr, &addr_v4)) {
8215 ast_debug_stun(1, "(%p) STUN using IPv6 mapped address %s\n",
8216 instance, ast_sockaddr_stringify(&addr));
8217 ast_sockaddr_to_sin(&addr_v4, &addr_tmp);
8218 } else {
8219 ast_debug_stun(1, "(%p) STUN cannot do for non IPv4 address %s\n",
8220 instance, ast_sockaddr_stringify(&addr));
8221 return &ast_null_frame;
8222 }
8223 if ((ast_stun_handle_packet(rtp->s, &addr_tmp, read_area, res, NULL, NULL) == AST_STUN_ACCEPT) &&
8224 ast_sockaddr_isnull(&remote_address)) {
8225 ast_sockaddr_from_sin(&addr, &addr_tmp);
8226 ast_rtp_instance_set_remote_address(instance, &addr);
8227 }
8228 return &ast_null_frame;
8229 }
8230
8231 /* If the version is not what we expected by this point then just drop the packet */
8232 if (version != 2) {
8233 return &ast_null_frame;
8234 }
8235
8236 /* We use the SSRC to determine what RTP instance this packet is actually for */
8237 ssrc = ntohl(rtpheader[2]);
8238
8239 /* We use the SRTP data from the provided instance that it came in on, not the child */
8240 srtp = ast_rtp_instance_get_srtp(instance, 0);
8241
8242 /* Determine the appropriate instance for this */
8243 child = rtp_find_instance_by_packet_source_ssrc(instance, rtp, ssrc);
8244 if (!child) {
8245 /* Neither the bundled parent nor any child has this SSRC */
8246 return &ast_null_frame;
8247 }
8248 if (child != instance) {
8249 /* It is safe to hold the child lock while holding the parent lock, we guarantee that the locking order
8250 * is always parent->child or that the child lock is not held when acquiring the parent lock.
8251 */
8252 ao2_lock(child);
8253 instance = child;
8254 rtp = ast_rtp_instance_get_data(instance);
8255 } else {
8256 /* The child is the parent! We don't need to unlock it. */
8257 child = NULL;
8258 }
8259
8260 /* If strict RTP protection is enabled see if we need to learn the remote address or if we need to drop the packet */
8261 switch (rtp->strict_rtp_state) {
8262 case STRICT_RTP_LEARN:
8263 /*
8264 * Scenario setup:
8265 * PartyA -- Ast1 -- Ast2 -- PartyB
8266 *
8267 * The learning timeout is necessary for Ast1 to handle the above
8268 * setup where PartyA calls PartyB and Ast2 initiates direct media
8269 * between Ast1 and PartyB. Ast1 may lock onto the Ast2 stream and
8270 * never learn the PartyB stream when it starts. The timeout makes
8271 * Ast1 stay in the learning state long enough to see and learn the
8272 * RTP stream from PartyB.
8273 *
8274 * To mitigate against attack, the learning state cannot switch
8275 * streams while there are competing streams. The competing streams
8276 * interfere with each other's qualification. Once we accept a
8277 * stream and reach the timeout, an attacker cannot interfere
8278 * anymore.
8279 *
8280 * Here are a few scenarios and each one assumes that the streams
8281 * are continuous:
8282 *
8283 * 1) We already have a known stream source address and the known
8284 * stream wants to change to a new source address. An attacking
8285 * stream will block learning the new stream source. After the
8286 * timeout we re-lock onto the original stream source address which
8287 * likely went away. The result is one way audio.
8288 *
8289 * 2) We already have a known stream source address and the known
8290 * stream doesn't want to change source addresses. An attacking
8291 * stream will not be able to replace the known stream. After the
8292 * timeout we re-lock onto the known stream. The call is not
8293 * affected.
8294 *
8295 * 3) We don't have a known stream source address. This presumably
8296 * is the start of a call. Competing streams will result in staying
8297 * in learning mode until a stream becomes the victor and we reach
8298 * the timeout. We cannot exit learning if we have no known stream
8299 * to lock onto. The result is one way audio until there is a victor.
8300 *
8301 * If we learn a stream source address before the timeout we will be
8302 * in scenario 1) or 2) when a competing stream starts.
8303 */
8306 ast_verb(4, "%p -- Strict RTP learning complete - Locking on source address %s\n",
8308 ast_test_suite_event_notify("STRICT_RTP_LEARN", "Source: %s",
8311 } else {
8312 struct ast_sockaddr target_address;
8313
8314 if (!ast_sockaddr_cmp(&rtp->strict_rtp_address, &addr)) {
8315 /*
8316 * We are open to learning a new address but have received
8317 * traffic from the current address, accept it and reset
8318 * the learning counts for a new source. When no more
8319 * current source packets arrive a new source can take over
8320 * once sufficient traffic is received.
8321 */
8323 break;
8324 }
8325
8326 /*
8327 * We give preferential treatment to the requested target address
8328 * (negotiated SDP address) where we are to send our RTP. However,
8329 * the other end has no obligation to send from that address even
8330 * though it is practically a requirement when NAT is involved.
8331 */
8332 ast_rtp_instance_get_requested_target_address(instance, &target_address);
8333 if (!ast_sockaddr_cmp(&target_address, &addr)) {
8334 /* Accept the negotiated target RTP stream as the source */
8335 ast_verb(4, "%p -- Strict RTP switching to RTP target address %s as source\n",
8336 rtp, ast_sockaddr_stringify(&addr));
8339 break;
8340 }
8341
8342 /*
8343 * Trying to learn a new address. If we pass a probationary period
8344 * with it, that means we've stopped getting RTP from the original
8345 * source and we should switch to it.
8346 */
8349 struct ast_rtp_codecs *codecs;
8350
8354 ast_verb(4, "%p -- Strict RTP qualifying stream type: %s\n",
8356 }
8357 if (!rtp_learning_rtp_seq_update(&rtp->rtp_source_learn, seqno)) {
8358 /* Accept the new RTP stream */
8359 ast_verb(4, "%p -- Strict RTP switching source address to %s\n",
8360 rtp, ast_sockaddr_stringify(&addr));
8363 break;
8364 }
8365 /* Not ready to accept the RTP stream candidate */
8366 ast_debug_rtp(1, "(%p) RTP %p -- Received packet from %s, dropping due to strict RTP protection. Will switch to it in %d packets.\n",
8367 instance, rtp, ast_sockaddr_stringify(&addr), rtp->rtp_source_learn.packets);
8368 } else {
8369 /*
8370 * This is either an attacking stream or
8371 * the start of the expected new stream.
8372 */
8375 ast_debug_rtp(1, "(%p) RTP %p -- Received packet from %s, dropping due to strict RTP protection. Qualifying new stream.\n",
8376 instance, rtp, ast_sockaddr_stringify(&addr));
8377 }
8378 return &ast_null_frame;
8379 }
8380 /* Fall through */
8381 case STRICT_RTP_CLOSED:
8382 /*
8383 * We should not allow a stream address change if the SSRC matches
8384 * once strictrtp learning is closed. Any kind of address change
8385 * like this should have happened while we were in the learning
8386 * state. We do not want to allow the possibility of an attacker
8387 * interfering with the RTP stream after the learning period.
8388 * An attacker could manage to get an RTCP packet redirected to
8389 * them which can contain the SSRC value.
8390 */
8391 if (!ast_sockaddr_cmp(&rtp->strict_rtp_address, &addr)) {
8392 break;
8393 }
8394 ast_debug_rtp(1, "(%p) RTP %p -- Received packet from %s, dropping due to strict RTP protection.\n",
8395 instance, rtp, ast_sockaddr_stringify(&addr));
8396#ifdef TEST_FRAMEWORK
8397 {
8398 static int strict_rtp_test_event = 1;
8399 if (strict_rtp_test_event) {
8400 ast_test_suite_event_notify("STRICT_RTP_CLOSED", "Source: %s",
8401 ast_sockaddr_stringify(&addr));
8402 strict_rtp_test_event = 0; /* Only run this event once to prevent possible spam */
8403 }
8404 }
8405#endif
8406 return &ast_null_frame;
8407 case STRICT_RTP_OPEN:
8408 break;
8409 }
8410
8411 /* If symmetric RTP is enabled see if the remote side is not what we expected and change where we are sending audio */
8413 if (ast_sockaddr_cmp(&remote_address, &addr)) {
8414 /* do not update the originally given address, but only the remote */
8416 ast_sockaddr_copy(&remote_address, &addr);
8417 if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
8418 ast_sockaddr_copy(&rtp->rtcp->them, &addr);
8420 }
8423 ast_debug(0, "(%p) RTP NAT: Got audio from other end. Now sending to address %s\n",
8424 instance, ast_sockaddr_stringify(&remote_address));
8425 }
8426 }
8427
8428 /* Pull out the various other fields we will need */
8429 payloadtype = (seqno & 0x7f0000) >> 16;
8430 seqno &= 0xffff;
8431 timestamp = ntohl(rtpheader[1]);
8432
8433#ifdef AST_DEVMODE
8434 if (should_drop_packets(&addr)) {
8435 ast_debug(0, "(%p) RTP: drop received packet from %s (type %-2.2d, seq %-6.6u, ts %-6.6u, len %-6.6d)\n",
8436 instance, ast_sockaddr_stringify(&addr), payloadtype, seqno, timestamp, res - hdrlen);
8437 return &ast_null_frame;
8438 }
8439#endif
8440
8441 if (rtp_debug_test_addr(&addr)) {
8442 ast_verbose("Got RTP packet from %s (type %-2.2d, seq %-6.6u, ts %-6.6u, len %-6.6d)\n",
8444 payloadtype, seqno, timestamp, res - hdrlen);
8445 }
8446
8448
8449 bundled = (child || AST_VECTOR_SIZE(&rtp->ssrc_mapping)) ? 1 : 0;
8450
8451 prev_seqno = rtp->lastrxseqno;
8452 /* We need to save lastrxseqno for use by jitter before resetting it. */
8453 rtp->prevrxseqno = rtp->lastrxseqno;
8454 rtp->lastrxseqno = seqno;
8455
8456 if (!rtp->recv_buffer) {
8457 /* If there is no receive buffer then we can pass back the frame directly */
8458 frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
8460 return AST_LIST_FIRST(&frames);
8461 } else if (rtp->expectedrxseqno == -1 || seqno == rtp->expectedrxseqno) {
8462 rtp->expectedrxseqno = seqno + 1;
8463
8464 /* We've cycled over, so go back to 0 */
8465 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8466 rtp->expectedrxseqno = 0;
8467 }
8468
8469 /* If there are no buffered packets that will be placed after this frame then we can
8470 * return it directly without duplicating it.
8471 */
8473 frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
8475 return AST_LIST_FIRST(&frames);
8476 }
8477
8480 ast_debug_rtp(2, "(%p) RTP Packet with sequence number '%d' on instance is no longer missing\n",
8481 instance, seqno);
8482 }
8483
8484 /* If we don't have the next packet after this we can directly return the frame, as there is no
8485 * chance it will be overwritten.
8486 */
8488 frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
8490 return AST_LIST_FIRST(&frames);
8491 }
8492
8493 /* Otherwise we need to dupe the frame so that the potential processing of frames placed after
8494 * it do not overwrite the data. You may be thinking that we could just add the current packet
8495 * to the head of the frames list and avoid having to duplicate it but this would result in out
8496 * of order packet processing by libsrtp which we are trying to avoid.
8497 */
8498 frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled));
8499 if (frame) {
8501 prev_seqno = seqno;
8502 }
8503
8504 /* Add any additional packets that we have buffered and that are available */
8505 while (ast_data_buffer_count(rtp->recv_buffer)) {
8506 struct ast_rtp_rtcp_nack_payload *payload;
8507
8509 if (!payload) {
8510 break;
8511 }
8512
8513 frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, payload->buf, payload->size, prev_seqno, bundled));
8514 ast_free(payload);
8515
8516 if (!frame) {
8517 /* If this packet can't be interpreted due to being out of memory we return what we have and assume
8518 * that we will determine it is a missing packet later and NACK for it.
8519 */
8520 return AST_LIST_FIRST(&frames);
8521 }
8522
8523 ast_debug_rtp(2, "(%p) RTP pulled buffered packet with sequence number '%d' to additionally return\n",
8524 instance, frame->seqno);
8526 prev_seqno = rtp->expectedrxseqno;
8527 rtp->expectedrxseqno++;
8528 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8529 rtp->expectedrxseqno = 0;
8530 }
8531 }
8532
8533 return AST_LIST_FIRST(&frames);
8534 } else if ((((seqno - rtp->expectedrxseqno) > 100) && timestamp > rtp->lastividtimestamp) ||
8536 int inserted = 0;
8537
8538 /* We have a large number of outstanding buffered packets or we've jumped far ahead in time.
8539 * To compensate we dump what we have in the buffer and place the current packet in a logical
8540 * spot. In the case of video we also require a full frame to give the decoding side a fighting
8541 * chance.
8542 */
8543
8545 ast_debug_rtp(2, "(%p) RTP source has wild gap or packet loss, sending FIR\n",
8546 instance);
8547 rtp_write_rtcp_fir(instance, rtp, &remote_address);
8548 }
8549
8550 /* This works by going through the progression of the sequence number retrieving buffered packets
8551 * or inserting the current received packet until we've run out of packets. This ensures that the
8552 * packets are in the correct sequence number order.
8553 */
8554 while (ast_data_buffer_count(rtp->recv_buffer)) {
8555 struct ast_rtp_rtcp_nack_payload *payload;
8556
8557 /* If the packet we received is the one we are expecting at this point then add it in */
8558 if (rtp->expectedrxseqno == seqno) {
8559 frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled));
8560 if (frame) {
8562 prev_seqno = seqno;
8563 ast_debug_rtp(2, "(%p) RTP inserted just received packet with sequence number '%d' in correct order\n",
8564 instance, seqno);
8565 }
8566 /* It is possible due to packet retransmission for this packet to also exist in the receive
8567 * buffer so we explicitly remove it in case this occurs, otherwise the receive buffer will
8568 * never be empty.
8569 */
8570 payload = (struct ast_rtp_rtcp_nack_payload *)ast_data_buffer_remove(rtp->recv_buffer, seqno);
8571 if (payload) {
8572 ast_free(payload);
8573 }
8574 rtp->expectedrxseqno++;
8575 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8576 rtp->expectedrxseqno = 0;
8577 }
8578 inserted = 1;
8579 continue;
8580 }
8581
8583 if (payload) {
8584 frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, payload->buf, payload->size, prev_seqno, bundled));
8585 if (frame) {
8587 prev_seqno = rtp->expectedrxseqno;
8588 ast_debug_rtp(2, "(%p) RTP emptying queue and returning packet with sequence number '%d'\n",
8589 instance, frame->seqno);
8590 }
8591 ast_free(payload);
8592 }
8593
8594 rtp->expectedrxseqno++;
8595 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8596 rtp->expectedrxseqno = 0;
8597 }
8598 }
8599
8600 if (!inserted) {
8601 /* This current packet goes after them, and we assume that packets going forward will follow
8602 * that new sequence number increment. It is okay for this to not be duplicated as it is guaranteed
8603 * to be the last packet processed right now and it is also guaranteed that it will always return
8604 * non-NULL.
8605 */
8606 frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
8608 rtp->expectedrxseqno = seqno + 1;
8609 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8610 rtp->expectedrxseqno = 0;
8611 }
8612
8613 ast_debug_rtp(2, "(%p) RTP adding just received packet with sequence number '%d' to end of dumped queue\n",
8614 instance, seqno);
8615 }
8616
8617 /* When we flush increase our chance for next time by growing the receive buffer when possible
8618 * by how many packets we missed, to give ourselves a bit more breathing room.
8619 */
8622 ast_debug_rtp(2, "(%p) RTP receive buffer is now at maximum of %zu\n", instance, ast_data_buffer_max(rtp->recv_buffer));
8623
8624 /* As there is such a large gap we don't want to flood the order side with missing packets, so we
8625 * give up and start anew.
8626 */
8628
8629 return AST_LIST_FIRST(&frames);
8630 }
8631
8632 /* We're finished with the frames list */
8634
8635 /* Determine if the received packet is from the last OLD_PACKET_COUNT (1000 by default) packets or not.
8636 * For the case where the received sequence number exceeds that of the expected sequence number we calculate
8637 * the past sequence number that would be 1000 sequence numbers ago. If the received sequence number
8638 * exceeds or meets that then it is within OLD_PACKET_COUNT packets ago. For example if the expected
8639 * sequence number is 100 and we receive 65530, then it would be considered old. This is because
8640 * 65535 - 1000 + 100 = 64635 which gives us the sequence number at which we would consider the packets
8641 * old. Since 65530 is above that, it would be considered old.
8642 * For the case where the received sequence number is less than the expected sequence number we can do
8643 * a simple subtraction to see if it is 1000 packets ago or not.
8644 */
8645 if ((seqno < rtp->expectedrxseqno && ((rtp->expectedrxseqno - seqno) <= OLD_PACKET_COUNT)) ||
8646 (seqno > rtp->expectedrxseqno && (seqno >= (65535 - OLD_PACKET_COUNT + rtp->expectedrxseqno)))) {
8647 /* If this is a packet from the past then we have received a duplicate packet, so just drop it */
8648 ast_debug_rtp(2, "(%p) RTP received an old packet with sequence number '%d', dropping it\n",
8649 instance, seqno);
8650 return &ast_null_frame;
8651 } else if (ast_data_buffer_get(rtp->recv_buffer, seqno)) {
8652 /* If this is a packet we already have buffered then it is a duplicate, so just drop it */
8653 ast_debug_rtp(2, "(%p) RTP received a duplicate transmission of packet with sequence number '%d', dropping it\n",
8654 instance, seqno);
8655 return &ast_null_frame;
8656 } else {
8657 /* This is an out of order packet from the future */
8658 struct ast_rtp_rtcp_nack_payload *payload;
8659 int missing_seqno;
8660 int remove_failed;
8661 unsigned int missing_seqnos_added = 0;
8662
8663 ast_debug_rtp(2, "(%p) RTP received an out of order packet with sequence number '%d' while expecting '%d' from the future\n",
8664 instance, seqno, rtp->expectedrxseqno);
8665
8666 payload = ast_malloc(sizeof(*payload) + res);
8667 if (!payload) {
8668 /* If the payload can't be allocated then we can't defer this packet right now.
8669 * Instead of dumping what we have we pretend we lost this packet. It will then
8670 * get NACKed later or the existing buffer will be returned entirely. Well, we may
8671 * try since we're seemingly out of memory. It's a bad situation all around and
8672 * packets are likely to get lost anyway.
8673 */
8674 return &ast_null_frame;
8675 }
8676
8677 payload->size = res;
8678 memcpy(payload->buf, rtpheader, res);
8679 if (ast_data_buffer_put(rtp->recv_buffer, seqno, payload) == -1) {
8680 ast_free(payload);
8681 }
8682
8683 /* If this sequence number is removed that means we had a gap and this packet has filled it in
8684 * some. Since it was part of the gap we will have already added any other missing sequence numbers
8685 * before it (and possibly after it) to the vector so we don't need to do that again. Note that
8686 * remove_failed will be set to -1 if the sequence number isn't removed, and 0 if it is.
8687 */
8688 remove_failed = AST_VECTOR_REMOVE_CMP_ORDERED(&rtp->missing_seqno, seqno, find_by_value,
8690 if (!remove_failed) {
8691 ast_debug_rtp(2, "(%p) RTP packet with sequence number '%d' is no longer missing\n",
8692 instance, seqno);
8693 }
8694
8695 /* The missing sequence number code works by taking the sequence number of the
8696 * packet we've just received and going backwards until we hit the sequence number
8697 * of the last packet we've received. While doing so we check to make sure that the
8698 * sequence number is not already missing and that it is not already buffered.
