Asterisk - The Open Source Telephony Project GIT-master-7e7a603
res_rtp_asterisk.c
Go to the documentation of this file.
1/*
2 * Asterisk -- An open source telephony toolkit.
3 *
4 * Copyright (C) 1999 - 2008, Digium, Inc.
5 *
6 * Mark Spencer <markster@digium.com>
7 *
8 * See http://www.asterisk.org for more information about
9 * the Asterisk project. Please do not directly contact
10 * any of the maintainers of this project for assistance;
11 * the project provides a web site, mailing lists and IRC
12 * channels for your use.
13 *
14 * This program is free software, distributed under the terms of
15 * the GNU General Public License Version 2. See the LICENSE file
16 * at the top of the source tree.
17 */
18
19/*!
20 * \file
21 *
22 * \brief Supports RTP and RTCP with Symmetric RTP support for NAT traversal.
23 *
24 * \author Mark Spencer <markster@digium.com>
25 *
26 * \note RTP is defined in RFC 3550.
27 *
28 * \ingroup rtp_engines
29 */
30
31/*** MODULEINFO
32 <use type="external">openssl</use>
33 <use type="external">pjproject</use>
34 <support_level>core</support_level>
35 ***/
36
37#include "asterisk.h"
38
39#include <arpa/nameser.h>
40#include "asterisk/dns_core.h"
43
44#include <sys/time.h>
45#include <signal.h>
46#include <fcntl.h>
47#include <math.h>
48
49#ifdef HAVE_OPENSSL
50#include <openssl/opensslconf.h>
51#include <openssl/opensslv.h>
52#if !defined(OPENSSL_NO_SRTP) && (OPENSSL_VERSION_NUMBER >= 0x10001000L)
53#include <openssl/ssl.h>
54#include <openssl/err.h>
55#include <openssl/bio.h>
56#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L)
57#include <openssl/bn.h>
58#endif
59#ifndef OPENSSL_NO_DH
60#include <openssl/dh.h>
61#endif
62#endif
63#endif
64
65#ifdef HAVE_PJPROJECT
66#include <pjlib.h>
67#include <pjlib-util.h>
68#include <pjnath.h>
69#include <ifaddrs.h>
70#endif
71
73#include "asterisk/options.h"
75#include "asterisk/stun.h"
76#include "asterisk/pbx.h"
77#include "asterisk/frame.h"
79#include "asterisk/channel.h"
80#include "asterisk/acl.h"
81#include "asterisk/config.h"
82#include "asterisk/lock.h"
83#include "asterisk/utils.h"
84#include "asterisk/cli.h"
85#include "asterisk/manager.h"
86#include "asterisk/unaligned.h"
87#include "asterisk/module.h"
88#include "asterisk/rtp_engine.h"
89#include "asterisk/smoother.h"
90#include "asterisk/uuid.h"
91#include "asterisk/test.h"
93#ifdef HAVE_PJPROJECT
96#endif
97
98#define MAX_TIMESTAMP_SKEW 640
99
100#define RTP_SEQ_MOD (1<<16) /*!< A sequence number can't be more than 16 bits */
101#define RTCP_DEFAULT_INTERVALMS 5000 /*!< Default milli-seconds between RTCP reports we send */
102#define RTCP_MIN_INTERVALMS 500 /*!< Min milli-seconds between RTCP reports we send */
103#define RTCP_MAX_INTERVALMS 60000 /*!< Max milli-seconds between RTCP reports we send */
104
105#define DEFAULT_RTP_START 5000 /*!< Default port number to start allocating RTP ports from */
106#define DEFAULT_RTP_END 31000 /*!< Default maximum port number to end allocating RTP ports at */
107
108#define MINIMUM_RTP_PORT 1024 /*!< Minimum port number to accept */
109#define MAXIMUM_RTP_PORT 65535 /*!< Maximum port number to accept */
110
111#define DEFAULT_TURN_PORT 3478
112
113#define TURN_STATE_WAIT_TIME 2000
114
115#define DEFAULT_RTP_SEND_BUFFER_SIZE 250 /*!< The initial size of the RTP send buffer */
116#define MAXIMUM_RTP_SEND_BUFFER_SIZE (DEFAULT_RTP_SEND_BUFFER_SIZE + 200) /*!< Maximum RTP send buffer size */
117#define DEFAULT_RTP_RECV_BUFFER_SIZE 20 /*!< The initial size of the RTP receiver buffer */
118#define MAXIMUM_RTP_RECV_BUFFER_SIZE (DEFAULT_RTP_RECV_BUFFER_SIZE + 20) /*!< Maximum RTP receive buffer size */
119#define OLD_PACKET_COUNT 1000 /*!< The number of previous packets that are considered old */
120#define MISSING_SEQNOS_ADDED_TRIGGER 2 /*!< The number of immediate missing packets that will trigger an immediate NACK */
121
122#define SEQNO_CYCLE_OVER 65536 /*!< The number after the maximum allowed sequence number */
123
124/*! Full INTRA-frame Request / Fast Update Request (From RFC2032) */
125#define RTCP_PT_FUR 192
126/*! Sender Report (From RFC3550) */
127#define RTCP_PT_SR AST_RTP_RTCP_SR
128/*! Receiver Report (From RFC3550) */
129#define RTCP_PT_RR AST_RTP_RTCP_RR
130/*! Source Description (From RFC3550) */
131#define RTCP_PT_SDES 202
132/*! Goodbye (To remove SSRC's from tables) (From RFC3550) */
133#define RTCP_PT_BYE 203
134/*! Application defined (From RFC3550) */
135#define RTCP_PT_APP 204
136/* VP8: RTCP Feedback */
137/*! Payload Specific Feed Back (From RFC4585 also RFC5104) */
138#define RTCP_PT_PSFB AST_RTP_RTCP_PSFB
139
140#define RTP_MTU 1200
141#define DTMF_SAMPLE_RATE_MS 8 /*!< DTMF samples per millisecond */
142
143#define DEFAULT_DTMF_TIMEOUT (150 * (8000 / 1000)) /*!< samples */
144
145#define ZFONE_PROFILE_ID 0x505a
146
147#define DEFAULT_LEARNING_MIN_SEQUENTIAL 4
148/*!
149 * \brief Calculate the min learning duration in ms.
150 *
151 * \details
152 * The min supported packet size represents 10 ms and we need to account
153 * for some jitter and fast clocks while learning. Some messed up devices
154 * have very bad jitter for a small packet sample size. Jitter can also
155 * be introduced by the network itself.
156 *
157 * So we'll allow packets to come in every 9ms on average for fast clocking
158 * with the last one coming in 5ms early for jitter.
159 */
160#define CALC_LEARNING_MIN_DURATION(count) (((count) - 1) * 9 - 5)
161#define DEFAULT_LEARNING_MIN_DURATION CALC_LEARNING_MIN_DURATION(DEFAULT_LEARNING_MIN_SEQUENTIAL)
162
163#define SRTP_MASTER_KEY_LEN 16
164#define SRTP_MASTER_SALT_LEN 14
165#define SRTP_MASTER_LEN (SRTP_MASTER_KEY_LEN + SRTP_MASTER_SALT_LEN)
166
167#define RTP_DTLS_ESTABLISHED -37
168
170 STRICT_RTP_OPEN = 0, /*! No RTP packets should be dropped, all sources accepted */
171 STRICT_RTP_LEARN, /*! Accept next packet as source */
172 STRICT_RTP_CLOSED, /*! Drop all RTP packets not coming from source that was learned */
173};
174
176 STRICT_RTP_NO = 0, /*! Don't adhere to any strict RTP rules */
177 STRICT_RTP_YES, /*! Strict RTP that restricts packets based on time and sequence number */
178 STRICT_RTP_SEQNO, /*! Strict RTP that restricts packets based on sequence number */
179};
180
181/*!
182 * \brief Strict RTP learning timeout time in milliseconds
183 *
184 * \note Set to 5 seconds to allow reinvite chains for direct media
185 * to settle before media actually starts to arrive. There may be a
186 * reinvite collision involved on the other leg.
187 */
188#define STRICT_RTP_LEARN_TIMEOUT 5000
189
190#define DEFAULT_STRICT_RTP STRICT_RTP_YES /*!< Enabled by default */
191#define DEFAULT_SRTP_REPLAY_PROTECTION 1
192#define DEFAULT_ICESUPPORT 1
193#define DEFAULT_STUN_SOFTWARE_ATTRIBUTE 1
194#define DEFAULT_DTLS_MTU 1200
195
196/*!
197 * Because both ends usually don't start sending RTP
198 * at the same time, some of the calculations like
199 * rtt and jitter will probably be unstable for a while
200 * so we'll skip some received packets before starting
201 * analyzing. This just affects analyzing; we still
202 * process the RTP as normal.