8699 */
8700 missing_seqno = seqno;
8701 while (remove_failed) {
8702 missing_seqno -= 1;
8703
8704 /* If we've cycled backwards then start back at the top */
8705 if (missing_seqno < 0) {
8706 missing_seqno = 65535;
8707 }
8708
8709 /* We've gone backwards enough such that we've hit the previous sequence number */
8710 if (missing_seqno == prev_seqno) {
8711 break;
8712 }
8713
8714 /* We don't want missing sequence number duplicates. If, for some reason,
8715 * packets are really out of order, we could end up in this scenario:
8716 *
8717 * We are expecting sequence number 100
8718 * We receive sequence number 105
8719 * Sequence numbers 100 through 104 get added to the vector
8720 * We receive sequence number 101 (this section is skipped)
8721 * We receive sequence number 103
8722 * Sequence number 102 is added to the vector
8723 *
8724 * This will prevent the duplicate from being added.
8725 */
8726 if (AST_VECTOR_GET_CMP(&rtp->missing_seqno, missing_seqno,
8727 find_by_value)) {
8728 continue;
8729 }
8730
8731 /* If this packet has been buffered already then don't count it amongst the
8732 * missing.
8733 */
8734 if (ast_data_buffer_get(rtp->recv_buffer, missing_seqno)) {
8735 continue;
8736 }
8737
8738 ast_debug_rtp(2, "(%p) RTP added missing sequence number '%d'\n",
8739 instance, missing_seqno);
8740 AST_VECTOR_ADD_SORTED(&rtp->missing_seqno, missing_seqno,
8742 missing_seqnos_added++;
8743 }
8744
8745 /* When we add a large number of missing sequence numbers we assume there was a substantial
8746 * gap in reception so we trigger an immediate NACK. When our data buffer is 1/4 full we
8747 * assume that the packets aren't just out of order but have actually been lost. At 1/2
8748 * full we get more aggressive and ask for retransmission when we get a new packet.
8749 * To get them back we construct and send a NACK causing the sender to retransmit them.
8750 */
8751 if (missing_seqnos_added >= MISSING_SEQNOS_ADDED_TRIGGER ||
8754 int packet_len = 0;
8755 int res = 0;
8756 int ice;
8757 int sr;
8758 size_t data_size = AST_UUID_STR_LEN + 128 + (AST_VECTOR_SIZE(&rtp->missing_seqno) * 4);
8759 RAII_VAR(unsigned char *, rtcpheader, NULL, ast_free_ptr);
8760 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report,
8762 ao2_cleanup);
8763
8764 /* Sufficient space for RTCP headers and report, SDES with CNAME, NACK header,
8765 * and worst case 4 bytes per missing sequence number.
8766 */
8767 rtcpheader = ast_malloc(sizeof(*rtcpheader) + data_size);
8768 if (!rtcpheader) {
8769 ast_debug_rtcp(1, "(%p) RTCP failed to allocate memory for NACK\n", instance);
8770 return &ast_null_frame;
8771 }
8772
8773 memset(rtcpheader, 0, data_size);
8774
8775 res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
8776
8777 if (res == 0 || res == 1) {
8778 return &ast_null_frame;
8779 }
8780
8781 packet_len += res;
8782
8783 res = ast_rtcp_generate_nack(instance, rtcpheader + packet_len);
8784
8785 if (res == 0) {
8786 ast_debug_rtcp(1, "(%p) RTCP failed to construct NACK, stopping here\n", instance);
8787 return &ast_null_frame;
8788 }
8789
8790 packet_len += res;
8791
8792 res = rtcp_sendto(instance, rtcpheader, packet_len, 0, &remote_address, &ice);
8793 if (res < 0) {
8794 ast_debug_rtcp(1, "(%p) RTCP failed to send NACK request out\n", instance);
8795 } else {
8796 ast_debug_rtcp(2, "(%p) RTCP sending a NACK request to get missing packets\n", instance);
8797 /* Update RTCP SR/RR statistics */
8798 ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, remote_address, ice, sr);
8799 }
8800 }
8801 }
8802
8803 return &ast_null_frame;
8804}
8805
8806/*! \pre instance is locked */
8807static void ast_rtp_prop_set(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value)
8808{
8809 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
8810
8811 if (property == AST_RTP_PROPERTY_RTCP) {
8812 if (value) {
8813 struct ast_sockaddr local_addr;
8814
8815 if (rtp->rtcp && rtp->rtcp->type == value) {
8816 ast_debug_rtcp(1, "(%p) RTCP ignoring duplicate property\n", instance);
8817 return;
8818 }
8819
8820 if (!rtp->rtcp) {
8821 rtp->rtcp = ast_calloc(1, sizeof(*rtp->rtcp));
8822 if (!rtp->rtcp) {
8823 return;
8824 }
8825 rtp->rtcp->s = -1;
8826#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
8827 rtp->rtcp->dtls.timeout_timer = -1;
8828#endif
8829 rtp->rtcp->schedid = -1;
8830 }
8831
8832 rtp->rtcp->type = value;
8833
8834 /* Grab the IP address and port we are going to use */
8835 ast_rtp_instance_get_local_address(instance, &rtp->rtcp->us);
8838 ast_sockaddr_port(&rtp->rtcp->us) + 1);
8839 }
8840
8841 ast_sockaddr_copy(&local_addr, &rtp->rtcp->us);
8842 if (!ast_find_ourip(&local_addr, &rtp->rtcp->us, 0)) {
8843 ast_sockaddr_set_port(&local_addr, ast_sockaddr_port(&rtp->rtcp->us));
8844 } else {
8845 /* Failed to get local address reset to use default. */
8846 ast_sockaddr_copy(&local_addr, &rtp->rtcp->us);
8847 }
8848
8851 if (!rtp->rtcp->local_addr_str) {
8852 ast_free(rtp->rtcp);
8853 rtp->rtcp = NULL;
8854 return;
8855 }
8856
8858 /* We're either setting up RTCP from scratch or
8859 * switching from MUX. Either way, we won't have
8860 * a socket set up, and we need to set it up
8861 */
8862 if ((rtp->rtcp->s =
8863 create_new_socket("RTCP",
8864 ast_sockaddr_is_ipv4(&rtp->rtcp->us) ?
8865 AF_INET :
8866 ast_sockaddr_is_ipv6(&rtp->rtcp->us) ?
8867 AF_INET6 : -1)) < 0) {
8868 ast_debug_rtcp(1, "(%p) RTCP failed to create a new socket\n", instance);
8870 ast_free(rtp->rtcp);
8871 rtp->rtcp = NULL;
8872 return;
8873 }
8874
8875 /* Try to actually bind to the IP address and port we are going to use for RTCP, if this fails we have to bail out */
8876 if (ast_bind(rtp->rtcp->s, &rtp->rtcp->us)) {
8877 ast_debug_rtcp(1, "(%p) RTCP failed to setup RTP instance\n", instance);
8878 close(rtp->rtcp->s);
8880 ast_free(rtp->rtcp);
8881 rtp->rtcp = NULL;
8882 return;
8883 }
8884#ifdef HAVE_PJPROJECT
8885 if (rtp->ice) {
8886 rtp_add_candidates_to_ice(instance, rtp, &rtp->rtcp->us, ast_sockaddr_port(&rtp->rtcp->us), AST_RTP_ICE_COMPONENT_RTCP, TRANSPORT_SOCKET_RTCP);
8887 }
8888#endif
8889#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
8890 dtls_setup_rtcp(instance);
8891#endif
8892 } else {
8893 struct ast_sockaddr addr;
8894 /* RTCPMUX uses the same socket as RTP. If we were previously using standard RTCP
8895 * then close the socket we previously created.
8896 *
8897 * It may seem as though there is a possible race condition here where we might try
8898 * to close the RTCP socket while it is being used to send data. However, this is not
8899 * a problem in practice since setting and adjusting of RTCP properties happens prior
8900 * to activating RTP. It is not until RTP is activated that timers start for RTCP
8901 * transmission
8902 */
8903 if (rtp->rtcp->s > -1 && rtp->rtcp->s != rtp->s) {
8904 close(rtp->rtcp->s);
8905 }
8906 rtp->rtcp->s = rtp->s;
8907 ast_rtp_instance_get_remote_address(instance, &addr);
8908 ast_sockaddr_copy(&rtp->rtcp->them, &addr);
8909#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
8910 if (rtp->rtcp->dtls.ssl && rtp->rtcp->dtls.ssl != rtp->dtls.ssl) {
8911 SSL_free(rtp->rtcp->dtls.ssl);
8912 }
8913 rtp->rtcp->dtls.ssl = rtp->dtls.ssl;
8914#endif
8915 }
8916
8917 ast_debug_rtcp(1, "(%s) RTCP setup on RTP instance\n",
8919 } else {
8920 if (rtp->rtcp) {
8921 if (rtp->rtcp->schedid > -1) {
8922 ao2_unlock(instance);
8923 if (!ast_sched_del(rtp->sched, rtp->rtcp->schedid)) {
8924 /* Successfully cancelled scheduler entry. */
8925 ao2_ref(instance, -1);
8926 } else {
8927 /* Unable to cancel scheduler entry */
8928 ast_debug_rtcp(1, "(%p) RTCP failed to tear down RTCP\n", instance);
8929 ao2_lock(instance);
8930 return;
8931 }
8932 ao2_lock(instance);
8933 rtp->rtcp->schedid = -1;
8934 }
8935 if (rtp->transport_wide_cc.schedid > -1) {
8936 ao2_unlock(instance);
8937 if (!ast_sched_del(rtp->sched, rtp->transport_wide_cc.schedid)) {
8938 ao2_ref(instance, -1);
8939 } else {
8940 ast_debug_rtcp(1, "(%p) RTCP failed to tear down transport-cc feedback\n", instance);
8941 ao2_lock(instance);
8942 return;
8943 }
8944 ao2_lock(instance);
8945 rtp->transport_wide_cc.schedid = -1;
8946 }
8947 if (rtp->rtcp->s > -1 && rtp->rtcp->s != rtp->s) {
8948 close(rtp->rtcp->s);
8949 }
8950#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
8951 ao2_unlock(instance);
8952 dtls_srtp_stop_timeout_timer(instance, rtp, 1);
8953 ao2_lock(instance);
8954
8955 if (rtp->rtcp->dtls.ssl && rtp->rtcp->dtls.ssl != rtp->dtls.ssl) {
8956 SSL_free(rtp->rtcp->dtls.ssl);
8957 }
8958#endif
8960 ast_free(rtp->rtcp);
8961 rtp->rtcp = NULL;
8962 ast_debug_rtcp(1, "(%s) RTCP torn down on RTP instance\n",
8964 }
8965 }
8966 } else if (property == AST_RTP_PROPERTY_ASYMMETRIC_CODEC) {
8967 rtp->asymmetric_codec = value;
8968 } else if (property == AST_RTP_PROPERTY_RETRANS_SEND) {
8969 if (value) {
8970 if (!rtp->send_buffer) {
8972 }
8973 } else {
8974 if (rtp->send_buffer) {
8976 rtp->send_buffer = NULL;
8977 }
8978 }
8979 } else if (property == AST_RTP_PROPERTY_RETRANS_RECV) {
8980 if (value) {
8981 if (!rtp->recv_buffer) {
8984 }
8985 } else {
8986 if (rtp->recv_buffer) {
8988 rtp->recv_buffer = NULL;
8990 }
8991 }
8992 }
8993}
8994
8995/*! \pre instance is locked */
8996static int ast_rtp_fd(struct ast_rtp_instance *instance, int rtcp)
8997{
8998 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
8999
9000 return rtcp ? (rtp->rtcp ? rtp->rtcp->s : -1) : rtp->s;
9001}
9002
9003/*! \pre instance is locked */
9004static void ast_rtp_remote_address_set(struct ast_rtp_instance *instance, struct ast_sockaddr *addr)
9005{
9006 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9007 struct ast_sockaddr local;
9008 int index;
9009
9010 ast_rtp_instance_get_local_address(instance, &local);
9011 if (!ast_sockaddr_isnull(addr)) {
9012 /* Update the local RTP address with what is being used */
9013 if (ast_ouraddrfor(addr, &local)) {
9014 /* Failed to update our address so reuse old local address */
9015 ast_rtp_instance_get_local_address(instance, &local);
9016 } else {
9017 ast_rtp_instance_set_local_address(instance, &local);
9018 }
9019 }
9020
9021 if (rtp->rtcp && !ast_sockaddr_isnull(addr)) {
9022 ast_debug_rtcp(1, "(%p) RTCP setting address on RTP instance\n", instance);
9023 ast_sockaddr_copy(&rtp->rtcp->them, addr);
9024
9027
9028 /* Update the local RTCP address with what is being used */
9029 ast_sockaddr_set_port(&local, ast_sockaddr_port(&local) + 1);
9030 }
9031 ast_sockaddr_copy(&rtp->rtcp->us, &local);
9032
9035 }
9036
9037 /* Update any bundled RTP instances */
9038 for (index = 0; index < AST_VECTOR_SIZE(&rtp->ssrc_mapping); ++index) {
9039 struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&rtp->ssrc_mapping, index);
9040
9042 }
9043
9044 /* Need to reset the DTMF last sequence number and the timestamp of the last END packet */
9045 rtp->last_seqno = 0;
9046 rtp->last_end_timestamp.ts = 0;
9047 rtp->last_end_timestamp.is_set = 0;
9048
9050 && !ast_sockaddr_isnull(addr) && ast_sockaddr_cmp(addr, &rtp->strict_rtp_address)) {
9051 /* We only need to learn a new strict source address if we've been told the source is
9052 * changing to something different.
9053 */
9054 ast_verb(4, "%p -- Strict RTP learning after remote address set to: %s\n",
9055 rtp, ast_sockaddr_stringify(addr));
9056 rtp_learning_start(rtp);
9057 }
9058}
9059
9060/*!
9061 * \brief Write t140 redundancy frame
9062 *
9063 * \param data primary data to be buffered
9064 *
9065 * Scheduler callback
9066 */
9067static int red_write(const void *data)
9068{
9069 struct ast_rtp_instance *instance = (struct ast_rtp_instance*) data;
9070 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9071
9072 ao2_lock(instance);
9073 if (rtp->red->t140.datalen > 0) {
9074 ast_rtp_write(instance, &rtp->red->t140);
9075 }
9076 ao2_unlock(instance);
9077
9078 return 1;
9079}
9080
9081/*! \pre instance is locked */
9082static int rtp_red_init(struct ast_rtp_instance *instance, int buffer_time, int *payloads, int generations)
9083{
9084 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9085 int x;
9086
9087 rtp->red = ast_calloc(1, sizeof(*rtp->red));
9088 if (!rtp->red) {
9089 return -1;
9090 }
9091
9094 rtp->red->t140.data.ptr = &rtp->red->buf_data;
9095
9096 rtp->red->t140red = rtp->red->t140;
9097 rtp->red->t140red.data.ptr = &rtp->red->t140red_data;
9098
9099 rtp->red->ti = buffer_time;
9100 rtp->red->num_gen = generations;
9101 rtp->red->hdrlen = generations * 4 + 1;
9102
9103 for (x = 0; x < generations; x++) {
9104 rtp->red->pt[x] = payloads[x];
9105 rtp->red->pt[x] |= 1 << 7; /* mark redundant generations pt */
9106 rtp->red->t140red_data[x*4] = rtp->red->pt[x];
9107 }
9108 rtp->red->t140red_data[x*4] = rtp->red->pt[x] = payloads[x]; /* primary pt */
9109 rtp->red->schedid = ast_sched_add(rtp->sched, generations, red_write, instance);
9110
9111 return 0;
9112}
9113
9114/*! \pre instance is locked */
9115static int rtp_red_buffer(struct ast_rtp_instance *instance, struct ast_frame *frame)
9116{
9117 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9118 struct rtp_red *red = rtp->red;
9119
9120 if (!red) {
9121 return 0;
9122 }
9123
9124 if (frame->datalen > 0) {
9125 if (red->t140.datalen > 0) {
9126 const unsigned char *primary = red->buf_data;
9127
9128 /* There is something already in the T.140 buffer */
9129 if (primary[0] == 0x08 || primary[0] == 0x0a || primary[0] == 0x0d) {
9130 /* Flush the previous T.140 packet if it is a command */
9131 ast_rtp_write(instance, &rtp->red->t140);
9132 } else {
9133 primary = frame->data.ptr;
9134 if (primary[0] == 0x08 || primary[0] == 0x0a || primary[0] == 0x0d) {
9135 /* Flush the previous T.140 packet if we are buffering a command now */
9136 ast_rtp_write(instance, &rtp->red->t140);
9137 }
9138 }
9139 }
9140
9141 memcpy(&red->buf_data[red->t140.datalen], frame->data.ptr, frame->datalen);
9142 red->t140.datalen += frame->datalen;
9143 red->t140.ts = frame->ts;
9144 }
9145
9146 return 0;
9147}
9148
9149/*! \pre Neither instance0 nor instance1 are locked */
9150static int ast_rtp_local_bridge(struct ast_rtp_instance *instance0, struct ast_rtp_instance *instance1)
9151{
9152 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance0);
9153
9154 ao2_lock(instance0);
9156 if (rtp->smoother) {
9158 rtp->smoother = NULL;
9159 }
9160
9161 /* We must use a new SSRC when local bridge ends */
9162 if (!instance1) {
9163 rtp->ssrc = rtp->ssrc_orig;
9164 rtp->ssrc_orig = 0;
9165 rtp->ssrc_saved = 0;
9166 } else if (!rtp->ssrc_saved) {
9167 /* In case ast_rtp_local_bridge is called multiple times, only save the ssrc from before local bridge began */
9168 rtp->ssrc_orig = rtp->ssrc;
9169 rtp->ssrc_saved = 1;
9170 }
9171
9172 ao2_unlock(instance0);
9173
9174 return 0;
9175}
9176
9177/*! \pre instance is locked */
9178static int ast_rtp_get_stat(struct ast_rtp_instance *instance, struct ast_rtp_instance_stats *stats, enum ast_rtp_instance_stat stat)
9179{
9180 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9181
9182 if (!rtp->rtcp) {
9183 return -1;
9184 }
9185
9190
9202
9214
9221
9233
9234
9238
9239 return 0;
9240}
9241
9242/*! \pre Neither instance0 nor instance1 are locked */
9243static int ast_rtp_dtmf_compatible(struct ast_channel *chan0, struct ast_rtp_instance *instance0, struct ast_channel *chan1, struct ast_rtp_instance *instance1)
9244{
9245 /* If both sides are not using the same method of DTMF transmission
9246 * (ie: one is RFC2833, other is INFO... then we can not do direct media.
9247 * --------------------------------------------------
9248 * | DTMF Mode | HAS_DTMF | Accepts Begin Frames |
9249 * |-----------|------------|-----------------------|
9250 * | Inband | False | True |
9251 * | RFC2833 | True | True |
9252 * | SIP INFO | False | False |
9253 * --------------------------------------------------
9254 */
9256 (!ast_channel_tech(chan0)->send_digit_begin != !ast_channel_tech(chan1)->send_digit_begin)) ? 0 : 1);
9257}
9258
9259/*! \pre instance is NOT locked */
9260static void ast_rtp_stun_request(struct ast_rtp_instance *instance, struct ast_sockaddr *suggestion, const char *username)
9261{
9262 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9263 struct sockaddr_in suggestion_tmp;
9264
9265 /*
9266 * The instance should not be locked because we can block
9267 * waiting for a STUN respone.