203 */
204#define RTP_IGNORE_FIRST_PACKETS_COUNT 15
205
206extern struct ast_srtp_res *res_srtp;
208
210
211static int rtpstart = DEFAULT_RTP_START; /*!< First port for RTP sessions (set in rtp.conf) */
212static int rtpend = DEFAULT_RTP_END; /*!< Last port for RTP sessions (set in rtp.conf) */
213static int rtcpstats; /*!< Are we debugging RTCP? */
214static int rtcpinterval = RTCP_DEFAULT_INTERVALMS; /*!< Time between rtcp reports in millisecs */
215static struct ast_sockaddr rtpdebugaddr; /*!< Debug packets to/from this host */
216static struct ast_sockaddr rtcpdebugaddr; /*!< Debug RTCP packets to/from this host */
217static int rtpdebugport; /*!< Debug only RTP packets from IP or IP+Port if port is > 0 */
218static int rtcpdebugport; /*!< Debug only RTCP packets from IP or IP+Port if port is > 0 */
219#ifdef SO_NO_CHECK
220static int nochecksums;
221#endif
222static int strictrtp = DEFAULT_STRICT_RTP; /*!< Only accept RTP frames from a defined source. If we receive an indication of a changing source, enter learning mode. */
223static int learning_min_sequential = DEFAULT_LEARNING_MIN_SEQUENTIAL; /*!< Number of sequential RTP frames needed from a single source during learning mode to accept new source. */
224static int learning_min_duration = DEFAULT_LEARNING_MIN_DURATION; /*!< Lowest acceptable timeout between the first and the last sequential RTP frame. */
226#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
227static int dtls_mtu = DEFAULT_DTLS_MTU;
228#endif
229#ifdef HAVE_PJPROJECT
230static int icesupport = DEFAULT_ICESUPPORT;
231static int stun_software_attribute = DEFAULT_STUN_SOFTWARE_ATTRIBUTE;
232static struct sockaddr_in stunaddr;
233static pj_str_t turnaddr;
234static int turnport = DEFAULT_TURN_PORT;
235static pj_str_t turnusername;
236static pj_str_t turnpassword;
238static struct ast_sockaddr lo6 = { .len = 0 };
239
240/*! ACL for ICE addresses */
241static struct ast_acl_list *ice_acl = NULL;
242static ast_rwlock_t ice_acl_lock = AST_RWLOCK_INIT_VALUE;
243
244/*! ACL for STUN requests */
245static struct ast_acl_list *stun_acl = NULL;
246static ast_rwlock_t stun_acl_lock = AST_RWLOCK_INIT_VALUE;
247
248/*! stunaddr recurring resolution */
249static ast_rwlock_t stunaddr_lock = AST_RWLOCK_INIT_VALUE;
250static struct ast_dns_query_recurring *stunaddr_resolver = NULL;
251
252/*! \brief Pool factory used by pjlib to allocate memory. */
253static pj_caching_pool cachingpool;
254
255/*! \brief Global memory pool for configuration and timers */
256static pj_pool_t *pool;
257
258/*! \brief Global timer heap */
259static pj_timer_heap_t *timer_heap;
260
261/*! \brief Thread executing the timer heap */
262static pj_thread_t *timer_thread;
263
264/*! \brief Used to tell the timer thread to terminate */
265static int timer_terminate;
266
267/*! \brief Structure which contains ioqueue thread information */
268struct ast_rtp_ioqueue_thread {
269 /*! \brief Pool used by the thread */
270 pj_pool_t *pool;
271 /*! \brief The thread handling the queue and timer heap */
272 pj_thread_t *thread;
273 /*! \brief Ioqueue which polls on sockets */
274 pj_ioqueue_t *ioqueue;
275 /*! \brief Timer heap for scheduled items */
276 pj_timer_heap_t *timerheap;
277 /*! \brief Termination request */
278 int terminate;
279 /*! \brief Current number of descriptors being waited on */
280 unsigned int count;
281 /*! \brief Linked list information */
282 AST_LIST_ENTRY(ast_rtp_ioqueue_thread) next;
283};
284
285/*! \brief List of ioqueue threads */
286static AST_LIST_HEAD_STATIC(ioqueues, ast_rtp_ioqueue_thread);
287
288/*! \brief Structure which contains ICE host candidate mapping information */
289struct ast_ice_host_candidate {
290 struct ast_sockaddr local;
291 struct ast_sockaddr advertised;
292 unsigned int include_local;
293 AST_RWLIST_ENTRY(ast_ice_host_candidate) next;
294};
295
296/*! \brief List of ICE host candidate mappings */
297static AST_RWLIST_HEAD_STATIC(host_candidates, ast_ice_host_candidate);
298
299static char *generate_random_string(char *buf, size_t size);
300
301#endif
302
303#define FLAG_3389_WARNING (1 << 0)
304#define FLAG_NAT_ACTIVE (3 << 1)
305#define FLAG_NAT_INACTIVE (0 << 1)
306#define FLAG_NAT_INACTIVE_NOWARN (1 << 1)
307#define FLAG_NEED_MARKER_BIT (1 << 3)
308#define FLAG_DTMF_COMPENSATE (1 << 4)
309#define FLAG_REQ_LOCAL_BRIDGE_BIT (1 << 5)
310
311#define TRANSPORT_SOCKET_RTP 0
312#define TRANSPORT_SOCKET_RTCP 1
313#define TRANSPORT_TURN_RTP 2
314#define TRANSPORT_TURN_RTCP 3
315
316/*! \brief RTP learning mode tracking information */
318 struct ast_sockaddr proposed_address; /*!< Proposed remote address for strict RTP */
319 struct timeval start; /*!< The time learning mode was started */
320 struct timeval received; /*!< The time of the first received packet */
321 int max_seq; /*!< The highest sequence number received */
322 int packets; /*!< The number of remaining packets before the source is accepted */
323 /*! Type of media stream carried by the RTP instance */
325};
326
327#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
328struct dtls_details {
329 SSL *ssl; /*!< SSL session */
330 BIO *read_bio; /*!< Memory buffer for reading */
331 BIO *write_bio; /*!< Memory buffer for writing */
332 enum ast_rtp_dtls_setup dtls_setup; /*!< Current setup state */
333 enum ast_rtp_dtls_connection connection; /*!< Whether this is a new or existing connection */
334 int timeout_timer; /*!< Scheduler id for timeout timer */
335};
336#endif
337
338#ifdef HAVE_PJPROJECT
339/*! An ao2 wrapper protecting the PJPROJECT ice structure with ref counting. */
340struct ice_wrap {
341 pj_ice_sess *real_ice; /*!< ICE session */
342};
343#endif
344
345/*! \brief Structure used for mapping an incoming SSRC to an RTP instance */
347 /*! \brief The received SSRC */
348 unsigned int ssrc;
349 /*! True if the SSRC is available. Otherwise, this is a placeholder mapping until the SSRC is set. */
350 unsigned int ssrc_valid;
351 /*! \brief The RTP instance this SSRC belongs to*/
353};
354
355/*! \brief Packet statistics (used for transport-cc) */
357 /*! The transport specific sequence number */
358 unsigned int seqno;
359 /*! The time at which the packet was received */
360 struct timeval received;
361 /*! The delta between this packet and the previous */
362 int delta;
363};
364
365/*! \brief Statistics information (used for transport-cc) */
367 /*! A vector of packet statistics */
368 AST_VECTOR(, struct rtp_transport_wide_cc_packet_statistics) packet_statistics; /*!< Packet statistics, used for transport-cc */
369 /*! The last sequence number received */
370 unsigned int last_seqno;
371 /*! The last extended sequence number */
373 /*! How many feedback packets have gone out */
374 unsigned int feedback_count;
375 /*! How many cycles have occurred for the sequence numbers */
376 unsigned int cycles;
377 /*! Scheduler id for periodic feedback transmission */
379};
380
381typedef struct {
382 unsigned int ts;
383 unsigned char is_set;
385
386/*! \brief RTP session description */
387struct ast_rtp {
388 int s;
389 /*! \note The f.subclass.format holds a ref. */
390 struct ast_frame f;
391 unsigned char rawdata[8192 + AST_FRIENDLY_OFFSET];
392 unsigned int ssrc; /*!< Synchronization source, RFC 3550, page 10. */
393 unsigned int ssrc_orig; /*!< SSRC used before native bridge activated */
394 unsigned char ssrc_saved; /*!< indicates if ssrc_orig has a value */
395 char cname[AST_UUID_STR_LEN]; /*!< Our local CNAME */
396 unsigned int themssrc; /*!< Their SSRC */
397 unsigned int themssrc_valid; /*!< True if their SSRC is available. */
398 unsigned int lastts;
399 unsigned int lastividtimestamp;
400 unsigned int lastovidtimestamp;
401 unsigned int lastitexttimestamp;
402 unsigned int lastotexttimestamp;
403 int prevrxseqno; /*!< Previous received packeted sequence number, from the network */
404 int lastrxseqno; /*!< Last received sequence number, from the network */
405 int expectedrxseqno; /*!< Next expected sequence number, from the network */
406 AST_VECTOR(, int) missing_seqno; /*!< A vector of sequence numbers we never received */
407 int expectedseqno; /*!< Next expected sequence number, from the core */
408 unsigned short seedrxseqno; /*!< What sequence number did they start with?*/
409 unsigned int rxcount; /*!< How many packets have we received? */
410 unsigned int rxoctetcount; /*!< How many octets have we received? should be rxcount *160*/
411 unsigned int txcount; /*!< How many packets have we sent? */
412 unsigned int txoctetcount; /*!< How many octets have we sent? (txcount*160)*/
413 unsigned int cycles; /*!< Shifted count of sequence number cycles */
416
417 /*
418 * RX RTP Timestamp and Jitter calculation.
419 */
420 double rxstart; /*!< RX time of the first packet in the session in seconds since EPOCH. */
421 double rxstart_stable; /*!< RX time of the first packet after RTP_IGNORE_FIRST_PACKETS_COUNT */
422 unsigned int remote_seed_rx_rtp_ts; /*!< RTP timestamp of first RX packet. */
423 unsigned int remote_seed_rx_rtp_ts_stable; /*!< RTP timestamp of first packet after RTP_IGNORE_FIRST_PACKETS_COUNT */
424 unsigned int last_transit_time_samples; /*!< The last transit time in samples */
425 double rxjitter; /*!< Last calculated Interarrival jitter in seconds. */
426 double rxjitter_samples; /*!< Last calculated Interarrival jitter in samples. */
427 double rxmes; /*!< Media Experince Score at the moment to be reported */
428
429 /* DTMF Reception Variables */
430 char resp; /*!< The current digit being processed */
431 unsigned int last_seqno; /*!< The last known sequence number for any DTMF packet */
432 optional_ts last_end_timestamp; /*!< The last known timestamp received from an END packet */
433 unsigned int dtmf_duration; /*!< Total duration in samples since the digit start event */
434 unsigned int dtmf_timeout; /*!< When this timestamp is reached we consider END frame lost and forcibly abort digit */
435 unsigned int dtmfsamples;
436 enum ast_rtp_dtmf_mode dtmfmode; /*!< The current DTMF mode of the RTP stream */
437 /* DTMF Transmission Variables */
438 unsigned int lastdigitts;
439 char sending_digit; /*!< boolean - are we sending digits */
440 char send_digit; /*!< digit we are sending */
443 unsigned int flags;
444 struct timeval rxcore;
445 struct timeval txcore;
446
447 struct timeval dtmfmute;
449 unsigned short seqno; /*!< Sequence number, RFC 3550, page 13. */
451 struct ast_rtcp *rtcp;
452 unsigned int asymmetric_codec; /*!< Indicate if asymmetric send/receive codecs are allowed */
453
454 struct ast_rtp_instance *bundled; /*!< The RTP instance we are bundled to */
455 /*!
456 * \brief The RTP instance owning us (used for debugging purposes)
457 * We don't hold a reference to the instance because it created
458 * us in the first place. It can't go away.