9268 */
9269 ast_sockaddr_to_sin(suggestion, &suggestion_tmp);
9270 ast_stun_request(rtp->s, &suggestion_tmp, username, NULL);
9271 ast_sockaddr_from_sin(suggestion, &suggestion_tmp);
9272}
9273
9274/*! \pre instance is locked */
9275static void ast_rtp_stop(struct ast_rtp_instance *instance)
9276{
9277 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9278 struct ast_sockaddr addr = { {0,} };
9279
9280#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
9281 ao2_unlock(instance);
9282 AST_SCHED_DEL_UNREF(rtp->sched, rtp->rekeyid, ao2_ref(instance, -1));
9283
9284 dtls_srtp_stop_timeout_timer(instance, rtp, 0);
9285 if (rtp->rtcp) {
9286 dtls_srtp_stop_timeout_timer(instance, rtp, 1);
9287 }
9288 ao2_lock(instance);
9289#endif
9290 ast_debug_rtp(1, "(%s) RTP Stop\n",
9292
9293 if (rtp->rtcp && rtp->rtcp->schedid > -1) {
9294 ao2_unlock(instance);
9295 if (!ast_sched_del(rtp->sched, rtp->rtcp->schedid)) {
9296 /* successfully cancelled scheduler entry. */
9297 ao2_ref(instance, -1);
9298 }
9299 ao2_lock(instance);
9300 rtp->rtcp->schedid = -1;
9301 }
9302
9303 if (rtp->transport_wide_cc.schedid > -1) {
9304 ao2_unlock(instance);
9305 if (!ast_sched_del(rtp->sched, rtp->transport_wide_cc.schedid)) {
9306 ao2_ref(instance, -1);
9307 }
9308 ao2_lock(instance);
9309 rtp->transport_wide_cc.schedid = -1;
9310 }
9311
9312 if (rtp->red) {
9313 ao2_unlock(instance);
9314 AST_SCHED_DEL(rtp->sched, rtp->red->schedid);
9315 ao2_lock(instance);
9316 ast_free(rtp->red);
9317 rtp->red = NULL;
9318 }
9319
9320 ast_rtp_instance_set_remote_address(instance, &addr);
9321
9323}
9324
9325/*! \pre instance is locked */
9326static int ast_rtp_qos_set(struct ast_rtp_instance *instance, int tos, int cos, const char *desc)
9327{
9328 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9329
9330 return ast_set_qos(rtp->s, tos, cos, desc);
9331}
9332
9333/*!
9334 * \brief generate comfort noice (CNG)
9335 *
9336 * \pre instance is locked
9337 */
9338static int ast_rtp_sendcng(struct ast_rtp_instance *instance, int level)
9339{
9340 unsigned int *rtpheader;
9341 int hdrlen = 12;
9342 int res, payload = 0;
9343 char data[256];
9344 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9345 struct ast_sockaddr remote_address = { {0,} };
9346 int ice;
9347
9348 ast_rtp_instance_get_remote_address(instance, &remote_address);
9349
9350 if (ast_sockaddr_isnull(&remote_address)) {
9351 return -1;
9352 }
9353
9355
9356 level = 127 - (level & 0x7f);
9357
9358 rtp->dtmfmute = ast_tvadd(ast_tvnow(), ast_tv(0, 500000));
9359
9360 /* Get a pointer to the header */
9361 rtpheader = (unsigned int *)data;
9362 rtpheader[0] = htonl((2 << 30) | (payload << 16) | (rtp->seqno));
9363 rtpheader[1] = htonl(rtp->lastts);
9364 rtpheader[2] = htonl(rtp->ssrc);
9365 data[12] = level;
9366
9367 res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 1, 0, &remote_address, &ice);
9368
9369 if (res < 0) {
9370 ast_log(LOG_ERROR, "RTP Comfort Noise Transmission error to %s: %s\n", ast_sockaddr_stringify(&remote_address), strerror(errno));
9371 return res;
9372 }
9373
9374 if (rtp_debug_test_addr(&remote_address)) {
9375 ast_verbose("Sent Comfort Noise RTP packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
9376 ast_sockaddr_stringify(&remote_address),
9377 ice ? " (via ICE)" : "",
9378 AST_RTP_CN, rtp->seqno, rtp->lastdigitts, res - hdrlen);
9379 }
9380
9381 rtp->seqno++;
9382
9383 return res;
9384}
9385
9386/*! \pre instance is locked */
9387static unsigned int ast_rtp_get_ssrc(struct ast_rtp_instance *instance)
9388{
9389 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9390
9391 return rtp->ssrc;
9392}
9393
9394/*! \pre instance is locked */
9395static const char *ast_rtp_get_cname(struct ast_rtp_instance *instance)
9396{
9397 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9398
9399 return rtp->cname;
9400}
9401
9402/*! \pre instance is locked */
9403static void ast_rtp_set_remote_ssrc(struct ast_rtp_instance *instance, unsigned int ssrc)
9404{
9405 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9406
9407 if (rtp->themssrc_valid && rtp->themssrc == ssrc) {
9408 return;
9409 }
9410
9411 rtp->themssrc = ssrc;
9412 rtp->themssrc_valid = 1;
9413
9414 /* If this is bundled we need to update the SSRC mapping */
9415 if (rtp->bundled) {
9416 struct ast_rtp *bundled_rtp;
9417 int index;
9418
9419 ao2_unlock(instance);
9420
9421 /* The child lock can't be held while accessing the parent */
9422 ao2_lock(rtp->bundled);
9423 bundled_rtp = ast_rtp_instance_get_data(rtp->bundled);
9424
9425 for (index = 0; index < AST_VECTOR_SIZE(&bundled_rtp->ssrc_mapping); ++index) {
9426 struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&bundled_rtp->ssrc_mapping, index);
9427
9428 if (mapping->instance == instance) {
9429 mapping->ssrc = ssrc;
9430 mapping->ssrc_valid = 1;
9431 break;
9432 }
9433 }
9434
9435 ao2_unlock(rtp->bundled);
9436
9438 }
9439}
9440
9441static void ast_rtp_set_stream_num(struct ast_rtp_instance *instance, int stream_num)
9442{
9443 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9444
9445 rtp->stream_num = stream_num;
9446}
9447
9449{
9450 switch (extension) {
9453 return 1;
9454 default:
9455 return 0;
9456 }
9457}
9458
9459/*! \pre child is locked */
9460static int ast_rtp_bundle(struct ast_rtp_instance *child, struct ast_rtp_instance *parent)
9461{
9462 struct ast_rtp *child_rtp = ast_rtp_instance_get_data(child);
9463 struct ast_rtp *parent_rtp;
9464 struct rtp_ssrc_mapping mapping;
9465 struct ast_sockaddr them = { { 0, } };
9466
9467 if (child_rtp->bundled == parent) {
9468 return 0;
9469 }
9470
9471 /* If this instance was already bundled then remove the SSRC mapping */
9472 if (child_rtp->bundled) {
9473 struct ast_rtp *bundled_rtp;
9474
9475 ao2_unlock(child);
9476
9477 /* The child lock can't be held while accessing the parent */
9478 ao2_lock(child_rtp->bundled);
9479 bundled_rtp = ast_rtp_instance_get_data(child_rtp->bundled);
9481 ao2_unlock(child_rtp->bundled);
9482
9483 ao2_lock(child);
9484 ao2_ref(child_rtp->bundled, -1);
9485 child_rtp->bundled = NULL;
9486 }
9487
9488 if (!parent) {
9489 /* We transitioned away from bundle so we need our own transport resources once again */
9490 rtp_allocate_transport(child, child_rtp);
9491 return 0;
9492 }
9493
9494 parent_rtp = ast_rtp_instance_get_data(parent);
9495
9496 /* We no longer need any transport related resources as we will use our parent RTP instance instead */
9497 rtp_deallocate_transport(child, child_rtp);
9498
9499 /* Children maintain a reference to the parent to guarantee that the transport doesn't go away on them */
9500 child_rtp->bundled = ao2_bump(parent);
9501
9502 mapping.ssrc = child_rtp->themssrc;
9503 mapping.ssrc_valid = child_rtp->themssrc_valid;
9504 mapping.instance = child;
9505
9506 ao2_unlock(child);
9507
9508 ao2_lock(parent);
9509
9510 AST_VECTOR_APPEND(&parent_rtp->ssrc_mapping, mapping);
9511
9512#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
9513 /* If DTLS-SRTP is already in use then add the local SSRC to it, otherwise it will get added once DTLS
9514 * negotiation has been completed.
9515 */
9516 if (parent_rtp->dtls.connection == AST_RTP_DTLS_CONNECTION_EXISTING) {
9517 dtls_srtp_add_local_ssrc(parent_rtp, parent, 0, child_rtp->ssrc, 0);
9518 }
9519#endif
9520
9521 /* Bundle requires that RTCP-MUX be in use so only the main remote address needs to match */
9523
9524 ao2_unlock(parent);
9525
9526 ao2_lock(child);
9527
9529
9530 return 0;
9531}
9532
9533#ifdef HAVE_PJPROJECT
9534static void stunaddr_resolve_callback(const struct ast_dns_query *query)
9535{
9536 const int lowest_ttl = ast_dns_result_get_lowest_ttl(ast_dns_query_get_result(query));
9537 const char *stunaddr_name = ast_dns_query_get_name(query);
9538 const char *stunaddr_resolved_str;
9539
9540 if (!store_stunaddr_resolved(query)) {
9541 ast_log(LOG_WARNING, "Failed to resolve stunaddr '%s'. Cancelling recurring resolution.\n", stunaddr_name);
9542 return;
9543 }
9544
9545 if (DEBUG_ATLEAST(2)) {
9546 ast_rwlock_rdlock(&stunaddr_lock);
9547 stunaddr_resolved_str = ast_inet_ntoa(stunaddr.sin_addr);
9548 ast_rwlock_unlock(&stunaddr_lock);
9549
9550 ast_debug_stun(2, "Resolved stunaddr '%s' to '%s'. Lowest TTL = %d.\n",
9551 stunaddr_name,
9552 stunaddr_resolved_str,
9553 lowest_ttl);
9554 }
9555
9556 if (!lowest_ttl) {
9557 ast_log(LOG_WARNING, "Resolution for stunaddr '%s' returned TTL = 0. Recurring resolution was cancelled.\n", ast_dns_query_get_name(query));
9558 }
9559}
9560
9561static int store_stunaddr_resolved(const struct ast_dns_query *query)
9562{
9563 const struct ast_dns_result *result = ast_dns_query_get_result(query);
9564 const struct ast_dns_record *record;
9565
9566 for (record = ast_dns_result_get_records(result); record; record = ast_dns_record_get_next(record)) {
9567 const size_t data_size = ast_dns_record_get_data_size(record);
9568 const unsigned char *data = (unsigned char *)ast_dns_record_get_data(record);
9569 const int rr_type = ast_dns_record_get_rr_type(record);
9570
9571 if (rr_type == ns_t_a && data_size == 4) {
9572 ast_rwlock_wrlock(&stunaddr_lock);
9573 memcpy(&stunaddr.sin_addr, data, data_size);
9574 stunaddr.sin_family = AF_INET;
9575 ast_rwlock_unlock(&stunaddr_lock);
9576
9577 return 1;
9578 } else {
9579 ast_debug_stun(3, "Unrecognized rr_type '%u' or data_size '%zu' from DNS query for stunaddr '%s'\n",
9580 rr_type, data_size, ast_dns_query_get_name(query));
9581 continue;
9582 }
9583 }
9584 return 0;
9585}
9586
9587static void clean_stunaddr(void) {
9588 if (stunaddr_resolver) {
9589 if (ast_dns_resolve_recurring_cancel(stunaddr_resolver)) {
9590 ast_log(LOG_ERROR, "Failed to cancel recurring DNS resolution of previous stunaddr.\n");
9591 }
9592 ao2_ref(stunaddr_resolver, -1);
9593 stunaddr_resolver = NULL;
9594 }
9595 ast_rwlock_wrlock(&stunaddr_lock);
9596 memset(&stunaddr, 0, sizeof(stunaddr));
9597 ast_rwlock_unlock(&stunaddr_lock);
9598}
9599#endif
9600
9601#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
9602/*! \pre instance is locked */
9603static int ast_rtp_activate(struct ast_rtp_instance *instance)
9604{
9605 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9606
9607 /* If ICE negotiation is enabled the DTLS Handshake will be performed upon completion of it */
9608#ifdef HAVE_PJPROJECT
9609 if (rtp->ice) {
9610 return 0;
9611 }
9612#endif
9613
9614 ast_debug_dtls(3, "(%p) DTLS - ast_rtp_activate rtp=%p - setup and perform DTLS'\n", instance, rtp);
9615
9616 dtls_perform_setup(&rtp->dtls);
9617 dtls_perform_handshake(instance, &rtp->dtls, 0);
9618
9619 if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
9620 dtls_perform_setup(&rtp->rtcp->dtls);
9621 dtls_perform_handshake(instance, &rtp->rtcp->dtls, 1);
9622 }
9623
9624 return 0;
9625}
9626#endif
9627
9628static char *rtp_do_debug_ip(struct ast_cli_args *a)
9629{
9630 char *arg = ast_strdupa(a->argv[4]);
9631 char *debughost = NULL;
9632 char *debugport = NULL;
9633
9634 if (!ast_sockaddr_parse(&rtpdebugaddr, arg, 0) || !ast_sockaddr_split_hostport(arg, &debughost, &debugport, 0)) {
9635 ast_cli(a->fd, "Lookup failed for '%s'\n", arg);
9636 return CLI_FAILURE;
9637 }
9638 rtpdebugport = (!ast_strlen_zero(debugport) && debugport[0] != '0');
9639 ast_cli(a->fd, "RTP Packet Debugging Enabled for address: %s\n",
9642 return CLI_SUCCESS;
9643}
9644
9645static char *rtcp_do_debug_ip(struct ast_cli_args *a)
9646{
9647 char *arg = ast_strdupa(a->argv[4]);
9648 char *debughost = NULL;
9649 char *debugport = NULL;
9650
9651 if (!ast_sockaddr_parse(&rtcpdebugaddr, arg, 0) || !ast_sockaddr_split_hostport(arg, &debughost, &debugport, 0)) {
9652 ast_cli(a->fd, "Lookup failed for '%s'\n", arg);
9653 return CLI_FAILURE;
9654 }
9655 rtcpdebugport = (!ast_strlen_zero(debugport) && debugport[0] != '0');
9656 ast_cli(a->fd, "RTCP Packet Debugging Enabled for address: %s\n",
9659 return CLI_SUCCESS;
9660}
9661
9662static char *handle_cli_rtp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9663{
9664 switch (cmd) {
9665 case CLI_INIT:
9666 e->command = "rtp set debug {on|off|ip}";
9667 e->usage =
9668 "Usage: rtp set debug {on|off|ip host[:port]}\n"
9669 " Enable/Disable dumping of all RTP packets. If 'ip' is\n"
9670 " specified, limit the dumped packets to those to and from\n"
9671 " the specified 'host' with optional port.\n";
9672 return NULL;
9673 case CLI_GENERATE:
9674 return NULL;
9675 }
9676
9677 if (a->argc == e->args) { /* set on or off */
9678 if (!strncasecmp(a->argv[e->args-1], "on", 2)) {
9680 memset(&rtpdebugaddr, 0, sizeof(rtpdebugaddr));
9681 ast_cli(a->fd, "RTP Packet Debugging Enabled\n");
9682 return CLI_SUCCESS;
9683 } else if (!strncasecmp(a->argv[e->args-1], "off", 3)) {
9685 ast_cli(a->fd, "RTP Packet Debugging Disabled\n");
9686 return CLI_SUCCESS;
9687 }
9688 } else if (a->argc == e->args +1) { /* ip */
9689 return rtp_do_debug_ip(a);
9690 }
9691
9692 return CLI_SHOWUSAGE; /* default, failure */
9693}
9694
9695
9696static char *handle_cli_rtp_settings(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9697{
9698#ifdef HAVE_PJPROJECT
9699 struct sockaddr_in stunaddr_copy;
9700#endif
9701 switch (cmd) {
9702 case CLI_INIT:
9703 e->command = "rtp show settings";
9704 e->usage =
9705 "Usage: rtp show settings\n"
9706 " Display RTP configuration settings\n";
9707 return NULL;
9708 case CLI_GENERATE:
9709 return NULL;
9710 }
9711
9712 if (a->argc != 3) {
9713 return CLI_SHOWUSAGE;
9714 }
9715
9716 ast_cli(a->fd, "\n\nGeneral Settings:\n");
9717 ast_cli(a->fd, "----------------\n");
9718 ast_cli(a->fd, " Port start: %d\n", rtpstart);
9719 ast_cli(a->fd, " Port end: %d\n", rtpend);
9720#ifdef SO_NO_CHECK
9721 ast_cli(a->fd, " Checksums: %s\n", AST_CLI_YESNO(nochecksums == 0));
9722#endif
9723 ast_cli(a->fd, " DTMF Timeout: %d\n", dtmftimeout);
9724 ast_cli(a->fd, " Strict RTP: %s\n", AST_CLI_YESNO(strictrtp));
9725
9726 if (strictrtp) {
9727 ast_cli(a->fd, " Probation: %d frames\n", learning_min_sequential);
9728 }
9729
9730 ast_cli(a->fd, " Replay Protect: %s\n", AST_CLI_YESNO(srtp_replay_protection));
9731#ifdef HAVE_PJPROJECT
9732 ast_cli(a->fd, " ICE support: %s\n", AST_CLI_YESNO(icesupport));
9733
9734 ast_rwlock_rdlock(&stunaddr_lock);
9735 memcpy(&stunaddr_copy, &stunaddr, sizeof(stunaddr));
9736 ast_rwlock_unlock(&stunaddr_lock);
9737 ast_cli(a->fd, " STUN address: %s:%d\n", ast_inet_ntoa(stunaddr_copy.sin_addr), htons(stunaddr_copy.sin_port));
9738#endif
9739 return CLI_SUCCESS;
9740}
9741
9742
9743static char *handle_cli_rtcp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9744{
9745 switch (cmd) {
9746 case CLI_INIT:
9747 e->command = "rtcp set debug {on|off|ip}";
9748 e->usage =
9749 "Usage: rtcp set debug {on|off|ip host[:port]}\n"
9750 " Enable/Disable dumping of all RTCP packets. If 'ip' is\n"
9751 " specified, limit the dumped packets to those to and from\n"
9752 " the specified 'host' with optional port.\n";
9753 return NULL;
9754 case CLI_GENERATE:
9755 return NULL;
9756 }
9757
9758 if (a->argc == e->args) { /* set on or off */
9759 if (!strncasecmp(a->argv[e->args-1], "on", 2)) {
9761 memset(&rtcpdebugaddr, 0, sizeof(rtcpdebugaddr));
9762 ast_cli(a->fd, "RTCP Packet Debugging Enabled\n");
9763 return CLI_SUCCESS;
9764 } else if (!strncasecmp(a->argv[e->args-1], "off", 3)) {
9766 ast_cli(a->fd, "RTCP Packet Debugging Disabled\n");
9767 return CLI_SUCCESS;
9768 }
9769 } else if (a->argc == e->args +1) { /* ip */
9770 return rtcp_do_debug_ip(a);
9771 }
9772
9773 return CLI_SHOWUSAGE; /* default, failure */
9774}
9775
9776static char *handle_cli_rtcp_set_stats(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9777{
9778 switch (cmd) {
9779 case CLI_INIT:
9780 e->command = "rtcp set stats {on|off}";
9781 e->usage =
9782 "Usage: rtcp set stats {on|off}\n"
9783 " Enable/Disable dumping of RTCP stats.\n";
9784 return NULL;
9785 case CLI_GENERATE:
9786 return NULL;
9787 }
9788
9789 if (a->argc != e->args)
9790 return CLI_SHOWUSAGE;
9791
9792 if (!strncasecmp(a->argv[e->args-1], "on", 2))
9793 rtcpstats = 1;
9794 else if (!strncasecmp(a->argv[e->args-1], "off", 3))
9795 rtcpstats = 0;
9796 else
9797 return CLI_SHOWUSAGE;
9798
9799 ast_cli(a->fd, "RTCP Stats %s\n", rtcpstats ? "Enabled" : "Disabled");
9800 return CLI_SUCCESS;
9801}
9802
9803#ifdef AST_DEVMODE
9804
9805static unsigned int use_random(struct ast_cli_args *a, int pos, unsigned int index)
9806{
9807 return pos >= index && !ast_strlen_zero(a->argv[index - 1]) &&
9808 !strcasecmp(a->argv[index - 1], "random");
9809}
9810
9811static char *handle_cli_rtp_drop_incoming_packets(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9812{
9813 static const char * const completions_2[] = { "stop", "<N>", NULL };
9814 static const char * const completions_3[] = { "random", "incoming packets", NULL };
9815 static const char * const completions_5[] = { "on", "every", NULL };
9816 static const char * const completions_units[] = { "random", "usec", "msec", "sec", "min", NULL };
9817
9818 unsigned int use_random_num = 0;
9819 unsigned int use_random_interval = 0;
9820 unsigned int num_to_drop = 0;
9821 unsigned int interval = 0;
9822 const char *interval_s = NULL;
9823 const char *unit_s = NULL;
9824 struct ast_sockaddr addr;