459 */
461 int stream_num; /*!< Stream num for this RTP instance */
462 AST_VECTOR(, struct rtp_ssrc_mapping) ssrc_mapping; /*!< Mappings of SSRC to RTP instances */
463 struct ast_sockaddr bind_address; /*!< Requested bind address for the sockets */
464
465 enum strict_rtp_state strict_rtp_state; /*!< Current state that strict RTP protection is in */
466 struct ast_sockaddr strict_rtp_address; /*!< Remote address information for strict RTP purposes */
467
468 /*
469 * Learning mode values based on pjmedia's probation mode. Many of these values are redundant to the above,
470 * but these are in place to keep learning mode sequence values sealed from their normal counterparts.
471 */
472 struct rtp_learning_info rtp_source_learn; /* Learning mode track for the expected RTP source */
473
474 struct rtp_red *red;
475
476 struct ast_data_buffer *send_buffer; /*!< Buffer for storing sent packets for retransmission */
477 struct ast_data_buffer *recv_buffer; /*!< Buffer for storing received packets for retransmission */
478
479 struct rtp_transport_wide_cc_statistics transport_wide_cc; /*!< Transport-cc statistics information */
480
481#ifdef HAVE_PJPROJECT
482 ast_cond_t cond; /*!< ICE/TURN condition for signaling */
483
484 struct ice_wrap *ice; /*!< ao2 wrapped ICE session */
485 enum ast_rtp_ice_role role; /*!< Our role in ICE negotiation */
486 pj_turn_sock *turn_rtp; /*!< RTP TURN relay */
487 pj_turn_sock *turn_rtcp; /*!< RTCP TURN relay */
488 pj_turn_state_t turn_state; /*!< Current state of the TURN relay session */
489 unsigned int passthrough:1; /*!< Bit to indicate that the received packet should be passed through */
490 unsigned int rtp_passthrough:1; /*!< Bit to indicate that TURN RTP should be passed through */
491 unsigned int rtcp_passthrough:1; /*!< Bit to indicate that TURN RTCP should be passed through */
492 unsigned int ice_port; /*!< Port that ICE was started with if it was previously started */
493 struct ast_sockaddr rtp_loop; /*!< Loopback address for forwarding RTP from TURN */
494 struct ast_sockaddr rtcp_loop; /*!< Loopback address for forwarding RTCP from TURN */
495
496 struct ast_rtp_ioqueue_thread *ioqueue; /*!< The ioqueue thread handling us */
497
498 char remote_ufrag[256]; /*!< The remote ICE username */
499 char remote_passwd[256]; /*!< The remote ICE password */
500
501 char local_ufrag[256]; /*!< The local ICE username */
502 char local_passwd[256]; /*!< The local ICE password */
503
504 struct ao2_container *ice_local_candidates; /*!< The local ICE candidates */
505 struct ao2_container *ice_active_remote_candidates; /*!< The remote ICE candidates */
506 struct ao2_container *ice_proposed_remote_candidates; /*!< Incoming remote ICE candidates for new session */
507 struct ast_sockaddr ice_original_rtp_addr; /*!< rtp address that ICE started on first session */
508 unsigned int ice_num_components; /*!< The number of ICE components */
509 unsigned int ice_media_started:1; /*!< ICE media has started, either on a valid pair or on ICE completion */
510#endif
511
512#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
513 SSL_CTX *ssl_ctx; /*!< SSL context */
514 enum ast_rtp_dtls_verify dtls_verify; /*!< What to verify */
515 enum ast_srtp_suite suite; /*!< SRTP crypto suite */
516 enum ast_rtp_dtls_hash local_hash; /*!< Local hash used for the fingerprint */
517 char local_fingerprint[160]; /*!< Fingerprint of our certificate */
518 enum ast_rtp_dtls_hash remote_hash; /*!< Remote hash used for the fingerprint */
519 unsigned char remote_fingerprint[EVP_MAX_MD_SIZE]; /*!< Fingerprint of the peer certificate */
520 unsigned int rekey; /*!< Interval at which to renegotiate and rekey */
521 int rekeyid; /*!< Scheduled item id for rekeying */
522 struct dtls_details dtls; /*!< DTLS state information */
523#endif
524};
525
526/*!
527 * \brief Structure defining an RTCP session.
528 *
529 * The concept "RTCP session" is not defined in RFC 3550, but since
530 * this structure is analogous to ast_rtp, which tracks a RTP session,
531 * it is logical to think of this as a RTCP session.
532 *
533 * RTCP packet is defined on page 9 of RFC 3550.
534 *
535 */
536struct ast_rtcp {
538 int s; /*!< Socket */
539 struct ast_sockaddr us; /*!< Socket representation of the local endpoint. */
540 struct ast_sockaddr them; /*!< Socket representation of the remote endpoint. */
541 unsigned int soc; /*!< What they told us */
542 unsigned int spc; /*!< What they told us */
543 unsigned int themrxlsr; /*!< The middle 32 bits of the NTP timestamp in the last received SR*/
544 struct timeval rxlsr; /*!< Time when we got their last SR */
545 struct timeval txlsr; /*!< Time when we sent or last SR*/
546 unsigned int expected_prior; /*!< no. packets in previous interval */
547 unsigned int received_prior; /*!< no. packets received in previous interval */
548 int schedid; /*!< Schedid returned from ast_sched_add() to schedule RTCP-transmissions*/
549 unsigned int rr_count; /*!< number of RRs we've sent, not including report blocks in SR's */
550 unsigned int sr_count; /*!< number of SRs we've sent */
551 unsigned int lastsrtxcount; /*!< Transmit packet count when last SR sent */
552 double accumulated_transit; /*!< accumulated a-dlsr-lsr */
553 double rtt; /*!< Last reported rtt */
554 double reported_jitter; /*!< The contents of their last jitter entry in the RR in seconds */
555 unsigned int reported_lost; /*!< Reported lost packets in their RR */
556
557 double reported_maxjitter; /*!< Maximum reported interarrival jitter */
558 double reported_minjitter; /*!< Minimum reported interarrival jitter */
559 double reported_normdev_jitter; /*!< Mean of reported interarrival jitter */
560 double reported_stdev_jitter; /*!< Standard deviation of reported interarrival jitter */
561 unsigned int reported_jitter_count; /*!< Reported interarrival jitter count */
562
563 double reported_maxlost; /*!< Maximum reported packets lost */
564 double reported_minlost; /*!< Minimum reported packets lost */
565 double reported_normdev_lost; /*!< Mean of reported packets lost */
566 double reported_stdev_lost; /*!< Standard deviation of reported packets lost */
567 unsigned int reported_lost_count; /*!< Reported packets lost count */
568
569 double rxlost; /*!< Calculated number of lost packets since last report */
570 double maxrxlost; /*!< Maximum calculated lost number of packets between reports */
571 double minrxlost; /*!< Minimum calculated lost number of packets between reports */
572 double normdev_rxlost; /*!< Mean of calculated lost packets between reports */
573 double stdev_rxlost; /*!< Standard deviation of calculated lost packets between reports */
574 unsigned int rxlost_count; /*!< Calculated lost packets sample count */
575
576 double maxrxjitter; /*!< Maximum of calculated interarrival jitter */
577 double minrxjitter; /*!< Minimum of calculated interarrival jitter */
578 double normdev_rxjitter; /*!< Mean of calculated interarrival jitter */
579 double stdev_rxjitter; /*!< Standard deviation of calculated interarrival jitter */
580 unsigned int rxjitter_count; /*!< Calculated interarrival jitter count */
581
582 double maxrtt; /*!< Maximum of calculated round trip time */
583 double minrtt; /*!< Minimum of calculated round trip time */
584 double normdevrtt; /*!< Mean of calculated round trip time */
585 double stdevrtt; /*!< Standard deviation of calculated round trip time */
586 unsigned int rtt_count; /*!< Calculated round trip time count */
587
588 double reported_mes; /*!< The calculated MES from their last RR */
589 double reported_maxmes; /*!< Maximum reported mes */
590 double reported_minmes; /*!< Minimum reported mes */
591 double reported_normdev_mes; /*!< Mean of reported mes */
592 double reported_stdev_mes; /*!< Standard deviation of reported mes */
593 unsigned int reported_mes_count; /*!< Reported mes count */
594
595 double maxrxmes; /*!< Maximum of calculated mes */
596 double minrxmes; /*!< Minimum of calculated mes */
597 double normdev_rxmes; /*!< Mean of calculated mes */
598 double stdev_rxmes; /*!< Standard deviation of calculated mes */
599 unsigned int rxmes_count; /*!< mes count */
600
601 /* VP8: sequence number for the RTCP FIR FCI */
603
604#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
605 struct dtls_details dtls; /*!< DTLS state information */
606#endif
607
608 /* Cached local address string allows us to generate
609 * RTCP stasis messages without having to look up our
610 * own address every time
611 */
614 /* Buffer for frames created during RTCP interpretation */
615 unsigned char frame_buf[512 + AST_FRIENDLY_OFFSET];
616};
617
618struct rtp_red {
619 struct ast_frame t140; /*!< Primary data */
620 struct ast_frame t140red; /*!< Redundant t140*/
621 unsigned char pt[AST_RED_MAX_GENERATION]; /*!< Payload types for redundancy data */
622 unsigned char ts[AST_RED_MAX_GENERATION]; /*!< Time stamps */
623 unsigned char len[AST_RED_MAX_GENERATION]; /*!< length of each generation */
624 int num_gen; /*!< Number of generations */
625 int schedid; /*!< Timer id */
626 int ti; /*!< How long to buffer data before send */
627 unsigned char t140red_data[64000];
628 unsigned char buf_data[64000]; /*!< buffered primary data */
630 long int prev_ts;
631};
632
633/*! \brief Structure for storing RTP packets for retransmission */
635 size_t size; /*!< The size of the payload */
636 unsigned char buf[0]; /*!< The payload data */
637};
638
640
641/* Forward Declarations */
642static int ast_rtp_new(struct ast_rtp_instance *instance, struct ast_sched_context *sched, struct ast_sockaddr *addr, void *data);
643static int ast_rtp_destroy(struct ast_rtp_instance *instance);
644static int ast_rtp_dtmf_begin(struct ast_rtp_instance *instance, char digit);
645static int ast_rtp_dtmf_end(struct ast_rtp_instance *instance, char digit);
646static int ast_rtp_dtmf_end_with_duration(struct ast_rtp_instance *instance, char digit, unsigned int duration);
647static int ast_rtp_dtmf_mode_set(struct ast_rtp_instance *instance, enum ast_rtp_dtmf_mode dtmf_mode);
648static enum ast_rtp_dtmf_mode ast_rtp_dtmf_mode_get(struct ast_rtp_instance *instance);
649static void ast_rtp_update_source(struct ast_rtp_instance *instance);
650static void ast_rtp_change_source(struct ast_rtp_instance *instance);
651static int ast_rtp_write(struct ast_rtp_instance *instance, struct ast_frame *frame);
652static struct ast_frame *ast_rtp_read(struct ast_rtp_instance *instance, int rtcp);
653static void ast_rtp_prop_set(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value);
654static int ast_rtp_fd(struct ast_rtp_instance *instance, int rtcp);
655static void ast_rtp_remote_address_set(struct ast_rtp_instance *instance, struct ast_sockaddr *addr);
656static int rtp_red_init(struct ast_rtp_instance *instance, int buffer_time, int *payloads, int generations);
657static int rtp_red_buffer(struct ast_rtp_instance *instance, struct ast_frame *frame);
658static int ast_rtp_local_bridge(struct ast_rtp_instance *instance0, struct ast_rtp_instance *instance1);
659static int ast_rtp_get_stat(struct ast_rtp_instance *instance, struct ast_rtp_instance_stats *stats, enum ast_rtp_instance_stat stat);
660static int ast_rtp_dtmf_compatible(struct ast_channel *chan0, struct ast_rtp_instance *instance0, struct ast_channel *chan1, struct ast_rtp_instance *instance1);
661static void ast_rtp_stun_request(struct ast_rtp_instance *instance, struct ast_sockaddr *suggestion, const char *username);
662static void ast_rtp_stop(struct ast_rtp_instance *instance);
663static int ast_rtp_qos_set(struct ast_rtp_instance *instance, int tos, int cos, const char* desc);
664static int ast_rtp_sendcng(struct ast_rtp_instance *instance, int level);
665static unsigned int ast_rtp_get_ssrc(struct ast_rtp_instance *instance);
666static const char *ast_rtp_get_cname(struct ast_rtp_instance *instance);
667static void ast_rtp_set_remote_ssrc(struct ast_rtp_instance *instance, unsigned int ssrc);
668static void ast_rtp_set_stream_num(struct ast_rtp_instance *instance, int stream_num);
670static int ast_rtp_bundle(struct ast_rtp_instance *child, struct ast_rtp_instance *parent);
671static void update_reported_mes_stats(struct ast_rtp *rtp);
672static void update_local_mes_stats(struct ast_rtp *rtp);
673
674#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
675static int ast_rtp_activate(struct ast_rtp_instance *instance);
676static void dtls_srtp_start_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp);
677static void dtls_srtp_stop_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp);
678static int dtls_bio_write(BIO *bio, const char *buf, int len);
679static long dtls_bio_ctrl(BIO *bio, int cmd, long arg1, void *arg2);
680static int dtls_bio_new(BIO *bio);
681static int dtls_bio_free(BIO *bio);
682
683#ifndef HAVE_OPENSSL_BIO_METHOD
684static BIO_METHOD dtls_bio_methods = {
685 .type = BIO_TYPE_BIO,
686 .name = "rtp write",
687 .bwrite = dtls_bio_write,
688 .ctrl = dtls_bio_ctrl,
689 .create = dtls_bio_new,
690 .destroy = dtls_bio_free,
691};
692#else
693static BIO_METHOD *dtls_bio_methods;
694#endif
695#endif
696
697static int __rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp, int *via_ice, int use_srtp);
698
699#ifdef HAVE_PJPROJECT
700static void stunaddr_resolve_callback(const struct ast_dns_query *query);
701static int store_stunaddr_resolved(const struct ast_dns_query *query);
702#endif
703
704#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
705static int dtls_bio_new(BIO *bio)
706{
707#ifdef HAVE_OPENSSL_BIO_METHOD
708 BIO_set_init(bio, 1);
709 BIO_set_data(bio, NULL);
710 BIO_set_shutdown(bio, 0);
711#else
712 bio->init = 1;
713 bio->ptr = NULL;
714 bio->flags = 0;
715#endif
716 return 1;
717}
718
719static int dtls_bio_free(BIO *bio)
720{
721 /* The pointer on the BIO is that of the RTP instance. It is not reference counted as the BIO
722 * lifetime is tied to the instance, and actions on the BIO are taken by the thread handling
723 * the RTP instance - not another thread.
724 */
725#ifdef HAVE_OPENSSL_BIO_METHOD
726 BIO_set_data(bio, NULL);
727#else
728 bio->ptr = NULL;
729#endif
730 return 1;
731}
732
733static int dtls_bio_write(BIO *bio, const char *buf, int len)
734{
735#ifdef HAVE_OPENSSL_BIO_METHOD
736 struct ast_rtp_instance *instance = BIO_get_data(bio);
737#else
738 struct ast_rtp_instance *instance = bio->ptr;
739#endif
740 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
741 int rtcp = 0;
742 struct ast_sockaddr remote_address = { {0, } };
743 int ice;
744 int bytes_sent;
745
746 /* OpenSSL can't tolerate a packet not being sent, so we always state that
747 * we sent the packet. If it isn't then retransmission will occur.
748 */
749
750 if (rtp->rtcp && rtp->rtcp->dtls.write_bio == bio) {
751 rtcp = 1;
752 ast_sockaddr_copy(&remote_address, &rtp->rtcp->them);
753 } else {
754 ast_rtp_instance_get_remote_address(instance, &remote_address);
755 }
756
757 if (ast_sockaddr_isnull(&remote_address)) {
758 return len;
759 }
760
761 bytes_sent = __rtp_sendto(instance, (char *)buf, len, 0, &remote_address, rtcp, &ice, 0);
762
763 if (bytes_sent > 0 && ast_debug_dtls_packet_is_allowed) {
764 ast_debug(0, "(%p) DTLS - sent %s packet to %s%s (len %-6.6d)\n",
765 instance, rtcp ? "RTCP" : "RTP", ast_sockaddr_stringify(&remote_address),
766 ice ? " (via ICE)" : "", bytes_sent);
767 }
768
769 return len;
770}
771
772static long dtls_bio_ctrl(BIO *bio, int cmd, long arg1, void *arg2)
773{
774 switch (cmd) {
775 case BIO_CTRL_FLUSH:
776 return 1;
777 case BIO_CTRL_DGRAM_QUERY_MTU:
778 return dtls_mtu;
779 case BIO_CTRL_WPENDING:
780 case BIO_CTRL_PENDING:
781 return 0L;
782 default:
783 return 0;
784 }
785}
786
787#endif
788
789#ifdef HAVE_PJPROJECT
790/*! \brief Helper function which clears the ICE host candidate mapping */
791static void host_candidate_overrides_clear(void)
792{
793 struct ast_ice_host_candidate *candidate;
794
795 AST_RWLIST_WRLOCK(&host_candidates);
796 AST_RWLIST_TRAVERSE_SAFE_BEGIN(&host_candidates, candidate, next) {
798 ast_free(candidate);
799 }
801 AST_RWLIST_UNLOCK(&host_candidates);
802}
803
804/*! \brief Helper function which updates an ast_sockaddr with the candidate used for the component */
805static void update_address_with_ice_candidate(pj_ice_sess *ice, enum ast_rtp_ice_component_type component,
806 struct ast_sockaddr *cand_address)
807{
808 char address[PJ_INET6_ADDRSTRLEN];
809