9825 const char *addr_s = NULL;
9826
9827 switch (cmd) {
9828 case CLI_INIT:
9829 e->command = "rtp drop";
9830 e->usage =
9831 "Usage: rtp drop [stop|[<N> [random] incoming packets[ every <N> [random] {usec|msec|sec|min}][ on <ip[:port]>]]\n"
9832 " Drop RTP incoming packets.\n";
9833 return NULL;
9834 case CLI_GENERATE:
9835 use_random_num = use_random(a, a->pos, 4);
9836 use_random_interval = use_random(a, a->pos, 8 + use_random_num) ||
9837 use_random(a, a->pos, 10 + use_random_num);
9838
9839 switch (a->pos - use_random_num - use_random_interval) {
9840 case 2:
9841 return ast_cli_complete(a->word, completions_2, a->n);
9842 case 3:
9843 return ast_cli_complete(a->word, completions_3 + use_random_num, a->n);
9844 case 5:
9845 return ast_cli_complete(a->word, completions_5, a->n);
9846 case 7:
9847 if (!strcasecmp(a->argv[a->pos - 2], "on")) {
9849 break;
9850 }
9851 /* Fall through */
9852 case 9:
9853 if (!strcasecmp(a->argv[a->pos - 2 - use_random_interval], "every")) {
9854 return ast_cli_complete(a->word, completions_units + use_random_interval, a->n);
9855 }
9856 break;
9857 case 8:
9858 if (!strcasecmp(a->argv[a->pos - 3 - use_random_interval], "every")) {
9860 }
9861 break;
9862 }
9863
9864 return NULL;
9865 }
9866
9867 if (a->argc < 3) {
9868 return CLI_SHOWUSAGE;
9869 }
9870
9871 use_random_num = use_random(a, a->argc, 4);
9872 use_random_interval = use_random(a, a->argc, 8 + use_random_num) ||
9873 use_random(a, a->argc, 10 + use_random_num);
9874
9875 if (!strcasecmp(a->argv[2], "stop")) {
9876 /* rtp drop stop */
9877 } else if (a->argc < 5) {
9878 return CLI_SHOWUSAGE;
9879 } else if (ast_str_to_uint(a->argv[2], &num_to_drop)) {
9880 ast_cli(a->fd, "%s is not a valid number of packets to drop\n", a->argv[2]);
9881 return CLI_FAILURE;
9882 } else if (a->argc - use_random_num == 5) {
9883 /* rtp drop <N> [random] incoming packets */
9884 } else if (a->argc - use_random_num >= 7 && !strcasecmp(a->argv[5 + use_random_num], "on")) {
9885 /* rtp drop <N> [random] incoming packets on <ip[:port]> */
9886 addr_s = a->argv[6 + use_random_num];
9887 if (a->argc - use_random_num - use_random_interval == 10 &&
9888 !strcasecmp(a->argv[7 + use_random_num], "every")) {
9889 /* rtp drop <N> [random] incoming packets on <ip[:port]> every <N> [random] {usec|msec|sec|min} */
9890 interval_s = a->argv[8 + use_random_num];
9891 unit_s = a->argv[9 + use_random_num + use_random_interval];
9892 }
9893 } else if (a->argc - use_random_num >= 8 && !strcasecmp(a->argv[5 + use_random_num], "every")) {
9894 /* rtp drop <N> [random] incoming packets every <N> [random] {usec|msec|sec|min} */
9895 interval_s = a->argv[6 + use_random_num];
9896 unit_s = a->argv[7 + use_random_num + use_random_interval];
9897 if (a->argc == 10 + use_random_num + use_random_interval &&
9898 !strcasecmp(a->argv[8 + use_random_num + use_random_interval], "on")) {
9899 /* rtp drop <N> [random] incoming packets every <N> [random] {usec|msec|sec|min} on <ip[:port]> */
9900 addr_s = a->argv[9 + use_random_num + use_random_interval];
9901 }
9902 } else {
9903 return CLI_SHOWUSAGE;
9904 }
9905
9906 if (a->argc - use_random_num >= 8 && !interval_s && !addr_s) {
9907 return CLI_SHOWUSAGE;
9908 }
9909
9910 if (interval_s && ast_str_to_uint(interval_s, &interval)) {
9911 ast_cli(a->fd, "%s is not a valid interval number\n", interval_s);
9912 return CLI_FAILURE;
9913 }
9914
9915 memset(&addr, 0, sizeof(addr));
9916 if (addr_s && !ast_sockaddr_parse(&addr, addr_s, 0)) {
9917 ast_cli(a->fd, "%s is not a valid hostname[:port]\n", addr_s);
9918 return CLI_FAILURE;
9919 }
9920
9921 drop_packets_data.use_random_num = use_random_num;
9922 drop_packets_data.use_random_interval = use_random_interval;
9923 drop_packets_data.num_to_drop = num_to_drop;
9924 drop_packets_data.interval = ast_time_create_by_unit_str(interval, unit_s);
9925 ast_sockaddr_copy(&drop_packets_data.addr, &addr);
9926 drop_packets_data.port = ast_sockaddr_port(&addr);
9927
9928 drop_packets_data_update(ast_tvnow());
9929
9930 return CLI_SUCCESS;
9931}
9932#endif
9933
9934static struct ast_cli_entry cli_rtp[] = {
9935 AST_CLI_DEFINE(handle_cli_rtp_set_debug, "Enable/Disable RTP debugging"),
9936 AST_CLI_DEFINE(handle_cli_rtp_settings, "Display RTP settings"),
9937 AST_CLI_DEFINE(handle_cli_rtcp_set_debug, "Enable/Disable RTCP debugging"),
9938 AST_CLI_DEFINE(handle_cli_rtcp_set_stats, "Enable/Disable RTCP stats"),
9939#ifdef AST_DEVMODE
9940 AST_CLI_DEFINE(handle_cli_rtp_drop_incoming_packets, "Drop RTP incoming packets"),
9941#endif
9942};
9943
9944static int rtp_reload(int reload, int by_external_config)
9945{
9946 struct ast_config *cfg;
9947 const char *s;
9948 struct ast_flags config_flags = { (reload && !by_external_config) ? CONFIG_FLAG_FILEUNCHANGED : 0 };
9949
9950#ifdef HAVE_PJPROJECT
9951 struct ast_variable *var;
9952 struct ast_ice_host_candidate *candidate;
9953 int acl_subscription_flag = 0;
9954#endif
9955
9956 cfg = ast_config_load2("rtp.conf", "rtp", config_flags);
9957 if (!cfg || cfg == CONFIG_STATUS_FILEUNCHANGED || cfg == CONFIG_STATUS_FILEINVALID) {
9958 return 0;
9959 }
9960
9961#ifdef SO_NO_CHECK
9962 nochecksums = 0;
9963#endif
9964
9973
9974 /** This resource is not "reloaded" so much as unloaded and loaded again.
9975 * In the case of the TURN related variables, the memory referenced by a
9976 * previously loaded instance *should* have been released when the
9977 * corresponding pool was destroyed. If at some point in the future this
9978 * resource were to support ACTUAL live reconfiguration and did NOT release
9979 * the pool this will cause a small memory leak.
9980 */
9981
9982#ifdef HAVE_PJPROJECT
9983 icesupport = DEFAULT_ICESUPPORT;
9984 stun_software_attribute = DEFAULT_STUN_SOFTWARE_ATTRIBUTE;
9985 turnport = DEFAULT_TURN_PORT;
9986 clean_stunaddr();
9987 turnaddr = pj_str(NULL);
9988 turnusername = pj_str(NULL);
9989 turnpassword = pj_str(NULL);
9990 host_candidate_overrides_clear();
9991#endif
9992
9993#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
9994 dtls_mtu = DEFAULT_DTLS_MTU;
9995#endif
9996
9997 if ((s = ast_variable_retrieve(cfg, "general", "rtpstart"))) {
9998 rtpstart = atoi(s);
10003 }
10004 if ((s = ast_variable_retrieve(cfg, "general", "rtpend"))) {
10005 rtpend = atoi(s);
10010 }
10011 if ((s = ast_variable_retrieve(cfg, "general", "rtcpinterval"))) {
10012 rtcpinterval = atoi(s);
10013 if (rtcpinterval == 0)
10014 rtcpinterval = 0; /* Just so we're clear... it's zero */
10016 rtcpinterval = RTCP_MIN_INTERVALMS; /* This catches negative numbers too */
10019 }
10020 if ((s = ast_variable_retrieve(cfg, "general", "rtpchecksums"))) {
10021#ifdef SO_NO_CHECK
10022 nochecksums = ast_false(s) ? 1 : 0;
10023#else
10024 if (ast_false(s))
10025 ast_log(LOG_WARNING, "Disabling RTP checksums is not supported on this operating system!\n");
10026#endif
10027 }
10028 if ((s = ast_variable_retrieve(cfg, "general", "dtmftimeout"))) {
10029 dtmftimeout = atoi(s);
10030 if ((dtmftimeout < 0) || (dtmftimeout > 64000)) {
10031 ast_log(LOG_WARNING, "DTMF timeout of '%d' outside range, using default of '%d' instead\n",
10034 };
10035 }
10036 if ((s = ast_variable_retrieve(cfg, "general", "strictrtp"))) {
10037 if (ast_true(s)) {
10039 } else if (!strcasecmp(s, "seqno")) {
10041 } else {
10043 }
10044 }
10045 if ((s = ast_variable_retrieve(cfg, "general", "probation"))) {
10046 if ((sscanf(s, "%d", &learning_min_sequential) != 1) || learning_min_sequential <= 1) {
10047 ast_log(LOG_WARNING, "Value for 'probation' could not be read, using default of '%d' instead\n",
10050 }
10052 }
10053 if ((s = ast_variable_retrieve(cfg, "general", "srtpreplayprotection"))) {
10055 }
10056#ifdef HAVE_PJPROJECT
10057 if ((s = ast_variable_retrieve(cfg, "general", "icesupport"))) {
10058 icesupport = ast_true(s);
10059 }
10060 if ((s = ast_variable_retrieve(cfg, "general", "stun_software_attribute"))) {
10061 stun_software_attribute = ast_true(s);
10062 }
10063 if ((s = ast_variable_retrieve(cfg, "general", "stunaddr"))) {
10064 char *hostport, *host, *port;
10065 unsigned int port_parsed = STANDARD_STUN_PORT;
10066 struct ast_sockaddr stunaddr_parsed;
10067
10068 hostport = ast_strdupa(s);
10069
10070 if (!ast_parse_arg(hostport, PARSE_ADDR, &stunaddr_parsed)) {
10071 ast_debug_stun(3, "stunaddr = '%s' does not need name resolution\n",
10072 ast_sockaddr_stringify_host(&stunaddr_parsed));
10073 if (!ast_sockaddr_port(&stunaddr_parsed)) {
10074 ast_sockaddr_set_port(&stunaddr_parsed, STANDARD_STUN_PORT);
10075 }
10076 ast_rwlock_wrlock(&stunaddr_lock);
10077 ast_sockaddr_to_sin(&stunaddr_parsed, &stunaddr);
10078 ast_rwlock_unlock(&stunaddr_lock);
10079 } else if (ast_sockaddr_split_hostport(hostport, &host, &port, 0)) {
10080 if (port) {
10081 ast_parse_arg(port, PARSE_UINT32|PARSE_IN_RANGE, &port_parsed, 1, 65535);
10082 }
10083 stunaddr.sin_port = htons(port_parsed);
10084
10085 stunaddr_resolver = ast_dns_resolve_recurring(host, T_A, C_IN,
10086 &stunaddr_resolve_callback, NULL);
10087 if (!stunaddr_resolver) {
10088 ast_log(LOG_ERROR, "Failed to setup recurring DNS resolution of stunaddr '%s'",
10089 host);
10090 }
10091 } else {
10092 ast_log(LOG_ERROR, "Failed to parse stunaddr '%s'", hostport);
10093 }
10094 }
10095 if ((s = ast_variable_retrieve(cfg, "general", "turnaddr"))) {
10096 struct sockaddr_in addr;
10097 addr.sin_port = htons(DEFAULT_TURN_PORT);
10098 if (ast_parse_arg(s, PARSE_INADDR, &addr)) {
10099 ast_log(LOG_WARNING, "Invalid TURN server address: %s\n", s);
10100 } else {
10101 pj_strdup2_with_null(pool, &turnaddr, ast_inet_ntoa(addr.sin_addr));
10102 /* ntohs() is not a bug here. The port number is used in host byte order with
10103 * a pjnat API. */
10104 turnport = ntohs(addr.sin_port);
10105 }
10106 }
10107 if ((s = ast_variable_retrieve(cfg, "general", "turnusername"))) {
10108 pj_strdup2_with_null(pool, &turnusername, s);
10109 }
10110 if ((s = ast_variable_retrieve(cfg, "general", "turnpassword"))) {
10111 pj_strdup2_with_null(pool, &turnpassword, s);
10112 }
10113
10114 AST_RWLIST_WRLOCK(&host_candidates);
10115 for (var = ast_variable_browse(cfg, "ice_host_candidates"); var; var = var->next) {
10116 struct ast_sockaddr local_addr, advertised_addr;
10117 unsigned int include_local_address = 0;
10118 char *sep;
10119
10120 ast_sockaddr_setnull(&local_addr);
10121 ast_sockaddr_setnull(&advertised_addr);
10122
10123 if (ast_parse_arg(var->name, PARSE_ADDR | PARSE_PORT_IGNORE, &local_addr)) {
10124 ast_log(LOG_WARNING, "Invalid local ICE host address: %s\n", var->name);
10125 continue;
10126 }
10127
10128 sep = strchr(var->value,',');
10129 if (sep) {
10130 *sep = '\0';
10131 sep++;
10132 sep = ast_skip_blanks(sep);
10133 include_local_address = strcmp(sep, "include_local_address") == 0;
10134 }
10135
10136 if (ast_parse_arg(var->value, PARSE_ADDR | PARSE_PORT_IGNORE, &advertised_addr)) {
10137 ast_log(LOG_WARNING, "Invalid advertised ICE host address: %s\n", var->value);
10138 continue;
10139 }
10140
10141 if (!(candidate = ast_calloc(1, sizeof(*candidate)))) {
10142 ast_log(LOG_ERROR, "Failed to allocate ICE host candidate mapping.\n");
10143 break;
10144 }
10145
10146 candidate->include_local = include_local_address;
10147
10148 ast_sockaddr_copy(&candidate->local, &local_addr);
10149 ast_sockaddr_copy(&candidate->advertised, &advertised_addr);
10150
10151 AST_RWLIST_INSERT_TAIL(&host_candidates, candidate, next);
10152 }
10153 AST_RWLIST_UNLOCK(&host_candidates);
10154
10155 ast_rwlock_wrlock(&ice_acl_lock);
10156 ast_rwlock_wrlock(&stun_acl_lock);
10157
10158 ice_acl = ast_free_acl_list(ice_acl);
10159 stun_acl = ast_free_acl_list(stun_acl);
10160
10161 for (var = ast_variable_browse(cfg, "general"); var; var = var->next) {
10162 const char* sense = NULL;
10163 struct ast_acl_list **acl = NULL;
10164 if (strncasecmp(var->name, "ice_", 4) == 0) {
10165 sense = var->name + 4;
10166 acl = &ice_acl;
10167 } else if (strncasecmp(var->name, "stun_", 5) == 0) {
10168 sense = var->name + 5;
10169 acl = &stun_acl;
10170 } else {
10171 continue;
10172 }
10173
10174 if (strcasecmp(sense, "blacklist") == 0) {
10175 sense = "deny";
10176 }
10177
10178 if (strcasecmp(sense, "acl") && strcasecmp(sense, "permit") && strcasecmp(sense, "deny")) {
10179 continue;
10180 }
10181
10182 ast_append_acl(sense, var->value, acl, NULL, &acl_subscription_flag);
10183 }
10184 ast_rwlock_unlock(&ice_acl_lock);
10185 ast_rwlock_unlock(&stun_acl_lock);
10186
10187 if (acl_subscription_flag && !acl_change_sub) {
10191 } else if (!acl_subscription_flag && acl_change_sub) {
10193 }
10194#endif
10195#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
10196 if ((s = ast_variable_retrieve(cfg, "general", "dtls_mtu"))) {
10197 if ((sscanf(s, "%d", &dtls_mtu) != 1) || dtls_mtu < 256) {
10198 ast_log(LOG_WARNING, "Value for 'dtls_mtu' could not be read, using default of '%d' instead\n",
10200 dtls_mtu = DEFAULT_DTLS_MTU;
10201 }
10202 }
10203#endif
10204
10205 ast_config_destroy(cfg);
10206
10207 /* Choosing an odd start port casues issues (like a potential infinite loop) and as odd parts are not
10208 chosen anyway, we are going to round up and issue a warning */
10209 if (rtpstart & 1) {
10210 rtpstart++;
10211 ast_log(LOG_WARNING, "Odd start value for RTP port in rtp.conf, rounding up to %d\n", rtpstart);
10212 }
10213
10214 if (rtpstart >= rtpend) {
10215 ast_log(LOG_WARNING, "Unreasonable values for RTP start/end port in rtp.conf\n");
10218 }
10219 ast_verb(2, "RTP Allocating from port range %d -> %d\n", rtpstart, rtpend);
10220 return 0;
10221}
10222
10223static int reload_module(void)
10224{
10225 rtp_reload(1, 0);
10226 return 0;
10227}
10228
10229#ifdef HAVE_PJPROJECT
10230static void rtp_terminate_pjproject(void)
10231{
10232 pj_thread_register_check();
10233
10234 if (timer_thread) {
10235 timer_terminate = 1;
10236 pj_thread_join(timer_thread);
10237 pj_thread_destroy(timer_thread);
10238 }
10239
10241 pj_shutdown();
10242}
10243
10244static void acl_change_stasis_cb(void *data, struct stasis_subscription *sub, struct stasis_message *message)
10245{
10247 return;
10248 }
10249
10250 /* There is no simple way to just reload the ACLs, so just execute a forced reload. */
10251 rtp_reload(1, 1);
10252}
10253#endif
10254
10255static int load_module(void)
10256{
10257#ifdef HAVE_PJPROJECT
10258 pj_lock_t *lock;
10259
10261
10263 if (pj_init() != PJ_SUCCESS) {
10265 }
10266
10267 if (pjlib_util_init() != PJ_SUCCESS) {
10268 rtp_terminate_pjproject();
10270 }
10271
10272 if (pjnath_init() != PJ_SUCCESS) {
10273 rtp_terminate_pjproject();
10275 }
10276
10277 ast_pjproject_caching_pool_init(&cachingpool, &pj_pool_factory_default_policy, 0);
10278
10279 pool = pj_pool_create(&cachingpool.factory, "timer", 512, 512, NULL);
10280
10281 if (pj_timer_heap_create(pool, 100, &timer_heap) != PJ_SUCCESS) {
10282 rtp_terminate_pjproject();
10284 }
10285
10286 if (pj_lock_create_recursive_mutex(pool, "rtp%p", &lock) != PJ_SUCCESS) {
10287 rtp_terminate_pjproject();
10289 }
10290
10291 pj_timer_heap_set_lock(timer_heap, lock, PJ_TRUE);
10292
10293 if (pj_thread_create(pool, "timer", &timer_worker_thread, NULL, 0, 0, &timer_thread) != PJ_SUCCESS) {
10294 rtp_terminate_pjproject();
10296 }
10297
10298#endif
10299
10300#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
10301 dtls_bio_methods = BIO_meth_new(BIO_TYPE_BIO, "rtp write");
10302 if (!dtls_bio_methods) {
10303#ifdef HAVE_PJPROJECT
10304 rtp_terminate_pjproject();
10305#endif
10307 }
10308 BIO_meth_set_write(dtls_bio_methods, dtls_bio_write);
10309 BIO_meth_set_ctrl(dtls_bio_methods, dtls_bio_ctrl);
10310 BIO_meth_set_create(dtls_bio_methods, dtls_bio_new);
10311 BIO_meth_set_destroy(dtls_bio_methods, dtls_bio_free);
10312#endif
10313
10315#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
10316 BIO_meth_free(dtls_bio_methods);
10317#endif
10318#ifdef HAVE_PJPROJECT
10319 rtp_terminate_pjproject();
10320#endif
10322 }
10323
10325#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
10326 BIO_meth_free(dtls_bio_methods);
10327#endif
10328#ifdef HAVE_PJPROJECT
10330 rtp_terminate_pjproject();
10331#endif
10333 }
10334
10335 rtp_reload(0, 0);
10336
10338}
10339
10340static int unload_module(void)
10341{
10344
10345#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
10346 if (dtls_bio_methods) {
10347 BIO_meth_free(dtls_bio_methods);
10348 }
10349#endif
10350
10351#ifdef HAVE_PJPROJECT
10352 host_candidate_overrides_clear();
10353 pj_thread_register_check();
10354 rtp_terminate_pjproject();
10355
10357 rtp_unload_acl(&ice_acl_lock, &ice_acl);
10358 rtp_unload_acl(&stun_acl_lock, &stun_acl);
10359 clean_stunaddr();
10360#endif
10361
10362 return 0;
10363}
10364
10366 .support_level = AST_MODULE_SUPPORT_CORE,
10367 .load = load_module,
10368 .unload = unload_module,
10370 .load_pri = AST_MODPRI_CHANNEL_DEPEND,
10371#ifdef HAVE_PJPROJECT
10372 .requires = "res_pjproject",
10373#endif
Access Control of various sorts.
struct stasis_message_type * ast_named_acl_change_type(void)
a stasis_message_type for changes against a named ACL or the set of all named ACLs
int ast_ouraddrfor(const struct ast_sockaddr *them, struct ast_sockaddr *us)
Get our local IP address when contacting a remote host.