810 if (component < 1 || !ice->comp[component - 1].valid_check) {
811 return;
812 }
813
814 ast_sockaddr_parse(cand_address,
815 pj_sockaddr_print(&ice->comp[component - 1].valid_check->rcand->addr, address,
816 sizeof(address), 0), 0);
817 ast_sockaddr_set_port(cand_address,
818 pj_sockaddr_get_port(&ice->comp[component - 1].valid_check->rcand->addr));
819}
820
821/*! \brief Destructor for locally created ICE candidates */
822static void ast_rtp_ice_candidate_destroy(void *obj)
823{
824 struct ast_rtp_engine_ice_candidate *candidate = obj;
825
826 if (candidate->foundation) {
827 ast_free(candidate->foundation);
828 }
829
830 if (candidate->transport) {
831 ast_free(candidate->transport);
832 }
833}
834
835/*! \pre instance is locked */
836static void ast_rtp_ice_set_authentication(struct ast_rtp_instance *instance, const char *ufrag, const char *password)
837{
838 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
839 int ice_attrb_reset = 0;
840
841 if (!ast_strlen_zero(ufrag)) {
842 if (!ast_strlen_zero(rtp->remote_ufrag) && strcmp(ufrag, rtp->remote_ufrag)) {
843 ice_attrb_reset = 1;
844 }
845 ast_copy_string(rtp->remote_ufrag, ufrag, sizeof(rtp->remote_ufrag));
846 }
847
848 if (!ast_strlen_zero(password)) {
849 if (!ast_strlen_zero(rtp->remote_passwd) && strcmp(password, rtp->remote_passwd)) {
850 ice_attrb_reset = 1;
851 }
852 ast_copy_string(rtp->remote_passwd, password, sizeof(rtp->remote_passwd));
853 }
854
855 /* If the remote ufrag or passwd changed, local ufrag and passwd need to regenerate */
856 if (ice_attrb_reset) {
857 generate_random_string(rtp->local_ufrag, sizeof(rtp->local_ufrag));
858 generate_random_string(rtp->local_passwd, sizeof(rtp->local_passwd));
859 }
860}
861
862static int ice_candidate_cmp(void *obj, void *arg, int flags)
863{
864 struct ast_rtp_engine_ice_candidate *candidate1 = obj, *candidate2 = arg;
865
866 if (strcmp(candidate1->foundation, candidate2->foundation) ||
867 candidate1->id != candidate2->id ||
868 candidate1->type != candidate2->type ||
869 ast_sockaddr_cmp(&candidate1->address, &candidate2->address)) {
870 return 0;
871 }
872
873 return CMP_MATCH | CMP_STOP;
874}
875
876/*! \pre instance is locked */
877static void ast_rtp_ice_add_remote_candidate(struct ast_rtp_instance *instance, const struct ast_rtp_engine_ice_candidate *candidate)
878{
879 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
880 struct ast_rtp_engine_ice_candidate *remote_candidate;
881
882 /* ICE sessions only support UDP candidates */
883 if (strcasecmp(candidate->transport, "udp")) {
884 return;
885 }
886
887 if (!rtp->ice_proposed_remote_candidates) {
888 rtp->ice_proposed_remote_candidates = ao2_container_alloc_list(
889 AO2_ALLOC_OPT_LOCK_MUTEX, 0, NULL, ice_candidate_cmp);
890 if (!rtp->ice_proposed_remote_candidates) {
891 return;
892 }
893 }
894
895 /* If this is going to exceed the maximum number of ICE candidates don't even add it */
896 if (ao2_container_count(rtp->ice_proposed_remote_candidates) == PJ_ICE_MAX_CAND) {
897 return;
898 }
899
900 if (!(remote_candidate = ao2_alloc(sizeof(*remote_candidate), ast_rtp_ice_candidate_destroy))) {
901 return;
902 }
903
904 remote_candidate->foundation = ast_strdup(candidate->foundation);
905 remote_candidate->id = candidate->id;
906 remote_candidate->transport = ast_strdup(candidate->transport);
907 remote_candidate->priority = candidate->priority;
908 ast_sockaddr_copy(&remote_candidate->address, &candidate->address);
909 ast_sockaddr_copy(&remote_candidate->relay_address, &candidate->relay_address);
910 remote_candidate->type = candidate->type;
911
912 ast_debug_ice(2, "(%p) ICE add remote candidate\n", instance);
913
914 ao2_link(rtp->ice_proposed_remote_candidates, remote_candidate);
915 ao2_ref(remote_candidate, -1);
916}
917
919
920/*! \brief Function used to check if the calling thread is registered with pjlib. If it is not it will be registered. */
921static void pj_thread_register_check(void)
922{
923 pj_thread_desc *desc;
924 pj_thread_t *thread;
925
926 if (pj_thread_is_registered() == PJ_TRUE) {
927 return;
928 }
929
930 desc = ast_threadstorage_get(&pj_thread_storage, sizeof(pj_thread_desc));
931 if (!desc) {
932 ast_log(LOG_ERROR, "Could not get thread desc from thread-local storage. Expect awful things to occur\n");
933 return;
934 }
935 pj_bzero(*desc, sizeof(*desc));
936
937 if (pj_thread_register("Asterisk Thread", *desc, &thread) != PJ_SUCCESS) {
938 ast_log(LOG_ERROR, "Coudln't register thread with PJLIB.\n");
939 }
940 return;
941}
942
943static int ice_create(struct ast_rtp_instance *instance, struct ast_sockaddr *addr,
944 int port, int replace);
945
946/*! \pre instance is locked */
947static void ast_rtp_ice_stop(struct ast_rtp_instance *instance)
948{
949 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
950 struct ice_wrap *ice;
951
952 ice = rtp->ice;
953 rtp->ice = NULL;
954 if (ice) {
955 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
956 ao2_unlock(instance);
957 ao2_ref(ice, -1);
958 ao2_lock(instance);
959 ast_debug_ice(2, "(%p) ICE stopped\n", instance);
960 }
961}
962
963/*!
964 * \brief ao2 ICE wrapper object destructor.
965 *
966 * \param vdoomed Object being destroyed.
967 *
968 * \note The associated struct ast_rtp_instance object must not
969 * be locked when unreffing the object. Otherwise we could
970 * deadlock trying to destroy the PJPROJECT ICE structure.
971 */
972static void ice_wrap_dtor(void *vdoomed)
973{
974 struct ice_wrap *ice = vdoomed;
975
976 if (ice->real_ice) {
977 pj_thread_register_check();
978
979 pj_ice_sess_destroy(ice->real_ice);
980 }
981}
982
983static void ast2pj_rtp_ice_role(enum ast_rtp_ice_role ast_role, enum pj_ice_sess_role *pj_role)
984{
985 switch (ast_role) {
987 *pj_role = PJ_ICE_SESS_ROLE_CONTROLLED;
988 break;
990 *pj_role = PJ_ICE_SESS_ROLE_CONTROLLING;
991 break;
992 }
993}
994
995static void pj2ast_rtp_ice_role(enum pj_ice_sess_role pj_role, enum ast_rtp_ice_role *ast_role)
996{
997 switch (pj_role) {
998 case PJ_ICE_SESS_ROLE_CONTROLLED:
999 *ast_role = AST_RTP_ICE_ROLE_CONTROLLED;
1000 return;
1001 case PJ_ICE_SESS_ROLE_CONTROLLING:
1002 *ast_role = AST_RTP_ICE_ROLE_CONTROLLING;
1003 return;
1004 case PJ_ICE_SESS_ROLE_UNKNOWN:
1005 /* Don't change anything */
1006 return;
1007 default:
1008 /* If we aren't explicitly handling something, it's a bug */
1009 ast_assert(0);
1010 return;
1011 }
1012}
1013
1014/*! \pre instance is locked */
1015static int ice_reset_session(struct ast_rtp_instance *instance)
1016{
1017 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1018 int res;
1019
1020 ast_debug_ice(3, "(%p) ICE resetting\n", instance);
1021 if (!rtp->ice->real_ice->is_nominating && !rtp->ice->real_ice->is_complete) {
1022 ast_debug_ice(3, " (%p) ICE nevermind, not ready for a reset\n", instance);
1023 return 0;
1024 }
1025
1026 ast_debug_ice(3, "(%p) ICE recreating ICE session %s (%d)\n",
1027 instance, ast_sockaddr_stringify(&rtp->ice_original_rtp_addr), rtp->ice_port);
1028 res = ice_create(instance, &rtp->ice_original_rtp_addr, rtp->ice_port, 1);
1029 if (!res) {
1030 /* Use the current expected role for the ICE session */
1031 enum pj_ice_sess_role role = PJ_ICE_SESS_ROLE_UNKNOWN;
1032 ast2pj_rtp_ice_role(rtp->role, &role);
1033 pj_ice_sess_change_role(rtp->ice->real_ice, role);
1034 }
1035
1036 /* If we only have one component now, and we previously set up TURN for RTCP,
1037 * we need to destroy that TURN socket.
1038 */
1039 if (rtp->ice_num_components == 1 && rtp->turn_rtcp) {
1040 struct timeval wait = ast_tvadd(ast_tvnow(), ast_samp2tv(TURN_STATE_WAIT_TIME, 1000));
1041 struct timespec ts = { .tv_sec = wait.tv_sec, .tv_nsec = wait.tv_usec * 1000, };
1042
1043 rtp->turn_state = PJ_TURN_STATE_NULL;
1044
1045 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1046 ao2_unlock(instance);
1047 pj_turn_sock_destroy(rtp->turn_rtcp);
1048 ao2_lock(instance);
1049 while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
1050 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
1051 }
1052 }
1053
1054 rtp->ice_media_started = 0;
1055
1056 return res;
1057}
1058
1059static int ice_candidates_compare(struct ao2_container *left, struct ao2_container *right)
1060{
1061 struct ao2_iterator i;