Definition: acl.c:1004
void ast_append_acl(const char *sense, const char *stuff, struct ast_acl_list **path, int *error, int *named_acl_flag)
Add a rule to an ACL struct.
Definition: acl.c:429
int ast_find_ourip(struct ast_sockaddr *ourip, const struct ast_sockaddr *bindaddr, int family)
Find our IP address.
Definition: acl.c:1051
@ AST_SENSE_DENY
Definition: acl.h:37
enum ast_acl_sense ast_apply_acl_nolog(struct ast_acl_list *acl_list, const struct ast_sockaddr *addr)
Apply a set of rules to a given IP address, don't log failure.
Definition: acl.c:803
struct ast_acl_list * ast_free_acl_list(struct ast_acl_list *acl)
Free a list of ACLs.
Definition: acl.c:233
char digit
jack_status_t status
Definition: app_jack.c:146
const char * str
Definition: app_jack.c:147
enum queue_result id
Definition: app_queue.c:1638
pthread_t thread
Definition: app_sla.c:329
ast_cond_t cond
Definition: app_sla.c:330
ast_mutex_t lock
Definition: app_sla.c:331
static volatile unsigned int seq
Definition: app_sms.c:120
#define var
Definition: ast_expr2f.c:605
if(!yyg->yy_init)
Definition: ast_expr2f.c:854
Asterisk main include file. File version handling, generic pbx functions.
#define ast_free(a)
Definition: astmm.h:180
#define ast_strndup(str, len)
A wrapper for strndup()
Definition: astmm.h:256
#define ast_strdup(str)
A wrapper for strdup()
Definition: astmm.h:241
#define ast_strdupa(s)
duplicate a string in memory from the stack
Definition: astmm.h:298
void ast_free_ptr(void *ptr)
free() wrapper
Definition: astmm.c:1739
#define ast_calloc(num, len)
A wrapper for calloc()
Definition: astmm.h:202
#define ast_malloc(len)
A wrapper for malloc()
Definition: astmm.h:191
#define ast_log
Definition: astobj2.c:42
#define ao2_iterator_next(iter)
Definition: astobj2.h:1911
#define ao2_link(container, obj)
Add an object to a container.
Definition: astobj2.h:1532
@ CMP_MATCH
Definition: astobj2.h:1027
@ CMP_STOP
Definition: astobj2.h:1028
#define OBJ_POINTER
Definition: astobj2.h:1150
@ AO2_ALLOC_OPT_LOCK_NOLOCK
Definition: astobj2.h:367
@ AO2_ALLOC_OPT_LOCK_MUTEX
Definition: astobj2.h:363
int ao2_container_count(struct ao2_container *c)
Returns the number of elements in a container.
#define ao2_cleanup(obj)
Definition: astobj2.h:1934
#define ao2_find(container, arg, flags)
Definition: astobj2.h:1736
struct ao2_iterator ao2_iterator_init(struct ao2_container *c, int flags) attribute_warn_unused_result
Create an iterator for a container.
#define ao2_unlock(a)
Definition: astobj2.h:729
#define ao2_replace(dst, src)
Replace one object reference with another cleaning up the original.
Definition: astobj2.h:501
#define ao2_lock(a)
Definition: astobj2.h:717
#define ao2_ref(o, delta)
Reference/unreference an object and return the old refcount.
Definition: astobj2.h:459
#define ao2_alloc_options(data_size, destructor_fn, options)
Definition: astobj2.h:404
void * ao2_object_get_lockaddr(void *obj)
Return the mutex lock address of an object.
Definition: astobj2.c:476
#define ao2_bump(obj)
Bump refcount on an AO2 object by one, returning the object.
Definition: astobj2.h:480
void ao2_iterator_destroy(struct ao2_iterator *iter)
Destroy a container iterator.
#define ao2_container_alloc_list(ao2_options, container_options, sort_fn, cmp_fn)
Allocate and initialize a list container.
Definition: astobj2.h:1327
#define ao2_alloc(data_size, destructor_fn)
Definition: astobj2.h:409
static int tmp()
Definition: bt_open.c:389
static const char desc[]
Definition: cdr_radius.c:84
static PGresult * result
Definition: cel_pgsql.c:84
unsigned int tos
Definition: chan_iax2.c:355
static struct stasis_subscription * acl_change_sub
Definition: chan_iax2.c:328
unsigned int cos
Definition: chan_iax2.c:356
static void acl_change_stasis_cb(void *data, struct stasis_subscription *sub, struct stasis_message *message)
Definition: chan_iax2.c:1558
static struct ast_sched_context * sched
Definition: chan_ooh323.c:400
static const char type[]
Definition: chan_ooh323.c:109
static char version[AST_MAX_EXTENSION]
Definition: chan_ooh323.c:391
static int answer(void *data)
Definition: chan_pjsip.c:683
General Asterisk PBX channel definitions.
const struct ast_channel_tech * ast_channel_tech(const struct ast_channel *chan)
Standard Command Line Interface.
#define CLI_SHOWUSAGE
Definition: cli.h:45
#define AST_CLI_YESNO(x)
Return Yes or No depending on the argument.
Definition: cli.h:71
#define CLI_SUCCESS
Definition: cli.h:44
int ast_cli_unregister_multiple(struct ast_cli_entry *e, int len)
Unregister multiple commands.
Definition: clicompat.c:30
#define AST_CLI_DEFINE(fn, txt,...)
Definition: cli.h:197
int ast_cli_completion_add(char *value)
Add a result to a request for completion options.
Definition: main/cli.c:2761
void ast_cli(int fd, const char *fmt,...)
Definition: clicompat.c:6
char * ast_cli_complete(const char *word, const char *const choices[], int pos)
Definition: main/cli.c:1846
@ CLI_INIT
Definition: cli.h:152
@ CLI_GENERATE
Definition: cli.h:153
#define CLI_FAILURE
Definition: cli.h:46
#define ast_cli_register_multiple(e, len)
Register multiple commands.
Definition: cli.h:265
static struct ao2_container * codecs
Registered codecs.
Definition: codec.c:48
ast_media_type
Types of media.
Definition: codec.h:30
@ AST_MEDIA_TYPE_AUDIO
Definition: codec.h:32
@ AST_MEDIA_TYPE_UNKNOWN
Definition: codec.h:31
@ AST_MEDIA_TYPE_VIDEO
Definition: codec.h:33
@ AST_MEDIA_TYPE_END
Definition: codec.h:36
@ AST_MEDIA_TYPE_IMAGE
Definition: codec.h:34
@ AST_MEDIA_TYPE_TEXT
Definition: codec.h:35
unsigned int ast_codec_samples_count(struct ast_frame *frame)
Get the number of samples contained within a frame.
Definition: codec.c:379
const char * ast_codec_media_type2str(enum ast_media_type type)
Conversion function to take a media type and turn it into a string.
Definition: codec.c:348
static int reconstruct(int sign, int dqln, int y)
Definition: codec_g726.c:331
Conversion utility functions.
int ast_str_to_uint(const char *str, unsigned int *res)
Convert the given string to an unsigned integer.
Definition: conversions.c:56
Data Buffer API.
void * ast_data_buffer_get(const struct ast_data_buffer *buffer, size_t pos)
Retrieve a data payload from the data buffer.
Definition: data_buffer.c:269
struct ast_data_buffer * ast_data_buffer_alloc(ast_data_buffer_free_callback free_fn, size_t size)
Allocate a data buffer.
Definition: data_buffer.c:145
size_t ast_data_buffer_count(const struct ast_data_buffer *buffer)
Return the number of payloads in a data buffer.
Definition: data_buffer.c:356
void ast_data_buffer_resize(struct ast_data_buffer *buffer, size_t size)
Resize a data buffer.
Definition: data_buffer.c:168
int ast_data_buffer_put(struct ast_data_buffer *buffer, size_t pos, void *payload)
Place a data payload at a position in the data buffer.
Definition: data_buffer.c:203
size_t ast_data_buffer_max(const struct ast_data_buffer *buffer)
Return the maximum number of payloads a data buffer can hold.
Definition: data_buffer.c:363
void * ast_data_buffer_remove(struct ast_data_buffer *buffer, size_t pos)
Remove a data payload from the data buffer.
Definition: data_buffer.c:299
void ast_data_buffer_free(struct ast_data_buffer *buffer)
Free a data buffer (and all held data payloads)
Definition: data_buffer.c:338
Core DNS API.
const struct ast_dns_record * ast_dns_record_get_next(const struct ast_dns_record *record)
Get the next DNS record.
Definition: dns_core.c:170
int ast_dns_result_get_lowest_ttl(const struct ast_dns_result *result)
Retrieve the lowest TTL from a result.
Definition: dns_core.c:112
const char * ast_dns_record_get_data(const struct ast_dns_record *record)
Retrieve the raw DNS record.
Definition: dns_core.c:160
const struct ast_dns_record * ast_dns_result_get_records(const struct ast_dns_result *result)
Get the first record of a DNS Result.
Definition: dns_core.c:102
struct ast_dns_result * ast_dns_query_get_result(const struct ast_dns_query *query)
Get the result information for a DNS query.
Definition: dns_core.c:77
int ast_dns_record_get_rr_type(const struct ast_dns_record *record)
Get the resource record type of a DNS record.
Definition: dns_core.c:145
const char * ast_dns_query_get_name(const struct ast_dns_query *query)
Get the name queried in a DNS query.
Definition: dns_core.c:57
size_t ast_dns_record_get_data_size(const struct ast_dns_record *record)
Retrieve the size of the raw DNS record.
Definition: dns_core.c:165
Internal DNS structure definitions.
DNS Recurring Resolution API.
int ast_dns_resolve_recurring_cancel(struct ast_dns_query_recurring *recurring)
Cancel an asynchronous recurring DNS resolution.
struct ast_dns_query_recurring * ast_dns_resolve_recurring(const char *name, int rr_type, int rr_class, ast_dns_resolve_callback callback, void *data)
Asynchronously resolve a DNS query, and continue resolving it according to the lowest TTL available.
char * end
Definition: eagi_proxy.c:73
char buf[BUFSIZE]
Definition: eagi_proxy.c:66
void ast_verbose(const char *fmt,...)
Definition: extconf.c:2206
char * address
Definition: f2c.h:59
#define abs(x)
Definition: f2c.h:195
int ast_format_get_smoother_flags(const struct ast_format *format)
Get smoother flags for this format.
Definition: format.c:349
enum ast_media_type ast_format_get_type(const struct ast_format *format)
Get the media type of a format.
Definition: format.c:354
int ast_format_can_be_smoothed(const struct ast_format *format)
Get whether or not the format can be smoothed.
Definition: format.c:344
unsigned int ast_format_get_minimum_bytes(const struct ast_format *format)
Get the minimum number of bytes expected in a frame for this format.
Definition: format.c:374
unsigned int ast_format_get_sample_rate(const struct ast_format *format)
Get the sample rate of a media format.
Definition: format.c:379
unsigned int ast_format_get_minimum_ms(const struct ast_format *format)
Get the minimum amount of media carried in this format.
Definition: format.c:364
enum ast_format_cmp_res ast_format_cmp(const struct ast_format *format1, const struct ast_format *format2)
Compare two formats.
Definition: format.c:201
@ AST_FORMAT_CMP_EQUAL
Definition: format.h:36
@ AST_FORMAT_CMP_NOT_EQUAL
Definition: format.h:38
const char * ast_format_get_name(const struct ast_format *format)
Get the name associated with a format.
Definition: format.c:334
unsigned int ast_format_get_default_ms(const struct ast_format *format)
Get the default framing size (in milliseconds) for a format.
Definition: format.c:359
Media Format Cache API.
int ast_format_cache_is_slinear(struct ast_format *format)
Determines if a format is one of the cached slin formats.
Definition: format_cache.c:534
struct ast_format * ast_format_none
Built-in "null" format.
Definition: format_cache.c:246
struct ast_format * ast_format_t140_red
Built-in cached t140 red format.
Definition: format_cache.c:236
struct ast_format * ast_format_g722
Built-in cached g722 format.
Definition: format_cache.c:106
struct ast_format * ast_format_t140
Built-in cached t140 format.
Definition: format_cache.c:231
static const char name[]
Definition: format_mp3.c:68
static int replace(struct ast_channel *chan, const char *cmd, char *data, struct ast_str **buf, ssize_t len)
Definition: func_strings.c:888
static int len(struct ast_channel *chan, const char *cmd, char *data, char *buf, size_t buflen)
struct stasis_message_type * ast_rtp_rtcp_sent_type(void)
Message type for an RTCP message sent from this Asterisk instance.
struct stasis_message_type * ast_rtp_rtcp_received_type(void)
Message type for an RTCP message received from some external source.
const char * ext
Definition: http.c:150
void timersub(struct timeval *tvend, struct timeval *tvstart, struct timeval *tvdiff)
char * strsep(char **str, const char *delims)
Configuration File Parser.
struct ast_config * ast_config_load2(const char *filename, const char *who_asked, struct ast_flags flags)
Load a config file.
Definition: main/config.c:3321
#define CONFIG_STATUS_FILEUNCHANGED
#define CONFIG_STATUS_FILEINVALID
int ast_parse_arg(const char *arg, enum ast_parse_flags flags, void *p_result,...)
The argument parsing routine.
Definition: main/config.c:3827
void ast_config_destroy(struct ast_config *cfg)
Destroys a config.
Definition: extconf.c:1289
const char * ast_variable_retrieve(struct ast_config *config, const char *category, const char *variable)
Definition: main/config.c:783
struct ast_variable * ast_variable_browse(const struct ast_config *config, const char *category_name)
Definition: extconf.c:1215
@ CONFIG_FLAG_FILEUNCHANGED
Asterisk internal frame definitions.
@ AST_FRFLAG_HAS_SEQUENCE_NUMBER
@ AST_FRFLAG_HAS_TIMING_INFO
#define ast_frame_byteswap_be(fr)
#define ast_frisolate(fr)
Makes a frame independent of any static storage.
void ast_frame_free(struct ast_frame *frame, int cache)
Frees a frame or list of frames.
Definition: main/frame.c:176
#define ast_frdup(fr)
Copies a frame.
#define ast_frfree(fr)
#define AST_FRIENDLY_OFFSET
Offset into a frame's data buffer.
ast_frame_type
Frame types.
@ AST_FRAME_VIDEO
@ AST_FRAME_DTMF_END
@ AST_FRAME_DTMF_BEGIN
@ AST_FRAME_VOICE
@ AST_FRAME_RTCP
@ AST_FRAME_CONTROL
@ AST_FRAME_TEXT
@ AST_CONTROL_VIDUPDATE
@ AST_CONTROL_FLASH
@ AST_CONTROL_SRCCHANGE
struct ast_frame ast_null_frame
Definition: main/frame.c:79
#define DEBUG_ATLEAST(level)
#define ast_debug(level,...)
Log a DEBUG message.
#define LOG_DEBUG
#define LOG_ERROR
#define ast_verb(level,...)
#define LOG_NOTICE
#define LOG_WARNING
struct ssl_ctx_st SSL_CTX
Definition: iostream.h:38
struct ssl_st SSL
Definition: iostream.h:37
void ast_json_unref(struct ast_json *value)
Decrease refcount on value. If refcount reaches zero, value is freed.
Definition: json.c:73
struct ast_json * ast_json_pack(char const *format,...)
Helper for creating complex JSON values.
Definition: json.c:612
#define AST_RWLIST_REMOVE_CURRENT
Definition: linkedlists.h:570
#define AST_RWLIST_RDLOCK(head)
Read locks a list.
Definition: linkedlists.h:78
#define AST_LIST_HEAD_INIT_NOLOCK(head)
Initializes a list head structure.
Definition: linkedlists.h:681
#define AST_LIST_HEAD_STATIC(name, type)
Defines a structure to be used to hold a list of specified type, statically initialized.
Definition: linkedlists.h:291
#define AST_LIST_HEAD_NOLOCK(name, type)
Defines a structure to be used to hold a list of specified type (with no lock).
Definition: linkedlists.h:225
#define AST_RWLIST_TRAVERSE_SAFE_BEGIN
Definition: linkedlists.h:545
#define AST_RWLIST_WRLOCK(head)
Write locks a list.
Definition: linkedlists.h:52
#define AST_RWLIST_UNLOCK(head)
Attempts to unlock a read/write based list.
Definition: linkedlists.h:151
#define AST_LIST_TRAVERSE(head, var, field)
Loops over (traverses) the entries in a list.
Definition: linkedlists.h:491
#define AST_RWLIST_HEAD_STATIC(name, type)
Defines a structure to be used to hold a read/write list of specified type, statically initialized.
Definition: linkedlists.h:333
#define AST_LIST_INSERT_TAIL(head, elm, field)
Appends a list entry to the tail of a list.
Definition: linkedlists.h:731
#define AST_LIST_ENTRY(type)
Declare a forward link structure inside a list entry.
Definition: linkedlists.h:410
#define AST_RWLIST_TRAVERSE_SAFE_END
Definition: linkedlists.h:617
#define AST_LIST_LOCK(head)
Locks a list.
Definition: linkedlists.h:40
#define AST_LIST_INSERT_HEAD(head, elm, field)
Inserts a list entry at the head of a list.