1062 struct ast_rtp_engine_ice_candidate *right_candidate;
1063
1064 if (ao2_container_count(left) != ao2_container_count(right)) {
1065 return -1;
1066 }
1067
1068 i = ao2_iterator_init(right, 0);
1069 while ((right_candidate = ao2_iterator_next(&i))) {
1070 struct ast_rtp_engine_ice_candidate *left_candidate = ao2_find(left, right_candidate, OBJ_POINTER);
1071
1072 if (!left_candidate) {
1073 ao2_ref(right_candidate, -1);
1075 return -1;
1076 }
1077
1078 ao2_ref(left_candidate, -1);
1079 ao2_ref(right_candidate, -1);
1080 }
1082
1083 return 0;
1084}
1085
1086/*! \pre instance is locked */
1087static void ast_rtp_ice_start(struct ast_rtp_instance *instance)
1088{
1089 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1090 pj_str_t ufrag = pj_str(rtp->remote_ufrag), passwd = pj_str(rtp->remote_passwd);
1091 pj_ice_sess_cand candidates[PJ_ICE_MAX_CAND];
1092 struct ao2_iterator i;
1093 struct ast_rtp_engine_ice_candidate *candidate;
1094 int cand_cnt = 0, has_rtp = 0, has_rtcp = 0;
1095
1096 if (!rtp->ice || !rtp->ice_proposed_remote_candidates) {
1097 return;
1098 }
1099
1100 /* Check for equivalence in the lists */
1101 if (rtp->ice_active_remote_candidates &&
1102 !ice_candidates_compare(rtp->ice_proposed_remote_candidates, rtp->ice_active_remote_candidates)) {
1103 ast_debug_ice(2, "(%p) ICE proposed equals active candidates\n", instance);
1104 ao2_cleanup(rtp->ice_proposed_remote_candidates);
1105 rtp->ice_proposed_remote_candidates = NULL;
1106 /* If this ICE session is being preserved then go back to the role it currently is */
1107 pj2ast_rtp_ice_role(rtp->ice->real_ice->role, &rtp->role);
1108 return;
1109 }
1110
1111 /* Out with the old, in with the new */
1112 ao2_cleanup(rtp->ice_active_remote_candidates);
1113 rtp->ice_active_remote_candidates = rtp->ice_proposed_remote_candidates;
1114 rtp->ice_proposed_remote_candidates = NULL;
1115
1116 ast_debug_ice(2, "(%p) ICE start\n", instance);
1117
1118 /* Reset the ICE session. Is this going to work? */
1119 if (ice_reset_session(instance)) {
1120 ast_log(LOG_NOTICE, "(%p) ICE failed to create replacement session\n", instance);
1121 return;
1122 }
1123
1124 pj_thread_register_check();
1125
1126 i = ao2_iterator_init(rtp->ice_active_remote_candidates, 0);
1127
1128 while ((candidate = ao2_iterator_next(&i)) && (cand_cnt < PJ_ICE_MAX_CAND)) {
1129 pj_str_t address;
1130
1131 /* there needs to be at least one rtp and rtcp candidate in the list */
1132 has_rtp |= candidate->id == AST_RTP_ICE_COMPONENT_RTP;
1133 has_rtcp |= candidate->id == AST_RTP_ICE_COMPONENT_RTCP;
1134
1135 pj_strdup2(rtp->ice->real_ice->pool, &candidates[cand_cnt].foundation,
1136 candidate->foundation);
1137 candidates[cand_cnt].comp_id = candidate->id;
1138 candidates[cand_cnt].prio = candidate->priority;
1139
1140 pj_sockaddr_parse(pj_AF_UNSPEC(), 0, pj_cstr(&address, ast_sockaddr_stringify(&candidate->address)), &candidates[cand_cnt].addr);
1141
1142 if (!ast_sockaddr_isnull(&candidate->relay_address)) {
1143 pj_sockaddr_parse(pj_AF_UNSPEC(), 0, pj_cstr(&address, ast_sockaddr_stringify(&candidate->relay_address)), &candidates[cand_cnt].rel_addr);
1144 }
1145
1146 if (candidate->type == AST_RTP_ICE_CANDIDATE_TYPE_HOST) {
1147 candidates[cand_cnt].type = PJ_ICE_CAND_TYPE_HOST;
1148 } else if (candidate->type == AST_RTP_ICE_CANDIDATE_TYPE_SRFLX) {
1149 candidates[cand_cnt].type = PJ_ICE_CAND_TYPE_SRFLX;
1150 } else if (candidate->type == AST_RTP_ICE_CANDIDATE_TYPE_RELAYED) {
1151 candidates[cand_cnt].type = PJ_ICE_CAND_TYPE_RELAYED;
1152 }
1153
1154 if (candidate->id == AST_RTP_ICE_COMPONENT_RTP && rtp->turn_rtp) {
1155 ast_debug_ice(2, "(%p) ICE RTP candidate %s\n", instance, ast_sockaddr_stringify(&candidate->address));
1156 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1157 ao2_unlock(instance);
1158 pj_turn_sock_set_perm(rtp->turn_rtp, 1, &candidates[cand_cnt].addr, 1);
1159 ao2_lock(instance);
1160 } else if (candidate->id == AST_RTP_ICE_COMPONENT_RTCP && rtp->turn_rtcp) {
1161 ast_debug_ice(2, "(%p) ICE RTCP candidate %s\n", instance, ast_sockaddr_stringify(&candidate->address));
1162 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1163 ao2_unlock(instance);
1164 pj_turn_sock_set_perm(rtp->turn_rtcp, 1, &candidates[cand_cnt].addr, 1);
1165 ao2_lock(instance);
1166 }
1167
1168 cand_cnt++;
1169 ao2_ref(candidate, -1);
1170 }
1171
1173
1174 if (cand_cnt < ao2_container_count(rtp->ice_active_remote_candidates)) {
1175 ast_log(LOG_WARNING, "(%p) ICE lost %d candidates. Consider increasing PJ_ICE_MAX_CAND in PJSIP\n",
1176 instance, ao2_container_count(rtp->ice_active_remote_candidates) - cand_cnt);
1177 }
1178
1179 if (!has_rtp) {
1180 ast_log(LOG_WARNING, "(%p) ICE no RTP candidates; skipping checklist\n", instance);
1181 }
1182
1183 /* If we're only dealing with one ICE component, then we don't care about the lack of RTCP candidates */
1184 if (!has_rtcp && rtp->ice_num_components > 1) {
1185 ast_log(LOG_WARNING, "(%p) ICE no RTCP candidates; skipping checklist\n", instance);
1186 }
1187
1188 if (rtp->ice && has_rtp && (has_rtcp || rtp->ice_num_components == 1)) {
1189 pj_status_t res;
1190 char reason[80];
1191 struct ice_wrap *ice;
1192
1193 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1194 ice = rtp->ice;
1195 ao2_ref(ice, +1);
1196 ao2_unlock(instance);
1197 res = pj_ice_sess_create_check_list(ice->real_ice, &ufrag, &passwd, cand_cnt, &candidates[0]);
1198 if (res == PJ_SUCCESS) {
1199 ast_debug_ice(2, "(%p) ICE successfully created checklist\n", instance);
1200 ast_test_suite_event_notify("ICECHECKLISTCREATE", "Result: SUCCESS");
1201 pj_ice_sess_start_check(ice->real_ice);
1202 pj_timer_heap_poll(timer_heap, NULL);
1203 ao2_ref(ice, -1);
1204 ao2_lock(instance);
1206 return;
1207 }
1208 ao2_ref(ice, -1);
1209 ao2_lock(instance);
1210
1211 pj_strerror(res, reason, sizeof(reason));
1212 ast_log(LOG_WARNING, "(%p) ICE failed to create session check list: %s\n", instance, reason);
1213 }
1214
1215 ast_test_suite_event_notify("ICECHECKLISTCREATE", "Result: FAILURE");
1216
1217 /* even though create check list failed don't stop ice as
1218 it might still work */
1219 /* however we do need to reset remote candidates since
1220 this function may be re-entered */
1221 ao2_ref(rtp->ice_active_remote_candidates, -1);
1222 rtp->ice_active_remote_candidates = NULL;
1223 if (rtp->ice) {
1224 rtp->ice->real_ice->rcand_cnt = rtp->ice->real_ice->clist.count = 0;
1225 }
1226}
1227
1228/*! \pre instance is locked */
1229static const char *ast_rtp_ice_get_ufrag(struct ast_rtp_instance *instance)
1230{
1231 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1232
1233 return rtp->local_ufrag;
1234}
1235
1236/*! \pre instance is locked */
1237static const char *ast_rtp_ice_get_password(struct ast_rtp_instance *instance)
1238{
1239 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1240
1241 return rtp->local_passwd;
1242}
1243
1244/*! \pre instance is locked */
1245static struct ao2_container *ast_rtp_ice_get_local_candidates(struct ast_rtp_instance *instance)
1246{
1247 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1248
1249 if (rtp->ice_local_candidates) {
1250 ao2_ref(rtp->ice_local_candidates, +1);
1251 }
1252
1253 return rtp->ice_local_candidates;
1254}
1255
1256/*! \pre instance is locked */
1257static void ast_rtp_ice_lite(struct ast_rtp_instance *instance)
1258{
1259 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1260
1261 if (!rtp->ice) {
1262 return;
1263 }
1264
1265 pj_thread_register_check();
1266
1267 pj_ice_sess_change_role(rtp->ice->real_ice, PJ_ICE_SESS_ROLE_CONTROLLING);
1268}
1269
1270/*! \pre instance is locked */
1271static void ast_rtp_ice_set_role(struct ast_rtp_instance *instance, enum ast_rtp_ice_role role)
1272{
1273 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1274
1275 if (!rtp->ice) {
1276 ast_debug_ice(3, "(%p) ICE set role failed; no ice instance\n", instance);
1277 return;
1278 }
1279
1280 rtp->role = role;
1281
1282 if (!rtp->ice->real_ice->is_nominating && !rtp->ice->real_ice->is_complete) {
1283 pj_thread_register_check();
1284 ast_debug_ice(2, "(%p) ICE set role to %s\n",
1285 instance, role == AST_RTP_ICE_ROLE_CONTROLLED ? "CONTROLLED" : "CONTROLLING");