Definition: linkedlists.h:711
#define AST_LIST_REMOVE(head, elm, field)
Removes a specific entry from a list.
Definition: linkedlists.h:856
#define AST_RWLIST_INSERT_TAIL
Definition: linkedlists.h:741
#define AST_LIST_REMOVE_HEAD(head, field)
Removes and returns the head entry from a list.
Definition: linkedlists.h:833
#define AST_LIST_UNLOCK(head)
Attempts to unlock a list.
Definition: linkedlists.h:140
#define AST_RWLIST_ENTRY
Definition: linkedlists.h:415
#define AST_LIST_FIRST(head)
Returns the first entry contained in a list.
Definition: linkedlists.h:421
#define AST_LIST_NEXT(elm, field)
Returns the next entry in the list after the given entry.
Definition: linkedlists.h:439
Asterisk locking-related definitions:
#define ast_rwlock_wrlock(a)
Definition: lock.h:236
#define AST_RWLOCK_INIT_VALUE
Definition: lock.h:98
#define ast_cond_init(cond, attr)
Definition: lock.h:201
#define ast_cond_timedwait(cond, mutex, time)
Definition: lock.h:206
#define ast_rwlock_rdlock(a)
Definition: lock.h:235
pthread_cond_t ast_cond_t
Definition: lock.h:178
#define ast_rwlock_unlock(a)
Definition: lock.h:234
#define ast_cond_signal(cond)
Definition: lock.h:203
#define AST_LOG_CATEGORY_DISABLED
#define AST_LOG_CATEGORY_ENABLED
#define ast_debug_category(sublevel, ids,...)
Log for a debug category.
int ast_debug_category_set_sublevel(const char *name, int sublevel)
Set the debug category's sublevel.
int errno
The AMI - Asterisk Manager Interface - is a TCP protocol created to manage Asterisk with third-party ...
Asterisk module definitions.
@ AST_MODFLAG_LOAD_ORDER
Definition: module.h:331
#define AST_MODULE_INFO(keystr, flags_to_set, desc, fields...)
Definition: module.h:557
@ AST_MODPRI_CHANNEL_DEPEND
Definition: module.h:340
@ AST_MODULE_SUPPORT_CORE
Definition: module.h:121
#define ASTERISK_GPL_KEY
The text the key() function should return.
Definition: module.h:46
@ AST_MODULE_LOAD_SUCCESS
Definition: module.h:70
@ AST_MODULE_LOAD_DECLINE
Module has failed to load, may be in an inconsistent state.
Definition: module.h:78
def info(msg)
int ast_sockaddr_ipv4_mapped(const struct ast_sockaddr *addr, struct ast_sockaddr *ast_mapped)
Convert an IPv4-mapped IPv6 address into an IPv4 address.
Definition: netsock2.c:37
static char * ast_sockaddr_stringify(const struct ast_sockaddr *addr)
Wrapper around ast_sockaddr_stringify_fmt() with default format.
Definition: netsock2.h:256
#define ast_sockaddr_port(addr)
Get the port number of a socket address.
Definition: netsock2.h:517
static void ast_sockaddr_copy(struct ast_sockaddr *dst, const struct ast_sockaddr *src)
Copies the data from one ast_sockaddr to another.
Definition: netsock2.h:167
int ast_sockaddr_is_ipv6(const struct ast_sockaddr *addr)
Determine if this is an IPv6 address.
Definition: netsock2.c:524
int ast_bind(int sockfd, const struct ast_sockaddr *addr)
Wrapper around bind(2) that uses struct ast_sockaddr.
Definition: netsock2.c:590
#define ast_sockaddr_from_sockaddr(addr, sa)
Converts a struct sockaddr to a struct ast_sockaddr.
Definition: netsock2.h:819
int ast_sockaddr_cmp_addr(const struct ast_sockaddr *a, const struct ast_sockaddr *b)
Compares the addresses of two ast_sockaddr structures.
Definition: netsock2.c:413
static char * ast_sockaddr_stringify_host(const struct ast_sockaddr *addr)
Wrapper around ast_sockaddr_stringify_fmt() to return an address only, suitable for a URL (with brack...
Definition: netsock2.h:327
ssize_t ast_sendto(int sockfd, const void *buf, size_t len, int flags, const struct ast_sockaddr *dest_addr)
Wrapper around sendto(2) that uses ast_sockaddr.
Definition: netsock2.c:614
int ast_sockaddr_is_any(const struct ast_sockaddr *addr)
Determine if the address type is unspecified, or "any" address.
Definition: netsock2.c:534
int ast_sockaddr_split_hostport(char *str, char **host, char **port, int flags)
Splits a string into its host and port components.
Definition: netsock2.c:164
int ast_set_qos(int sockfd, int tos, int cos, const char *desc)
Set type of service.
Definition: netsock2.c:621
ast_transport
Definition: netsock2.h:59
@ AST_TRANSPORT_UDP
Definition: netsock2.h:60
@ AST_TRANSPORT_TCP
Definition: netsock2.h:61
#define ast_sockaddr_to_sin(addr, sin)
Converts a struct ast_sockaddr to a struct sockaddr_in.
Definition: netsock2.h:765
int ast_sockaddr_parse(struct ast_sockaddr *addr, const char *str, int flags)
Parse an IPv4 or IPv6 address string.
Definition: netsock2.c:230
static int ast_sockaddr_isnull(const struct ast_sockaddr *addr)
Checks if the ast_sockaddr is null. "null" in this sense essentially means uninitialized,...
Definition: netsock2.h:127
ssize_t ast_recvfrom(int sockfd, void *buf, size_t len, int flags, struct ast_sockaddr *src_addr)
Wrapper around recvfrom(2) that uses struct ast_sockaddr.
Definition: netsock2.c:606
int ast_sockaddr_cmp(const struct ast_sockaddr *a, const struct ast_sockaddr *b)
Compares two ast_sockaddr structures.
Definition: netsock2.c:388
#define ast_sockaddr_set_port(addr, port)
Sets the port number of a socket address.
Definition: netsock2.h:532
#define ast_sockaddr_from_sin(addr, sin)
Converts a struct sockaddr_in to a struct ast_sockaddr.
Definition: netsock2.h:778
static void ast_sockaddr_setnull(struct ast_sockaddr *addr)
Sets address addr to null.
Definition: netsock2.h:138
int ast_sockaddr_is_ipv4(const struct ast_sockaddr *addr)
Determine if the address is an IPv4 address.
Definition: netsock2.c:497
const char * ast_inet_ntoa(struct in_addr ia)
thread-safe replacement for inet_ntoa().
Definition: utils.c:928
Options provided by main asterisk program.
#define AST_PJPROJECT_INIT_LOG_LEVEL()
Get maximum log level pjproject was compiled with.
Definition: options.h:167
static int frames
Definition: parser.c:51
Core PBX routines and definitions.
static void * cleanup(void *unused)
Definition: pbx_realtime.c:124
static char * generate_random_string(char *buf, size_t size)
Generate 32 byte random string (stolen from chan_sip.c)
Definition: res_calendar.c:719
static int reload(void)
struct stasis_forward * sub
Definition: res_corosync.c:240
int ast_sockaddr_to_pj_sockaddr(const struct ast_sockaddr *addr, pj_sockaddr *pjaddr)
Fill a pj_sockaddr from an ast_sockaddr.
void ast_pjproject_caching_pool_destroy(pj_caching_pool *cp)
Destroy caching pool factory and all cached pools.
int ast_sockaddr_pj_sockaddr_cmp(const struct ast_sockaddr *addr, const pj_sockaddr *pjaddr)
Compare an ast_sockaddr to a pj_sockaddr.
void ast_pjproject_caching_pool_init(pj_caching_pool *cp, const pj_pool_factory_policy *policy, pj_size_t max_capacity)
Initialize the caching pool factory.
static struct ast_threadstorage pj_thread_storage
Definition: res_pjsip.c:2281
static pj_caching_pool cachingpool
Pool factory used by pjlib to allocate memory.
#define OLD_PACKET_COUNT
#define TURN_STATE_WAIT_TIME
static int ast_rtp_dtmf_compatible(struct ast_channel *chan0, struct ast_rtp_instance *instance0, struct ast_channel *chan1, struct ast_rtp_instance *instance1)
static int rtpdebugport
static void ast_rtp_update_source(struct ast_rtp_instance *instance)
#define TRANSPORT_TURN_RTCP
static int ast_rtp_destroy(struct ast_rtp_instance *instance)
#define RTCP_LENGTH_SHIFT
struct ast_srtp_res * res_srtp
Definition: rtp_engine.c:176
static int ast_rtp_rtcp_handle_nack(struct ast_rtp_instance *instance, unsigned int *nackdata, unsigned int position, unsigned int length)
static int rtp_reload(int reload, int by_external_config)
#define RTCP_PAYLOAD_TYPE_SHIFT
#define DEFAULT_RTP_RECV_BUFFER_SIZE
#define MAX_TIMESTAMP_SKEW
#define DEFAULT_ICESUPPORT
static void ntp2timeval(unsigned int msw, unsigned int lsw, struct timeval *tv)
#define RTCP_VALID_VALUE
#define RTCP_FB_NACK_BLOCK_WORD_LENGTH
static struct ast_sockaddr rtpdebugaddr
#define DEFAULT_LEARNING_MIN_SEQUENTIAL
#define FLAG_3389_WARNING
static int rtp_learning_rtp_seq_update(struct rtp_learning_info *info, uint16_t seq)
static int rtp_transport_wide_cc_feedback_produce(const void *data)
#define RTCP_RR_BLOCK_WORD_LENGTH
static struct ast_frame * ast_rtcp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp, const unsigned char *rtcpdata, size_t size, struct ast_sockaddr *addr)
static const char * rtcp_payload_subtype2str(unsigned int pt, unsigned int subtype)
static int ast_rtp_new(struct ast_rtp_instance *instance, struct ast_sched_context *sched, struct ast_sockaddr *addr, void *data)
static char * handle_cli_rtp_settings(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
static struct ast_frame * ast_rtcp_read(struct ast_rtp_instance *instance)
#define RTP_IGNORE_FIRST_PACKETS_COUNT
static int rtp_raw_write(struct ast_rtp_instance *instance, struct ast_frame *frame, int codec)
static int rtcpdebugport
#define RTCP_SR_BLOCK_WORD_LENGTH
static int ast_rtp_dtmf_end_with_duration(struct ast_rtp_instance *instance, char digit, unsigned int duration)
#define DEFAULT_RTP_END
static int rtcp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
static struct ast_rtp_instance * rtp_find_instance_by_packet_source_ssrc(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned int ssrc)
#define SRTP_MASTER_LEN
#define RTCP_REPORT_COUNT_SHIFT
#define RTCP_PT_FUR
#define RTCP_DEFAULT_INTERVALMS
static void rtp_deallocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
#define RTP_DTLS_ESTABLISHED
static int bridge_p2p_rtp_write(struct ast_rtp_instance *instance, struct ast_rtp_instance *instance1, unsigned int *rtpheader, int len, int hdrlen)
#define DEFAULT_DTMF_TIMEOUT
static void put_unaligned_time24(void *p, uint32_t time_msw, uint32_t time_lsw)
#define RTCP_MAX_INTERVALMS
static int ast_rtcp_generate_nack(struct ast_rtp_instance *instance, unsigned char *rtcpheader)
static char * handle_cli_rtp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
strict_rtp_mode
@ STRICT_RTP_SEQNO
@ STRICT_RTP_YES
@ STRICT_RTP_NO
static void rtp_transport_wide_cc_feedback_status_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits, uint16_t *status_vector_chunk, int *run_length_chunk_count, int *run_length_chunk_status, int status)
static int ast_rtp_bundle(struct ast_rtp_instance *child, struct ast_rtp_instance *parent)
static struct ast_rtp_engine asterisk_rtp_engine
static const char * rtcp_payload_type2str(unsigned int pt)
#define TRANSPORT_SOCKET_RTP
static int rtpend
static void rtp_instance_parse_transport_wide_cc(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned char *data, int len)
static void calc_rxstamp_and_jitter(struct timeval *tv, struct ast_rtp *rtp, unsigned int rx_rtp_ts, int mark)
static unsigned int calc_txstamp(struct ast_rtp *rtp, struct timeval *delivery)
static int ast_rtp_dtmf_continuation(struct ast_rtp_instance *instance)
#define RTCP_PT_RR
#define SRTP_MASTER_KEY_LEN
static int learning_min_sequential
static int rtp_allocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
static char * rtcp_do_debug_ip(struct ast_cli_args *a)
static int ast_rtcp_generate_report(struct ast_rtp_instance *instance, unsigned char *rtcpheader, struct ast_rtp_rtcp_report *rtcp_report, int *sr)
static struct ast_frame * ast_rtp_read(struct ast_rtp_instance *instance, int rtcp)
static char * handle_cli_rtcp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
struct ast_srtp_policy_res * res_srtp_policy
Definition: rtp_engine.c:177
#define RTCP_PT_BYE
static struct ast_rtp_instance * __rtp_find_instance_by_ssrc(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned int ssrc, int source)
static void calculate_lost_packet_statistics(struct ast_rtp *rtp, unsigned int *lost_packets, int *fraction_lost)
#define RTCP_HEADER_SSRC_LENGTH
static void process_dtmf_rfc2833(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark, struct frame_list *frames)
#define RTCP_VALID_MASK
static int srtp_replay_protection
static void ast_rtp_set_stream_num(struct ast_rtp_instance *instance, int stream_num)
static int learning_min_duration
static int create_new_socket(const char *type, int af)
static int ast_rtp_fd(struct ast_rtp_instance *instance, int rtcp)
static int ast_rtcp_generate_compound_prefix(struct ast_rtp_instance *instance, unsigned char *rtcpheader, struct ast_rtp_rtcp_report *report, int *sr)
static void update_jitter_stats(struct ast_rtp *rtp, unsigned int ia_jitter)
#define RTCP_FB_REMB_BLOCK_WORD_LENGTH
#define RTCP_PT_PSFB
static struct ast_frame * process_cn_rfc3389(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
#define DEFAULT_SRTP_REPLAY_PROTECTION
#define DEFAULT_DTLS_MTU
static int reload_module(void)
#define FLAG_NAT_INACTIVE
static int rtcp_debug_test_addr(struct ast_sockaddr *addr)
static int ast_rtp_qos_set(struct ast_rtp_instance *instance, int tos, int cos, const char *desc)
static void ast_rtp_change_source(struct ast_rtp_instance *instance)
static int ast_rtp_dtmf_end(struct ast_rtp_instance *instance, char digit)
static void calc_mean_and_standard_deviation(double new_sample, double *mean, double *std_dev, unsigned int *count)
static int compare_by_value(int elem, int value)
Helper function to compare an elem in a vector by value.
static int update_rtt_stats(struct ast_rtp *rtp, unsigned int lsr, unsigned int dlsr)
static int rtcp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
static struct ast_sockaddr rtcpdebugaddr
static struct ast_rtp_instance * rtp_find_instance_by_media_source_ssrc(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned int ssrc)
#define MAXIMUM_RTP_RECV_BUFFER_SIZE
static int rtp_red_buffer(struct ast_rtp_instance *instance, struct ast_frame *frame)
#define STRICT_RTP_LEARN_TIMEOUT
Strict RTP learning timeout time in milliseconds.
#define RTCP_VERSION_SHIFTED
static int rtcpinterval
static int strictrtp
static int ast_rtp_dtmf_begin(struct ast_rtp_instance *instance, char digit)
static void rtp_instance_parse_extmap_extensions(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned char *extension, int len)
static int find_by_value(int elem, int value)
Helper function to find an elem in a vector by value.
#define RTCP_REPORT_COUNT_MASK
static void rtp_instance_unlock(struct ast_rtp_instance *instance)
#define DEFAULT_RTP_START
#define TRANSPORT_TURN_RTP
static int rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
static int rtpstart
#define MINIMUM_RTP_PORT
static struct ast_cli_entry cli_rtp[]
static int ast_rtp_get_stat(struct ast_rtp_instance *instance, struct ast_rtp_instance_stats *stats, enum ast_rtp_instance_stat stat)
#define RESCALE(in, inmin, inmax, outmin, outmax)
#define RTCP_PT_SDES
#define MISSING_SEQNOS_ADDED_TRIGGER
#define SRTP_MASTER_SALT_LEN
static int ast_rtp_write(struct ast_rtp_instance *instance, struct ast_frame *frame)
#define RTCP_PAYLOAD_TYPE_MASK
#define DEFAULT_RTP_SEND_BUFFER_SIZE
#define FLAG_NAT_ACTIVE
#define FLAG_NEED_MARKER_BIT
static int __rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp)
#define RTCP_MIN_INTERVALMS
static void ast_rtp_stop(struct ast_rtp_instance *instance)
#define FLAG_REQ_LOCAL_BRIDGE_BIT
#define RTCP_PT_SR
static int __rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp, int *via_ice, int use_srtp)
static int load_module(void)
static int ast_rtcp_calculate_sr_rr_statistics(struct ast_rtp_instance *instance, struct ast_rtp_rtcp_report *rtcp_report, struct ast_sockaddr remote_address, int ice, int sr)
#define RTCP_VERSION_MASK_SHIFTED
#define CALC_LEARNING_MIN_DURATION(count)
Calculate the min learning duration in ms.
static int rtp_transport_wide_cc_packet_statistics_cmp(struct rtp_transport_wide_cc_packet_statistics a, struct rtp_transport_wide_cc_packet_statistics b)
#define SSRC_MAPPING_ELEM_CMP(elem, value)
SSRC mapping comparator for AST_VECTOR_REMOVE_CMP_UNORDERED()
static int rtp_debug_test_addr(struct ast_sockaddr *addr)
static int rtp_red_init(struct ast_rtp_instance *instance, int buffer_time, int *payloads, int generations)
strict_rtp_state
@ STRICT_RTP_LEARN
@ STRICT_RTP_OPEN
@ STRICT_RTP_CLOSED
static int unload_module(void)
static void ast_rtp_set_remote_ssrc(struct ast_rtp_instance *instance, unsigned int ssrc)
static void ast_rtp_prop_set(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value)
#define FLAG_NAT_INACTIVE_NOWARN
static int rtcp_mux(struct ast_rtp *rtp, const unsigned char *packet)
static void rtp_learning_seq_init(struct rtp_learning_info *info, uint16_t seq)
#define TRANSPORT_SOCKET_RTCP
static void rtp_learning_start(struct ast_rtp *rtp)
Start the strictrtp learning mode.
static int ast_rtp_dtmf_mode_set(struct ast_rtp_instance *instance, enum ast_rtp_dtmf_mode dtmf_mode)
static unsigned int ast_rtcp_calc_interval(struct ast_rtp *rtp)
static char * rtp_do_debug_ip(struct ast_cli_args *a)
static enum ast_rtp_dtmf_mode ast_rtp_dtmf_mode_get(struct ast_rtp_instance *instance)
static int rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
static unsigned int ast_rtp_get_ssrc(struct ast_rtp_instance *instance)
#define MAXIMUM_RTP_PORT
static void timeval2ntp(struct timeval tv, unsigned int *msw, unsigned int *lsw)
static void ast_rtp_remote_address_set(struct ast_rtp_instance *instance, struct ast_sockaddr *addr)
static struct ast_frame * ast_rtp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp, const struct ast_sockaddr *remote_address, unsigned char *read_area, int length, int prev_seqno, unsigned int bundled)
static int ast_rtp_local_bridge(struct ast_rtp_instance *instance0, struct ast_rtp_instance *instance1)
static struct ast_frame * red_t140_to_red(struct rtp_red *red)
static int ast_rtcp_generate_sdes(struct ast_rtp_instance *instance, unsigned char *rtcpheader, struct ast_rtp_rtcp_report *rtcp_report)
#define SEQNO_CYCLE_OVER
static double calc_media_experience_score(struct ast_rtp_instance *instance, double normdevrtt, double normdev_rxjitter, double stdev_rxjitter, double normdev_rxlost)
Calculate a "media experience score" based on given data.
static void update_reported_mes_stats(struct ast_rtp *rtp)
static int dtmftimeout
#define DEFAULT_STRICT_RTP
static int ast_rtp_sendcng(struct ast_rtp_instance *instance, int level)
generate comfort noice (CNG)
static char * handle_cli_rtcp_set_stats(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
static void update_lost_stats(struct ast_rtp *rtp, unsigned int lost_packets)
static void ast_rtp_stun_request(struct ast_rtp_instance *instance, struct ast_sockaddr *suggestion, const char *username)
static const char * ast_rtp_get_cname(struct ast_rtp_instance *instance)
static void rtp_write_rtcp_psfb(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_frame *frame, struct ast_sockaddr *remote_address)
static int rtcpstats
static struct ast_frame * process_dtmf_cisco(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
#define RTP_SEQ_MOD
static struct ast_frame * create_dtmf_frame(struct ast_rtp_instance *instance, enum ast_frame_type type, int compensate)
static void rtp_write_rtcp_fir(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_sockaddr *remote_address)
#define DEFAULT_TURN_PORT
#define MAXIMUM_RTP_SEND_BUFFER_SIZE
static int red_write(const void *data)
Write t140 redundancy frame.
#define DEFAULT_STUN_SOFTWARE_ATTRIBUTE
#define RTCP_LENGTH_MASK
#define DEFAULT_LEARNING_MIN_DURATION
static void update_local_mes_stats(struct ast_rtp *rtp)
static void rtp_transport_wide_cc_feedback_status_vector_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits, uint16_t *status_vector_chunk, int status)
static int ast_rtp_extension_enable(struct ast_rtp_instance *instance, enum ast_rtp_extension extension)
static int ast_rtcp_write(const void *data)
Write a RTCP packet to the far end.
ast_srtp_suite
Definition: res_srtp.h:56
@ AST_AES_CM_128_HMAC_SHA1_80
Definition: res_srtp.h:58
@ AST_AES_CM_128_HMAC_SHA1_32
Definition: res_srtp.h:59
#define NULL
Definition: resample.c:96
Pluggable RTP Architecture.
ast_rtp_dtls_setup
DTLS setup types.
Definition: rtp_engine.h:564
@ AST_RTP_DTLS_SETUP_PASSIVE
Definition: rtp_engine.h:566
@ AST_RTP_DTLS_SETUP_HOLDCONN
Definition: rtp_engine.h:568
@ AST_RTP_DTLS_SETUP_ACTPASS
Definition: rtp_engine.h:567
@ AST_RTP_DTLS_SETUP_ACTIVE
Definition: rtp_engine.h:565
#define AST_RTP_RTCP_PSFB
Definition: rtp_engine.h:329
#define AST_DEBUG_CATEGORY_DTLS
Definition: rtp_engine.h:3007
#define ast_debug_rtcp_packet_is_allowed
Definition: rtp_engine.h:3042
ast_rtp_ice_role
ICE role during negotiation.
Definition: rtp_engine.h:519
@ AST_RTP_ICE_ROLE_CONTROLLING
Definition: rtp_engine.h:521
@ AST_RTP_ICE_ROLE_CONTROLLED
Definition: rtp_engine.h:520
#define AST_RTP_RTCP_FMT_FIR
Definition: rtp_engine.h:337
#define ast_debug_rtcp(sublevel,...)
Log debug level RTCP information.
Definition: rtp_engine.h:3034
struct ast_format * ast_rtp_codecs_get_preferred_format(struct ast_rtp_codecs *codecs)
Retrieve rx preferred format.
Definition: rtp_engine.c:1548
ast_rtp_ice_component_type
ICE component types.
Definition: rtp_engine.h:513
@ AST_RTP_ICE_COMPONENT_RTCP
Definition: rtp_engine.h:515
@ AST_RTP_ICE_COMPONENT_RTP
Definition: rtp_engine.h:514
struct ast_rtp_rtcp_report * ast_rtp_rtcp_report_alloc(unsigned int report_blocks)
Allocate an ao2 ref counted instance of ast_rtp_rtcp_report.
Definition: rtp_engine.c:3618
struct ast_rtp_payload_type * ast_rtp_codecs_get_payload(struct ast_rtp_codecs *codecs, int payload)
Retrieve rx payload mapped information by payload type.
Definition: rtp_engine.c:1524
int ast_rtp_instance_get_prop(struct ast_rtp_instance *instance, enum ast_rtp_property property)
Get the value of an RTP instance property.
Definition: rtp_engine.c:738
ast_rtp_dtls_hash
DTLS fingerprint hashes.
Definition: rtp_engine.h:578
@ AST_RTP_DTLS_HASH_SHA1
Definition: rtp_engine.h:580
@ AST_RTP_DTLS_HASH_SHA256
Definition: rtp_engine.h:579
int ast_rtp_engine_srtp_is_registered(void)
Definition: rtp_engine.c:2870
ast_rtp_dtmf_mode
Definition: rtp_engine.h:151
#define AST_RED_MAX_GENERATION
Definition: rtp_engine.h:98
#define AST_RTP_DTMF
Definition: rtp_engine.h:294
ast_rtp_instance_rtcp
Definition: rtp_engine.h:283
@ AST_RTP_INSTANCE_RTCP_MUX
Definition: rtp_engine.h:289
@ AST_RTP_INSTANCE_RTCP_STANDARD
Definition: rtp_engine.h:287
void ast_rtp_publish_rtcp_message(struct ast_rtp_instance *rtp, struct stasis_message_type *message_type, struct ast_rtp_rtcp_report *report, struct ast_json *blob)
Publish an RTCP message to Stasis Message Bus API.
Definition: rtp_engine.c:3629
struct ast_srtp * ast_rtp_instance_get_srtp(struct ast_rtp_instance *instance, int rtcp)
Obtain the SRTP instance associated with an RTP instance.
Definition: rtp_engine.c:2902
#define AST_RTP_STAT_TERMINATOR(combined)
Definition: rtp_engine.h:500
#define AST_RTP_RTCP_RTPFB
Definition: rtp_engine.h:327
struct ast_rtp_instance * ast_rtp_instance_get_bridged(struct ast_rtp_instance *instance)
Get the other RTP instance that an instance is bridged to.
Definition: rtp_engine.c:2349
ast_rtp_dtls_verify
DTLS verification settings.
Definition: rtp_engine.h:584
@ AST_RTP_DTLS_VERIFY_FINGERPRINT
Definition: rtp_engine.h:586
@ AST_RTP_DTLS_VERIFY_CERTIFICATE
Definition: rtp_engine.h:587
#define ast_debug_rtp_packet_is_allowed
Definition: rtp_engine.h:3025
#define AST_LOG_CATEGORY_RTCP_PACKET
Definition: rtp_engine.h:2987
ast_rtp_instance_stat
Definition: rtp_engine.h:185
@ AST_RTP_INSTANCE_STAT_LOCAL_MAXRXPLOSS
Definition: rtp_engine.h:207
@ AST_RTP_INSTANCE_STAT_REMOTE_NORMDEVRXPLOSS
Definition: rtp_engine.h:203
@ AST_RTP_INSTANCE_STAT_REMOTE_MAXRXPLOSS
Definition: rtp_engine.h:199
@ AST_RTP_INSTANCE_STAT_REMOTE_NORMDEVMES
Definition: rtp_engine.h:270
@ AST_RTP_INSTANCE_STAT_REMOTE_MINJITTER
Definition: rtp_engine.h:223
@ AST_RTP_INSTANCE_STAT_LOCAL_NORMDEVMES
Definition: rtp_engine.h:278
@ AST_RTP_INSTANCE_STAT_MIN_RTT
Definition: rtp_engine.h:243
@ AST_RTP_INSTANCE_STAT_TXMES
Definition: rtp_engine.h:262
@ AST_RTP_INSTANCE_STAT_CHANNEL_UNIQUEID
Definition: rtp_engine.h:253
@ AST_RTP_INSTANCE_STAT_TXPLOSS
Definition: rtp_engine.h:195
@ AST_RTP_INSTANCE_STAT_MAX_RTT
Definition: rtp_engine.h:241
@ AST_RTP_INSTANCE_STAT_RXPLOSS
Definition: rtp_engine.h:197
@ AST_RTP_INSTANCE_STAT_REMOTE_MAXJITTER
Definition: rtp_engine.h:221
@ AST_RTP_INSTANCE_STAT_LOCAL_MAXJITTER
Definition: rtp_engine.h:229
@ AST_RTP_INSTANCE_STAT_REMOTE_MINMES
Definition: rtp_engine.h:268
@ AST_RTP_INSTANCE_STAT_REMOTE_STDEVJITTER
Definition: rtp_engine.h:227
@ AST_RTP_INSTANCE_STAT_REMOTE_MINRXPLOSS
Definition: rtp_engine.h:201
@ AST_RTP_INSTANCE_STAT_LOCAL_MINMES
Definition: rtp_engine.h:276
@ AST_RTP_INSTANCE_STAT_TXOCTETCOUNT
Definition: rtp_engine.h:255
@ AST_RTP_INSTANCE_STAT_RXMES
Definition: rtp_engine.h:264
@ AST_RTP_INSTANCE_STAT_REMOTE_STDEVMES
Definition: rtp_engine.h:272
@ AST_RTP_INSTANCE_STAT_LOCAL_NORMDEVRXPLOSS
Definition: rtp_engine.h:211
@ AST_RTP_INSTANCE_STAT_REMOTE_STDEVRXPLOSS
Definition: rtp_engine.h:205
@ AST_RTP_INSTANCE_STAT_LOCAL_STDEVRXPLOSS
Definition: rtp_engine.h:213
@ AST_RTP_INSTANCE_STAT_REMOTE_MAXMES
Definition: rtp_engine.h:266
@ AST_RTP_INSTANCE_STAT_TXCOUNT
Definition: rtp_engine.h:189
@ AST_RTP_INSTANCE_STAT_STDEVRTT
Definition: rtp_engine.h:247
@ AST_RTP_INSTANCE_STAT_COMBINED_MES
Definition: rtp_engine.h:260
@ AST_RTP_INSTANCE_STAT_LOCAL_MAXMES
Definition: rtp_engine.h:274
@ AST_RTP_INSTANCE_STAT_RXJITTER
Definition: rtp_engine.h:219
@ AST_RTP_INSTANCE_STAT_LOCAL_MINRXPLOSS
Definition: rtp_engine.h:209
@ AST_RTP_INSTANCE_STAT_LOCAL_SSRC
Definition: rtp_engine.h:249
@ AST_RTP_INSTANCE_STAT_REMOTE_NORMDEVJITTER
Definition: rtp_engine.h:225
@ AST_RTP_INSTANCE_STAT_COMBINED_JITTER
Definition: rtp_engine.h:215
@ AST_RTP_INSTANCE_STAT_TXJITTER
Definition: rtp_engine.h:217
@ AST_RTP_INSTANCE_STAT_LOCAL_MINJITTER
Definition: rtp_engine.h:231
@ AST_RTP_INSTANCE_STAT_COMBINED_LOSS
Definition: rtp_engine.h:193
@ AST_RTP_INSTANCE_STAT_LOCAL_STDEVJITTER
Definition: rtp_engine.h:235
@ AST_RTP_INSTANCE_STAT_COMBINED_RTT
Definition: rtp_engine.h:237
@ AST_RTP_INSTANCE_STAT_NORMDEVRTT
Definition: rtp_engine.h:245
@ AST_RTP_INSTANCE_STAT_RTT
Definition: rtp_engine.h:239
@ AST_RTP_INSTANCE_STAT_RXOCTETCOUNT
Definition: rtp_engine.h:257
@ AST_RTP_INSTANCE_STAT_LOCAL_STDEVMES
Definition: rtp_engine.h:280
@ AST_RTP_INSTANCE_STAT_LOCAL_NORMDEVJITTER
Definition: rtp_engine.h:233
@ AST_RTP_INSTANCE_STAT_RXCOUNT
Definition: rtp_engine.h:191
@ AST_RTP_INSTANCE_STAT_REMOTE_SSRC
Definition: rtp_engine.h:251
void * ast_rtp_instance_get_data(struct ast_rtp_instance *instance)
Get the data portion of an RTP instance.
Definition: rtp_engine.c:585
#define ast_rtp_instance_get_remote_address(instance, address)
Get the address of the remote endpoint that we are sending RTP to.
Definition: rtp_engine.h:1245
enum ast_media_type ast_rtp_codecs_get_stream_type(struct ast_rtp_codecs *codecs)
Determine the type of RTP stream media from the codecs mapped.
Definition: rtp_engine.c:1505
#define AST_RTP_RTCP_FMT_NACK
Definition: rtp_engine.h:333
#define ast_debug_rtp(sublevel,...)
Log debug level RTP information.
Definition: rtp_engine.h:3017
void ast_rtp_instance_set_last_tx(struct ast_rtp_instance *rtp, time_t time)
Set the last RTP transmission time.
Definition: rtp_engine.c:3935
void ast_rtp_instance_set_data(struct ast_rtp_instance *instance, void *data)
Set the data portion of an RTP instance.
Definition: rtp_engine.c:580
int ast_rtp_codecs_payload_code_tx_sample_rate(struct ast_rtp_codecs *codecs, int asterisk_format, const struct ast_format *format, int code, unsigned int sample_rate)
Retrieve a tx mapped payload type based on whether it is an Asterisk format and the code.
Definition: rtp_engine.c:2034
void ast_rtp_instance_set_prop(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value)
Set the value of an RTP instance property.
Definition: rtp_engine.c:727
int ast_rtp_codecs_find_payload_code(struct ast_rtp_codecs *codecs, int payload)
Search for the tx payload type in the ast_rtp_codecs structure.
Definition: rtp_engine.c:2090
void ast_rtp_instance_get_local_address(struct ast_rtp_instance *instance, struct ast_sockaddr *address)
Get the local address that we are expecting RTP on.
Definition: rtp_engine.c:665
@ AST_RTP_ICE_CANDIDATE_TYPE_RELAYED
Definition: rtp_engine.h:509
@ AST_RTP_ICE_CANDIDATE_TYPE_SRFLX
Definition: rtp_engine.h:508
@ AST_RTP_ICE_CANDIDATE_TYPE_HOST
Definition: rtp_engine.h:507
#define AST_DEBUG_CATEGORY_ICE
Definition: rtp_engine.h:3009
int ast_rtp_instance_set_local_address(struct ast_rtp_instance *instance, const struct ast_sockaddr *address)
Set the address that we are expecting to receive RTP on.
Definition: rtp_engine.c:610
int ast_rtp_get_rate(const struct ast_format *format)
Retrieve the sample rate of a format according to RTP specifications.
Definition: rtp_engine.c:4215
int ast_rtp_codecs_payload_code_tx(struct ast_rtp_codecs *codecs, int asterisk_format, const struct ast_format *format, int code)
Retrieve a tx mapped payload type based on whether it is an Asterisk format and the code.
Definition: rtp_engine.c:2085
ast_rtp_extension
Known RTP extensions.
Definition: rtp_engine.h:593
@ AST_RTP_EXTENSION_TRANSPORT_WIDE_CC
Definition: rtp_engine.h:599
@ AST_RTP_EXTENSION_ABS_SEND_TIME
Definition: rtp_engine.h:597
#define ast_rtp_instance_set_remote_address(instance, address)
Set the address of the remote endpoint that we are sending RTP to.
Definition: rtp_engine.h:1133
#define AST_RTP_RTCP_FMT_REMB
Definition: rtp_engine.h:339
ast_rtp_dtls_connection
DTLS connection states.
Definition: rtp_engine.h:572
@ AST_RTP_DTLS_CONNECTION_NEW
Definition: rtp_engine.h:573
@ AST_RTP_DTLS_CONNECTION_EXISTING
Definition: rtp_engine.h:574
#define ast_debug_dtls(sublevel,...)
Log debug level DTLS information.
Definition: rtp_engine.h:3051
ast_rtp_property
Definition: rtp_engine.h:116
@ AST_RTP_PROPERTY_NAT
Definition: rtp_engine.h:118
@ AST_RTP_PROPERTY_RETRANS_RECV
Definition: rtp_engine.h:130
@ AST_RTP_PROPERTY_RETRANS_SEND
Definition: rtp_engine.h:132
@ AST_RTP_PROPERTY_RTCP
Definition: rtp_engine.h:126
@ AST_RTP_PROPERTY_ASYMMETRIC_CODEC
Definition: rtp_engine.h:128
@ AST_RTP_PROPERTY_DTMF
Definition: rtp_engine.h:120
@ AST_RTP_PROPERTY_DTMF_COMPENSATE
Definition: rtp_engine.h:122
@ AST_RTP_PROPERTY_REMB
Definition: rtp_engine.h:134
#define ast_debug_dtls_packet_is_allowed
Definition: rtp_engine.h:3055
#define AST_LOG_CATEGORY_RTP_PACKET
Definition: rtp_engine.h:2983
#define AST_RTP_STAT_STRCPY(current_stat, combined, placement, value)
Definition: rtp_engine.h:492
#define ast_debug_ice(sublevel,...)
Log debug level ICE information.
Definition: rtp_engine.h:3063
void ast_rtp_instance_get_requested_target_address(struct ast_rtp_instance *instance, struct ast_sockaddr *address)
Get the requested target address of the remote endpoint.
Definition: rtp_engine.c:695
int ast_rtp_instance_set_incoming_source_address(struct ast_rtp_instance *instance, const struct ast_sockaddr *address)
Set the incoming source address of the remote endpoint that we are sending RTP to.
Definition: rtp_engine.c:628
int ast_rtp_instance_extmap_get_id(struct ast_rtp_instance *instance, enum ast_rtp_extension extension)
Retrieve the id for an RTP extension.
Definition: rtp_engine.c:908
#define AST_RTP_CN
Definition: rtp_engine.h:296
int ast_rtp_engine_unregister(struct ast_rtp_engine *engine)
Unregister an RTP engine.
Definition: rtp_engine.c:364
#define AST_RTP_RTCP_FMT_TRANSPORT_WIDE_CC
Definition: rtp_engine.h:341
struct ast_rtp_codecs * ast_rtp_instance_get_codecs(struct ast_rtp_instance *instance)
Get the codecs structure of an RTP instance.
Definition: rtp_engine.c:749
const char * ast_rtp_instance_get_channel_id(struct ast_rtp_instance *instance)
Get the unique ID of the channel that owns this RTP instance.
Definition: rtp_engine.c:570
unsigned int ast_rtp_codecs_get_framing(struct ast_rtp_codecs *codecs)
Get the framing used for a set of codecs.
Definition: rtp_engine.c:1631
unsigned int ast_rtp_instance_get_ssrc(struct ast_rtp_instance *rtp)
Retrieve the local SSRC value that we will be using.
Definition: rtp_engine.c:3950
#define AST_RTP_STAT_SET(current_stat, combined, placement, value)
Definition: rtp_engine.h:484
#define DEFAULT_DTMF_SAMPLE_RATE_MS
Definition: rtp_engine.h:110
int ast_rtp_instance_add_srtp_policy(struct ast_rtp_instance *instance, struct ast_srtp_policy *remote_policy, struct ast_srtp_policy *local_policy, int rtcp)
Add or replace the SRTP policies for the given RTP instance.
Definition: rtp_engine.c:2875
#define AST_RTP_RTCP_FMT_PLI
Definition: rtp_engine.h:335
#define ast_rtp_engine_register(engine)
Definition: rtp_engine.h:847
#define AST_RTP_CISCO_DTMF
Definition: rtp_engine.h:298
#define AST_SCHED_DEL_UNREF(sched, id, refcall)
schedule task to get deleted and call unref function
Definition: sched.h:82
#define AST_SCHED_DEL(sched, id)
Remove a scheduler entry.