1286 pj_ice_sess_change_role(rtp->ice->real_ice, role == AST_RTP_ICE_ROLE_CONTROLLED ?
1287 PJ_ICE_SESS_ROLE_CONTROLLED : PJ_ICE_SESS_ROLE_CONTROLLING);
1288 } else {
1289 ast_debug_ice(2, "(%p) ICE not setting role because state is %s\n",
1290 instance, rtp->ice->real_ice->is_nominating ? "nominating" : "complete");
1291 }
1292}
1293
1294/*! \pre instance is locked */
1295static void ast_rtp_ice_add_cand(struct ast_rtp_instance *instance, struct ast_rtp *rtp,
1296 unsigned comp_id, unsigned transport_id, pj_ice_cand_type type, pj_uint16_t local_pref,
1297 const pj_sockaddr_t *addr, const pj_sockaddr_t *base_addr, const pj_sockaddr_t *rel_addr,
1298 int addr_len)
1299{
1300 pj_str_t foundation;
1301 struct ast_rtp_engine_ice_candidate *candidate, *existing;
1302 struct ice_wrap *ice;
1303 char address[PJ_INET6_ADDRSTRLEN];
1304 pj_status_t status;
1305
1306 if (!rtp->ice) {
1307 return;
1308 }
1309
1310 pj_thread_register_check();
1311
1312 pj_ice_calc_foundation(rtp->ice->real_ice->pool, &foundation, type, addr);
1313
1314 if (!rtp->ice_local_candidates) {
1315 rtp->ice_local_candidates = ao2_container_alloc_list(AO2_ALLOC_OPT_LOCK_MUTEX, 0,
1316 NULL, ice_candidate_cmp);
1317 if (!rtp->ice_local_candidates) {
1318 return;
1319 }
1320 }
1321
1322 if (!(candidate = ao2_alloc(sizeof(*candidate), ast_rtp_ice_candidate_destroy))) {
1323 return;
1324 }
1325
1326 candidate->foundation = ast_strndup(pj_strbuf(&foundation), pj_strlen(&foundation));
1327 candidate->id = comp_id;
1328 candidate->transport = ast_strdup("UDP");
1329
1330 ast_sockaddr_parse(&candidate->address, pj_sockaddr_print(addr, address, sizeof(address), 0), 0);
1331 ast_sockaddr_set_port(&candidate->address, pj_sockaddr_get_port(addr));
1332
1333 if (rel_addr) {
1334 ast_sockaddr_parse(&candidate->relay_address, pj_sockaddr_print(rel_addr, address, sizeof(address), 0), 0);
1335 ast_sockaddr_set_port(&candidate->relay_address, pj_sockaddr_get_port(rel_addr));
1336 }
1337
1338 if (type == PJ_ICE_CAND_TYPE_HOST) {
1340 } else if (type == PJ_ICE_CAND_TYPE_SRFLX) {
1342 } else if (type == PJ_ICE_CAND_TYPE_RELAYED) {
1344 }
1345
1346 if ((existing = ao2_find(rtp->ice_local_candidates, candidate, OBJ_POINTER))) {
1347 ao2_ref(existing, -1);
1348 ao2_ref(candidate, -1);
1349 return;
1350 }
1351
1352 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1353 ice = rtp->ice;
1354 ao2_ref(ice, +1);
1355 ao2_unlock(instance);
1356 status = pj_ice_sess_add_cand(ice->real_ice, comp_id, transport_id, type, local_pref,
1357 &foundation, addr, base_addr, rel_addr, addr_len, NULL);
1358 ao2_ref(ice, -1);
1359 ao2_lock(instance);
1360 if (!rtp->ice || status != PJ_SUCCESS) {
1361 ast_debug_ice(2, "(%p) ICE unable to add candidate: %s, %d\n", instance, ast_sockaddr_stringify(
1362 &candidate->address), candidate->priority);
1363 ao2_ref(candidate, -1);
1364 return;
1365 }
1366
1367 /* By placing the candidate into the ICE session it will have produced the priority, so update the local candidate with it */
1368 candidate->priority = rtp->ice->real_ice->lcand[rtp->ice->real_ice->lcand_cnt - 1].prio;
1369
1370 ast_debug_ice(2, "(%p) ICE add candidate: %s, %d\n", instance, ast_sockaddr_stringify(
1371 &candidate->address), candidate->priority);
1372
1373 ao2_link(rtp->ice_local_candidates, candidate);
1374 ao2_ref(candidate, -1);
1375}
1376
1377/* PJPROJECT TURN callback */
1378static void ast_rtp_on_turn_rx_rtp_data(pj_turn_sock *turn_sock, void *pkt, unsigned pkt_len, const pj_sockaddr_t *peer_addr, unsigned addr_len)
1379{
1380 struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
1381 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1382 struct ice_wrap *ice;
1383 pj_status_t status;
1384
1385 ao2_lock(instance);
1386 ice = ao2_bump(rtp->ice);
1387 ao2_unlock(instance);
1388
1389 if (ice) {
1390 status = pj_ice_sess_on_rx_pkt(ice->real_ice, AST_RTP_ICE_COMPONENT_RTP,
1391 TRANSPORT_TURN_RTP, pkt, pkt_len, peer_addr, addr_len);
1392 ao2_ref(ice, -1);
1393 if (status != PJ_SUCCESS) {
1394 char buf[100];
1395
1396 pj_strerror(status, buf, sizeof(buf));
1397 ast_log(LOG_WARNING, "(%p) ICE PJ Rx error status code: %d '%s'.\n",
1398 instance, (int)status, buf);
1399 return;
1400 }
1401 if (!rtp->rtp_passthrough) {
1402 return;
1403 }
1404 rtp->rtp_passthrough = 0;
1405 }
1406
1407 ast_sendto(rtp->s, pkt, pkt_len, 0, &rtp->rtp_loop);
1408}
1409
1410/* PJPROJECT TURN callback */
1411static void ast_rtp_on_turn_rtp_state(pj_turn_sock *turn_sock, pj_turn_state_t old_state, pj_turn_state_t new_state)
1412{
1413 struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
1414 struct ast_rtp *rtp;
1415
1416 /* If this is a leftover from an already notified RTP instance just ignore the state change */
1417 if (!instance) {
1418 return;
1419 }
1420
1421 rtp = ast_rtp_instance_get_data(instance);
1422
1423 ao2_lock(instance);
1424
1425 /* We store the new state so the other thread can actually handle it */
1426 rtp->turn_state = new_state;
1427 ast_cond_signal(&rtp->cond);
1428
1429 if (new_state == PJ_TURN_STATE_DESTROYING) {
1430 pj_turn_sock_set_user_data(rtp->turn_rtp, NULL);
1431 rtp->turn_rtp = NULL;
1432 }
1433
1434 ao2_unlock(instance);
1435}
1436
1437/* RTP TURN Socket interface declaration */
1438static pj_turn_sock_cb ast_rtp_turn_rtp_sock_cb = {
1439 .on_rx_data = ast_rtp_on_turn_rx_rtp_data,
1440 .on_state = ast_rtp_on_turn_rtp_state,
1441};
1442
1443/* PJPROJECT TURN callback */
1444static void ast_rtp_on_turn_rx_rtcp_data(pj_turn_sock *turn_sock, void *pkt, unsigned pkt_len, const pj_sockaddr_t *peer_addr, unsigned addr_len)
1445{
1446 struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
1447 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1448 struct ice_wrap *ice;
1449 pj_status_t status;
1450
1451 ao2_lock(instance);
1452 ice = ao2_bump(rtp->ice);
1453 ao2_unlock(instance);
1454
1455 if (ice) {
1456 status = pj_ice_sess_on_rx_pkt(ice->real_ice, AST_RTP_ICE_COMPONENT_RTCP,
1457 TRANSPORT_TURN_RTCP, pkt, pkt_len, peer_addr, addr_len);
1458 ao2_ref(ice, -1);
1459 if (status != PJ_SUCCESS) {
1460 char buf[100];
1461
1462 pj_strerror(status, buf, sizeof(buf));
1463 ast_log(LOG_WARNING, "PJ ICE Rx error status code: %d '%s'.\n",
1464 (int)status, buf);
1465 return;
1466 }
1467 if (!rtp->rtcp_passthrough) {
1468 return;
1469 }
1470 rtp->rtcp_passthrough = 0;
1471 }
1472
1473 ast_sendto(rtp->rtcp->s, pkt, pkt_len, 0, &rtp->rtcp_loop);
1474}
1475
1476/* PJPROJECT TURN callback */
1477static void ast_rtp_on_turn_rtcp_state(pj_turn_sock *turn_sock, pj_turn_state_t old_state, pj_turn_state_t new_state)
1478{
1479 struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
1480 struct ast_rtp *rtp;
1481
1482 /* If this is a leftover from an already destroyed RTP instance just ignore the state change */
1483 if (!instance) {
1484 return;
1485 }
1486
1487 rtp = ast_rtp_instance_get_data(instance);
1488
1489 ao2_lock(instance);
1490
1491 /* We store the new state so the other thread can actually handle it */
1492 rtp->turn_state = new_state;
1493 ast_cond_signal(&rtp->cond);
1494
1495 if (new_state == PJ_TURN_STATE_DESTROYING) {
1496 pj_turn_sock_set_user_data(rtp->turn_rtcp, NULL);
1497 rtp->turn_rtcp = NULL;
1498 }
1499
1500 ao2_unlock(instance);
1501}
1502
1503/* RTCP TURN Socket interface declaration */
1504static pj_turn_sock_cb ast_rtp_turn_rtcp_sock_cb = {
1505 .on_rx_data = ast_rtp_on_turn_rx_rtcp_data,
1506 .on_state = ast_rtp_on_turn_rtcp_state,
1507};
1508
1509/*! \brief Worker thread for ioqueue and timerheap */
1510static int ioqueue_worker_thread(void *data)
1511{
1512 struct ast_rtp_ioqueue_thread *ioqueue = data;
1513
1514 while (!ioqueue->terminate) {
1515 const pj_time_val delay = {0, 10};
1516
1517 pj_ioqueue_poll(ioqueue->ioqueue, &delay);
1518
1519 pj_timer_heap_poll(ioqueue->timerheap, NULL);
1520 }
1521
1522 return 0;
1523}
1524
1525/*! \brief Destroyer for ioqueue thread */
1526static void rtp_ioqueue_thread_destroy(struct ast_rtp_ioqueue_thread *ioqueue)
1527{
1528 if (ioqueue->thread) {
1529 ioqueue->terminate = 1;
1530 pj_thread_join(ioqueue->thread);
1531 pj_thread_destroy(ioqueue->thread);
1532 }
1533
1534 if (ioqueue->pool) {
1535 /* This mimics the behavior of pj_pool_safe_release
1536 * which was introduced in pjproject 2.6.