Definition: sched.h:46
int ast_sched_del(struct ast_sched_context *con, int id) attribute_warn_unused_result
Deletes a scheduled event.
Definition: sched.c:614
int ast_sched_add(struct ast_sched_context *con, int when, ast_sched_cb callback, const void *data) attribute_warn_unused_result
Adds a scheduled event.
Definition: sched.c:567
Security Event Reporting API.
struct stasis_topic * ast_security_topic(void)
A stasis_topic which publishes messages for security related issues.
Asterisk internal frame definitions.
void ast_smoother_set_flags(struct ast_smoother *smoother, int flags)
Definition: smoother.c:123
#define ast_smoother_feed_be(s, f)
Definition: smoother.h:80
int ast_smoother_test_flag(struct ast_smoother *s, int flag)
Definition: smoother.c:128
void ast_smoother_free(struct ast_smoother *s)
Definition: smoother.c:220
#define AST_SMOOTHER_FLAG_FORCED
Definition: smoother.h:36
struct ast_frame * ast_smoother_read(struct ast_smoother *s)
Definition: smoother.c:169
#define ast_smoother_feed(s, f)
Definition: smoother.h:75
struct ast_smoother * ast_smoother_new(int bytes)
Definition: smoother.c:108
#define AST_SMOOTHER_FLAG_BE
Definition: smoother.h:35
struct stasis_message_type * stasis_message_type(const struct stasis_message *msg)
Get the message type for a stasis_message.
@ STASIS_SUBSCRIPTION_FILTER_SELECTIVE
Definition: stasis.h:297
int stasis_subscription_accept_message_type(struct stasis_subscription *subscription, const struct stasis_message_type *type)
Indicate to a subscription that we are interested in a message type.
Definition: stasis.c:1023
int stasis_subscription_set_filter(struct stasis_subscription *subscription, enum stasis_subscription_message_filter filter)
Set the message type filtering level on a subscription.
Definition: stasis.c:1077
struct stasis_subscription * stasis_unsubscribe_and_join(struct stasis_subscription *subscription)
Cancel a subscription, blocking until the last message is processed.
Definition: stasis.c:1134
#define stasis_subscribe(topic, callback, data)
Definition: stasis.h:649
#define S_OR(a, b)
returns the equivalent of logic or for strings: first one if not empty, otherwise second one.
Definition: strings.h:80
int attribute_pure ast_true(const char *val)
Make sure something is true. Determine if a string containing a boolean value is "true"....
Definition: utils.c:2199
static force_inline int attribute_pure ast_strlen_zero(const char *s)
Definition: strings.h:65
int attribute_pure ast_false(const char *val)
Make sure something is false. Determine if a string containing a boolean value is "false"....
Definition: utils.c:2216
void ast_copy_string(char *dst, const char *src, size_t size)
Size-limited null-terminating string copy.
Definition: strings.h:425
char * ast_skip_blanks(const char *str)
Gets a pointer to the first non-whitespace character in a string.
Definition: strings.h:161
Definition: test_acl.c:111
Generic container type.
When we need to walk through a container, we use an ao2_iterator to keep track of the current positio...
Definition: astobj2.h:1821
Wrapper for an ast_acl linked list.
Definition: acl.h:76
Main Channel structure associated with a channel.
descriptor for a cli entry.
Definition: cli.h:171
int args
This gets set in ast_cli_register()
Definition: cli.h:185
char * command
Definition: cli.h:186
const char * usage
Definition: cli.h:177
Data buffer containing fixed number of data payloads.
Definition: data_buffer.c:59
A recurring DNS query.
Definition: dns_internal.h:157
A DNS query.
Definition: dns_internal.h:137
For AST_LIST.
Definition: dns_internal.h:39
char data[0]
The raw DNS record.
Definition: dns_internal.h:60
int rr_type
Resource record type.
Definition: dns_internal.h:41
The result of a DNS query.
Definition: dns_internal.h:117
Structure used to handle boolean flags.
Definition: utils.h:199
Definition of a media format.
Definition: format.c:43
struct ast_codec * codec
Pointer to the codec in use for this format.
Definition: format.c:47
struct ast_format * format
Data structure associated with a single frame of data.
struct ast_frame_subclass subclass
union ast_frame::@226 data
struct timeval delivery
enum ast_frame_type frametype
unsigned int flags
const char * src
Abstract JSON element (object, array, string, int, ...).
Structure defining an RTCP session.
double maxrxmes
double reported_mes
double maxrxlost
unsigned int themrxlsr
unsigned int rxmes_count
unsigned int received_prior
unsigned int sr_count
unsigned char frame_buf[512+AST_FRIENDLY_OFFSET]
double reported_maxjitter
unsigned int reported_mes_count
double reported_normdev_lost
double reported_minlost
double normdevrtt
double reported_normdev_mes
double stdevrtt
double minrxjitter
unsigned int soc
unsigned int lastsrtxcount
double reported_maxmes
struct ast_sockaddr them
unsigned int reported_lost
double reported_stdev_jitter
unsigned int reported_jitter_count
double normdev_rxjitter
double accumulated_transit
double reported_stdev_lost
struct timeval txlsr
enum ast_rtp_instance_rtcp type
unsigned int spc
unsigned int rxjitter_count
unsigned int reported_lost_count
double normdev_rxlost
double reported_stdev_mes
unsigned int rtt_count
double normdev_rxmes
double maxrxjitter
double reported_normdev_jitter
double reported_maxlost
unsigned int rxlost_count
unsigned int rr_count
double stdev_rxjitter
double reported_jitter
double stdev_rxmes
double reported_minjitter
double minrxlost
struct ast_sockaddr us
struct timeval rxlsr
double minrxmes
char * local_addr_str
unsigned int expected_prior
double reported_minmes
double stdev_rxlost
DTLS configuration structure.
Definition: rtp_engine.h:605
enum ast_rtp_dtls_setup default_setup
Definition: rtp_engine.h:608
enum ast_rtp_dtls_verify verify
Definition: rtp_engine.h:611
unsigned int rekey
Definition: rtp_engine.h:607
enum ast_rtp_dtls_hash hash
Definition: rtp_engine.h:610
unsigned int enabled
Definition: rtp_engine.h:606
unsigned int ephemeral_cert
Definition: rtp_engine.h:617
enum ast_srtp_suite suite
Definition: rtp_engine.h:609
Structure that represents the optional DTLS SRTP support within an RTP engine.
Definition: rtp_engine.h:621
int(* set_configuration)(struct ast_rtp_instance *instance, const struct ast_rtp_dtls_cfg *dtls_cfg)
Definition: rtp_engine.h:623
Structure for an ICE candidate.
Definition: rtp_engine.h:525
struct ast_sockaddr address
Definition: rtp_engine.h:530
enum ast_rtp_ice_component_type id
Definition: rtp_engine.h:527
struct ast_sockaddr relay_address
Definition: rtp_engine.h:531
enum ast_rtp_ice_candidate_type type
Definition: rtp_engine.h:532
Structure that represents the optional ICE support within an RTP engine.
Definition: rtp_engine.h:536
void(* set_authentication)(struct ast_rtp_instance *instance, const char *ufrag, const char *password)
Definition: rtp_engine.h:538
const char * name
Definition: rtp_engine.h:667
struct ast_rtp_engine_dtls * dtls
Definition: rtp_engine.h:744
unsigned int remote_ssrc
Definition: rtp_engine.h:454
unsigned int rxcount
Definition: rtp_engine.h:400
unsigned int local_ssrc
Definition: rtp_engine.h:452
unsigned int rxoctetcount
Definition: rtp_engine.h:460
unsigned int rxploss
Definition: rtp_engine.h:424
unsigned int txcount
Definition: rtp_engine.h:398
unsigned int txploss
Definition: rtp_engine.h:422
unsigned int txoctetcount
Definition: rtp_engine.h:458
char channel_uniqueid[MAX_CHANNEL_ID]
Definition: rtp_engine.h:456
An object that represents data received in a feedback report.
Definition: rtp_engine.h:388
unsigned int fmt
Definition: rtp_engine.h:389
struct ast_rtp_rtcp_feedback_remb remb
Definition: rtp_engine.h:391
Structure for storing RTP packets for retransmission.
A report block within a SR/RR report.
Definition: rtp_engine.h:346
unsigned int highest_seq_no
Definition: rtp_engine.h:352
struct ast_rtp_rtcp_report_block::@272 lost_count
unsigned short fraction
Definition: rtp_engine.h:349
unsigned int source_ssrc
Definition: rtp_engine.h:347
An object that represents data sent during a SR/RR RTCP report.
Definition: rtp_engine.h:361
struct ast_rtp_rtcp_report::@273 sender_information
unsigned int type
Definition: rtp_engine.h:364
unsigned short reception_report_count
Definition: rtp_engine.h:362
unsigned int rtp_timestamp
Definition: rtp_engine.h:367
struct ast_rtp_rtcp_report_block * report_block[0]
Definition: rtp_engine.h:374
struct timeval ntp_timestamp
Definition: rtp_engine.h:366
unsigned int octet_count
Definition: rtp_engine.h:369
unsigned int ssrc
Definition: rtp_engine.h:363
unsigned int packet_count
Definition: rtp_engine.h:368
RTP session description.
unsigned int rxcount
unsigned int lastividtimestamp
unsigned int dtmf_duration
unsigned int dtmfsamples
unsigned int ssrc_orig
struct ast_format * lasttxformat
struct rtp_transport_wide_cc_statistics transport_wide_cc
unsigned int lastts
struct ast_smoother * smoother
struct ast_sched_context * sched
unsigned short seedrxseqno
struct timeval txcore
unsigned int remote_seed_rx_rtp_ts_stable
double rxmes
enum ast_rtp_dtmf_mode dtmfmode
struct ast_sockaddr strict_rtp_address
double rxstart
double rxstart_stable
enum strict_rtp_state strict_rtp_state
unsigned short seqno
unsigned int rxoctetcount
struct timeval rxcore
unsigned int last_seqno
struct ast_frame f
struct ast_rtcp * rtcp
int expectedrxseqno
unsigned int themssrc_valid
double rxjitter
unsigned int dtmf_timeout
char cname[AST_UUID_STR_LEN]
unsigned int txcount
unsigned char rawdata[8192+AST_FRIENDLY_OFFSET]
unsigned int last_transit_time_samples
unsigned int cycles
unsigned int lastovidtimestamp
unsigned int ssrc
unsigned int asymmetric_codec
double rxjitter_samples
struct ast_rtp::@471 missing_seqno
struct ast_data_buffer * recv_buffer
optional_ts last_end_timestamp
unsigned int lastotexttimestamp
unsigned int flags
struct timeval dtmfmute
struct ast_sockaddr bind_address
unsigned char ssrc_saved
struct ast_data_buffer * send_buffer
struct rtp_learning_info rtp_source_learn
struct ast_rtp_instance * owner
The RTP instance owning us (used for debugging purposes) We don't hold a reference to the instance be...
unsigned int remote_seed_rx_rtp_ts
unsigned int lastitexttimestamp
unsigned int dtmf_samplerate_ms
unsigned int lastdigitts
unsigned int txoctetcount
struct ast_rtp_instance * bundled
char sending_digit
struct rtp_red * red
struct ast_rtp::@472 ssrc_mapping
struct ast_format * lastrxformat
unsigned int themssrc
Structure for rwlock and tracking information.
Definition: lock.h:157
Socket address structure.
Definition: netsock2.h:97
socklen_t len
Definition: netsock2.h:99
void(* destroy)(struct ast_srtp_policy *policy)
Definition: res_srtp.h:72
int(* set_master_key)(struct ast_srtp_policy *policy, const unsigned char *key, size_t key_len, const unsigned char *salt, size_t salt_len)
Definition: res_srtp.h:74
void(* set_ssrc)(struct ast_srtp_policy *policy, unsigned long ssrc, int inbound)
Definition: res_srtp.h:75
int(* set_suite)(struct ast_srtp_policy *policy, enum ast_srtp_suite suite)
Definition: res_srtp.h:73
struct ast_srtp_policy *(* alloc)(void)
Definition: res_srtp.h:71
int(* unprotect)(struct ast_srtp *srtp, void *buf, int *size, int rtcp)
Definition: res_srtp.h:48
int(* change_source)(struct ast_srtp *srtp, unsigned int from_ssrc, unsigned int to_ssrc)
Definition: res_srtp.h:44
int(* protect)(struct ast_srtp *srtp, void **buf, int *size, int rtcp)
Definition: res_srtp.h:50
struct ast_rtp_instance * rtp
Definition: res_srtp.c:67
Structure for variables, used for configurations and for channel variables.
Definition: ndbm.h:57
Definition: astman.c:222
structure to hold extensions
unsigned int ts
unsigned char is_set
RTP learning mode tracking information.
enum ast_media_type stream_type
struct timeval received
struct ast_sockaddr proposed_address
struct timeval start
struct ast_frame t140
unsigned char t140red_data[64000]
unsigned char ts[AST_RED_MAX_GENERATION]
unsigned char len[AST_RED_MAX_GENERATION]
unsigned char buf_data[64000]
unsigned char pt[AST_RED_MAX_GENERATION]
long int prev_ts
struct ast_frame t140red
Structure used for mapping an incoming SSRC to an RTP instance.
unsigned int ssrc
The received SSRC.
unsigned int ssrc_valid
struct ast_rtp_instance * instance
The RTP instance this SSRC belongs to.
Packet statistics (used for transport-cc)
Statistics information (used for transport-cc)
struct rtp_transport_wide_cc_statistics::@470 packet_statistics
Definition: sched.c:76
Definition: ast_expr2.c:325
STUN support.
int ast_stun_request(int s, struct sockaddr_in *dst, const char *username, struct sockaddr_in *answer)
Generic STUN request.
Definition: stun.c:415
int ast_stun_handle_packet(int s, struct sockaddr_in *src, unsigned char *data, size_t len, stun_cb_f *stun_cb, void *arg)
handle an incoming STUN message.
Definition: stun.c:293
#define ast_debug_stun(sublevel,...)
Log debug level STUN information.
Definition: stun.h:54
#define AST_DEBUG_CATEGORY_STUN
Definition: stun.h:45
static const int STANDARD_STUN_PORT
Definition: stun.h:61
@ AST_STUN_ACCEPT
Definition: stun.h:65
int value
Definition: syslog.c:37
Test Framework API.
#define ast_test_suite_event_notify(s, f,...)
Definition: test.h:189
static struct test_options options
static struct test_val b
static struct test_val a
static struct test_val d
void * ast_threadstorage_get(struct ast_threadstorage *ts, size_t init_size)
Retrieve thread storage.
#define AST_THREADSTORAGE(name)
Define a thread storage variable.
Definition: threadstorage.h:86
int64_t ast_tvdiff_us(struct timeval end, struct timeval start)
Computes the difference (in microseconds) between two struct timeval instances.
Definition: time.h:87
struct timeval ast_samp2tv(unsigned int _nsamp, unsigned int _rate)
Returns a timeval corresponding to the duration of n samples at rate r. Useful to convert samples to ...
Definition: time.h:282
int ast_tvzero(const struct timeval t)
Returns true if the argument is 0,0.
Definition: time.h:117
@ TIME_UNIT_MICROSECOND
Definition: time.h:341
int ast_tvcmp(struct timeval _a, struct timeval _b)
Compress two struct timeval instances returning -1, 0, 1 if the first arg is smaller,...
Definition: time.h:137
struct timeval ast_time_create_by_unit(unsigned long val, enum TIME_UNIT unit)
Convert the given unit value, and create a timeval object from it.
Definition: time.c:113
double ast_samp2sec(unsigned int _nsamp, unsigned int _rate)
Returns the duration in seconds of _nsamp samples at rate _rate.
Definition: time.h:316
unsigned int ast_sec2samp(double _seconds, int _rate)
Returns the number of samples at _rate in the duration in _seconds.
Definition: time.h:333
struct timeval ast_tvadd(struct timeval a, struct timeval b)
Returns the sum of two timevals a + b.
Definition: extconf.c:2282
struct timeval ast_time_create_by_unit_str(unsigned long val, const char *unit)
Convert the given unit value, and create a timeval object from it.
Definition: time.c:143
struct timeval ast_tvsub(struct timeval a, struct timeval b)
Returns the difference of two timevals a - b.
Definition: extconf.c:2297
double ast_tv2double(const struct timeval *tv)
Returns a double corresponding to the number of seconds in the timeval tv.
Definition: time.h:270
ast_suseconds_t ast_time_tv_to_usec(const struct timeval *tv)
Convert a timeval structure to microseconds.
Definition: time.c:90
int64_t ast_tvdiff_ms(struct timeval end, struct timeval start)
Computes the difference (in milliseconds) between two struct timeval instances.
Definition: time.h:107
struct timeval ast_tvnow(void)
Returns current timeval. Meant to replace calls to gettimeofday().
Definition: time.h:159
struct timeval ast_tv(ast_time_t sec, ast_suseconds_t usec)
Returns a timeval from sec, usec.
Definition: time.h:235
static void destroy(struct ast_trans_pvt *pvt)
Definition: translate.c:292
Handle unaligned data access.
static void put_unaligned_uint16(void *p, unsigned short datum)
Definition: unaligned.h:65
static void put_unaligned_uint32(void *p, unsigned int datum)
Definition: unaligned.h:58
int error(const char *format,...)
Definition: utils/frame.c:999
static void statistics(void)
Definition: utils/frame.c:287
FILE * in
Definition: utils/frame.c:33
Utility functions.
#define ast_test_flag(p, flag)
Definition: utils.h:63
#define RAII_VAR(vartype, varname, initval, dtor)
Declare a variable that will call a destructor function when it goes out of scope.
Definition: utils.h:941
#define ast_assert(a)
Definition: utils.h:739
#define MIN(a, b)
Definition: utils.h:231
#define ast_socket_nonblock(domain, type, protocol)
Create a non-blocking socket.
Definition: utils.h:1073
#define ast_clear_flag(p, flag)
Definition: utils.h:77
long int ast_random(void)
Definition: utils.c:2312
#define ast_set_flag(p, flag)
Definition: utils.h:70
#define ARRAY_LEN(a)
Definition: utils.h:666
Universally unique identifier support.
#define AST_UUID_STR_LEN
Definition: uuid.h:27
char * ast_uuid_generate_str(char *buf, size_t size)
Generate a UUID string.
Definition: uuid.c:141
#define AST_VECTOR_RESET(vec, cleanup)
Reset vector.
Definition: vector.h:625
#define AST_VECTOR_ELEM_CLEANUP_NOOP(elem)
Vector element cleanup that does nothing.
Definition: vector.h:571
#define AST_VECTOR_SIZE(vec)
Get the number of elements in a vector.
Definition: vector.h:609
#define AST_VECTOR_REMOVE_CMP_ORDERED(vec, value, cmp, cleanup)
Remove an element from a vector that matches the given comparison while maintaining order.
Definition: vector.h:540
#define AST_VECTOR_FREE(vec)
Deallocates this vector.
Definition: vector.h:174
#define AST_VECTOR_REMOVE_CMP_UNORDERED(vec, value, cmp, cleanup)
Remove an element from a vector that matches the given comparison.
Definition: vector.h:488
#define AST_VECTOR_GET_CMP(vec, value, cmp)
Get an element from a vector that matches the given comparison.
Definition: vector.h:731
#define AST_VECTOR_ADD_SORTED(vec, elem, cmp)
Add an element into a sorted vector.
Definition: vector.h:371
#define AST_VECTOR_INIT(vec, size)
Initialize a vector.
Definition: vector.h:113
#define AST_VECTOR_APPEND(vec, elem)
Append an element to a vector, growing the vector if needed.
Definition: vector.h:256
#define AST_VECTOR(name, type)
Define a vector structure.
Definition: vector.h:44
#define AST_VECTOR_GET_ADDR(vec, idx)
Get an address of element in a vector.
Definition: vector.h:668