1537 */
1538 pj_pool_t *temp_pool = ioqueue->pool;
1539
1540 ioqueue->pool = NULL;
1541 pj_pool_release(temp_pool);
1542 }
1543
1544 ast_free(ioqueue);
1545}
1546
1547/*! \brief Removal function for ioqueue thread, determines if it should be terminated and destroyed */
1548static void rtp_ioqueue_thread_remove(struct ast_rtp_ioqueue_thread *ioqueue)
1549{
1550 int destroy = 0;
1551
1552 /* If nothing is using this ioqueue thread destroy it */
1553 AST_LIST_LOCK(&ioqueues);
1554 if ((ioqueue->count -= 2) == 0) {
1555 destroy = 1;
1556 AST_LIST_REMOVE(&ioqueues, ioqueue, next);
1557 }
1558 AST_LIST_UNLOCK(&ioqueues);
1559
1560 if (!destroy) {
1561 return;
1562 }
1563
1564 rtp_ioqueue_thread_destroy(ioqueue);
1565}
1566
1567/*! \brief Finder and allocator for an ioqueue thread */
1568static struct ast_rtp_ioqueue_thread *rtp_ioqueue_thread_get_or_create(void)
1569{
1570 struct ast_rtp_ioqueue_thread *ioqueue;
1571 pj_lock_t *lock;
1572
1573 AST_LIST_LOCK(&ioqueues);
1574
1575 /* See if an ioqueue thread exists that can handle more */
1576 AST_LIST_TRAVERSE(&ioqueues, ioqueue, next) {
1577 if ((ioqueue->count + 2) < PJ_IOQUEUE_MAX_HANDLES) {
1578 break;
1579 }
1580 }
1581
1582 /* If we found one bump it up and return it */
1583 if (ioqueue) {
1584 ioqueue->count += 2;
1585 goto end;
1586 }
1587
1588 ioqueue = ast_calloc(1, sizeof(*ioqueue));
1589 if (!ioqueue) {
1590 goto end;
1591 }
1592
1593 ioqueue->pool = pj_pool_create(&cachingpool.factory, "rtp", 512, 512, NULL);
1594
1595 /* We use a timer on the ioqueue thread for TURN so that two threads aren't operating
1596 * on a session at the same time
1597 */
1598 if (pj_timer_heap_create(ioqueue->pool, 4, &ioqueue->timerheap) != PJ_SUCCESS) {
1599 goto fatal;
1600 }
1601
1602 if (pj_lock_create_recursive_mutex(ioqueue->pool, "rtp%p", &lock) != PJ_SUCCESS) {
1603 goto fatal;
1604 }
1605
1606 pj_timer_heap_set_lock(ioqueue->timerheap, lock, PJ_TRUE);
1607
1608 if (pj_ioqueue_create(ioqueue->pool, PJ_IOQUEUE_MAX_HANDLES, &ioqueue->ioqueue) != PJ_SUCCESS) {
1609 goto fatal;
1610 }
1611
1612 if (pj_thread_create(ioqueue->pool, "ice", &ioqueue_worker_thread, ioqueue, 0, 0, &ioqueue->thread) != PJ_SUCCESS) {
1613 goto fatal;
1614 }
1615
1616 AST_LIST_INSERT_HEAD(&ioqueues, ioqueue, next);
1617
1618 /* Since this is being returned to an active session the count always starts at 2 */
1619 ioqueue->count = 2;
1620
1621 goto end;
1622
1623fatal:
1624 rtp_ioqueue_thread_destroy(ioqueue);
1625 ioqueue = NULL;
1626
1627end:
1628 AST_LIST_UNLOCK(&ioqueues);
1629 return ioqueue;
1630}
1631
1632/*! \pre instance is locked */
1633static void ast_rtp_ice_turn_request(struct ast_rtp_instance *instance, enum ast_rtp_ice_component_type component,
1634 enum ast_transport transport, const char *server, unsigned int port, const char *username, const char *password)
1635{
1636 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1637 pj_turn_sock **turn_sock;
1638 const pj_turn_sock_cb *turn_cb;
1639 pj_turn_tp_type conn_type;
1640 int conn_transport;
1641 pj_stun_auth_cred cred = { 0, };
1642 pj_str_t turn_addr;
1643 struct ast_sockaddr addr = { { 0, } };
1644 pj_stun_config stun_config;
1645 struct timeval wait = ast_tvadd(ast_tvnow(), ast_samp2tv(TURN_STATE_WAIT_TIME, 1000));
1646 struct timespec ts = { .tv_sec = wait.tv_sec, .tv_nsec = wait.tv_usec * 1000, };
1647 pj_turn_session_info info;
1648 struct ast_sockaddr local, loop;
1649 pj_status_t status;
1650 pj_turn_sock_cfg turn_sock_cfg;
1651 struct ice_wrap *ice;
1652
1653 ast_rtp_instance_get_local_address(instance, &local);
1654 if (ast_sockaddr_is_ipv4(&local)) {
1655 ast_sockaddr_parse(&loop, "127.0.0.1", PARSE_PORT_FORBID);
1656 } else {
1658 }
1659
1660 /* Determine what component we are requesting a TURN session for */
1661 if (component == AST_RTP_ICE_COMPONENT_RTP) {
1662 turn_sock = &rtp->turn_rtp;
1663 turn_cb = &ast_rtp_turn_rtp_sock_cb;
1664 conn_transport = TRANSPORT_TURN_RTP;
1666 } else if (component == AST_RTP_ICE_COMPONENT_RTCP) {
1667 turn_sock = &rtp->turn_rtcp;
1668 turn_cb = &ast_rtp_turn_rtcp_sock_cb;
1669 conn_transport = TRANSPORT_TURN_RTCP;
1671 } else {
1672 return;
1673 }
1674
1675 if (transport == AST_TRANSPORT_UDP) {
1676 conn_type = PJ_TURN_TP_UDP;
1677 } else if (transport == AST_TRANSPORT_TCP) {
1678 conn_type = PJ_TURN_TP_TCP;
1679 } else {
1680 ast_assert(0);
1681 return;
1682 }
1683
1684 ast_sockaddr_parse(&addr, server, PARSE_PORT_FORBID);
1685
1686 if (*turn_sock) {
1687 rtp->turn_state = PJ_TURN_STATE_NULL;
1688
1689 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1690 ao2_unlock(instance);
1691 pj_turn_sock_destroy(*turn_sock);
1692 ao2_lock(instance);
1693 while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
1694 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
1695 }
1696 }
1697
1698 if (component == AST_RTP_ICE_COMPONENT_RTP && !rtp->ioqueue) {
1699 /*
1700 * We cannot hold the instance lock because we could wait
1701 * for the ioqueue thread to die and we might deadlock as
1702 * a result.
1703 */
1704 ao2_unlock(instance);
1705 rtp->ioqueue = rtp_ioqueue_thread_get_or_create();
1706 ao2_lock(instance);
1707 if (!rtp->ioqueue) {
1708 return;
1709 }
1710 }
1711
1712 pj_stun_config_init(&stun_config, &cachingpool.factory, 0, rtp->ioqueue->ioqueue, rtp->ioqueue->timerheap);
1713 if (!stun_software_attribute) {
1714 stun_config.software_name = pj_str(NULL);
1715 }
1716
1717 /* Use ICE session group lock for TURN session to avoid deadlock */
1718 pj_turn_sock_cfg_default(&turn_sock_cfg);
1719 ice = rtp->ice;
1720 if (ice) {
1721 turn_sock_cfg.grp_lock = ice->real_ice->grp_lock;
1722 ao2_ref(ice, +1);
1723 }
1724
1725 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1726 ao2_unlock(instance);
1727 status = pj_turn_sock_create(&stun_config,
1728 ast_sockaddr_is_ipv4(&addr) ? pj_AF_INET() : pj_AF_INET6(), conn_type,
1729 turn_cb, &turn_sock_cfg, instance, turn_sock);
1730 ao2_cleanup(ice);
1731 if (status != PJ_SUCCESS) {
1732 ast_log(LOG_WARNING, "(%p) Could not create a TURN client socket\n", instance);
1733 ao2_lock(instance);
1734 return;
1735 }
1736
1737 cred.type = PJ_STUN_AUTH_CRED_STATIC;
1738 pj_strset2(&cred.data.static_cred.username, (char*)username);
1739 cred.data.static_cred.data_type = PJ_STUN_PASSWD_PLAIN;
1740 pj_strset2(&cred.data.static_cred.data, (char*)password);
1741
1742 pj_turn_sock_alloc(*turn_sock, pj_cstr(&turn_addr, server), port, NULL, &cred, NULL);
1743
1744 ast_debug_ice(2, "(%p) ICE request TURN %s %s candidate\n", instance,
1745 transport == AST_TRANSPORT_UDP ? "UDP" : "TCP",
1746 component == AST_RTP_ICE_COMPONENT_RTP ? "RTP" : "RTCP");
1747
1748 ao2_lock(instance);
1749
1750 /*
1751 * Because the TURN socket is asynchronous and we are synchronous we need to
1752 * wait until it is done
1753 */
1754 while (rtp->turn_state < PJ_TURN_STATE_READY) {
1755 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
1756 }
1757
1758 /* If a TURN session was allocated add it as a candidate */
1759 if (rtp->turn_state != PJ_TURN_STATE_READY) {
1760 return;
1761 }
1762
1763 pj_turn_sock_get_info(*turn_sock, &info);
1764
1765 ast_rtp_ice_add_cand(instance, rtp, component, conn_transport,
1766 PJ_ICE_CAND_TYPE_RELAYED, 65535, &info.relay_addr, &info.relay_addr,
1767 &info.mapped_addr, pj_sockaddr_get_len(&info.relay_addr));
1768
1769 if (component == AST_RTP_ICE_COMPONENT_RTP) {
1770 ast_sockaddr_copy(&rtp->rtp_loop, &loop);
1771 } else if (component == AST_RTP_ICE_COMPONENT_RTCP) {
1772 ast_sockaddr_copy(&rtp->rtcp_loop, &loop);
1773 }
1774}
1775
1776static char *generate_random_string(char *buf, size_t size)
1777{
1778 long val[4];
1779 int x;
1780
1781 for (x=0; x<4; x++) {
1782 val[x] = ast_random();
1783 }
1784 snprintf(buf, size, "%08lx%08lx%08lx%08lx", (long unsigned)val[0], (long unsigned)val[1], (long unsigned)val[2], (long unsigned)val[3]);
1785
1786 return buf;
1787}
1788
1789/*! \pre instance is locked */
1790static void ast_rtp_ice_change_components(struct ast_rtp_instance *instance, int num_components)
1791{
1792 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1793
1794 /* Don't do anything if ICE is unsupported or if we're not changing the
1795 * number of components
1796 */
1797 if (!icesupport || !rtp->ice || rtp->ice_num_components == num_components) {
1798 return;
1799 }
1800
1801 ast_debug_ice(2, "(%p) ICE change number of components %u -> %u\n", instance,
1802 rtp->ice_num_components, num_components);
1803
1804 rtp->ice_num_components = num_components;
1805 ice_reset_session(instance);
1806}
1807
1808/* ICE RTP Engine interface declaration */
1809static struct ast_rtp_engine_ice ast_rtp_ice = {
1810 .set_authentication = ast_rtp_ice_set_authentication,
1811 .add_remote_candidate = ast_rtp_ice_add_remote_candidate,
1812 .start = ast_rtp_ice_start,
1813 .stop = ast_rtp_ice_stop,
1814 .get_ufrag = ast_rtp_ice_get_ufrag,
1815 .get_password = ast_rtp_ice_get_password,
1816 .get_local_candidates = ast_rtp_ice_get_local_candidates,
1817 .ice_lite = ast_rtp_ice_lite,
1818 .set_role = ast_rtp_ice_set_role,
1819 .turn_request = ast_rtp_ice_turn_request,
1820 .change_components = ast_rtp_ice_change_components,
1821};
1822#endif
1823
1824#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
1825static int dtls_verify_callback(int preverify_ok, X509_STORE_CTX *ctx)
1826{
1827 /* We don't want to actually verify the certificate so just accept what they have provided */
1828 return 1;
1829}
1830
1831static int dtls_details_initialize(struct dtls_details *dtls, SSL_CTX *ssl_ctx,
1832 enum ast_rtp_dtls_setup setup, struct ast_rtp_instance *instance)
1833{
1834 dtls->dtls_setup = setup;
1835
1836 if (!(dtls->ssl = SSL_new(ssl_ctx))) {
1837 ast_log(LOG_ERROR, "Failed to allocate memory for SSL\n");
1838 goto error;
1839 }
1840
1841 if (!(dtls->read_bio = BIO_new(BIO_s_mem()))) {
1842 ast_log(LOG_ERROR, "Failed to allocate memory for inbound SSL traffic\n");
1843 goto error;
1844 }
1845 BIO_set_mem_eof_return(dtls->read_bio, -1);
1846
1847#ifdef HAVE_OPENSSL_BIO_METHOD
1848 if (!(dtls->write_bio = BIO_new(dtls_bio_methods))) {
1849 ast_log(LOG_ERROR, "Failed to allocate memory for outbound SSL traffic\n");
1850 goto error;
1851 }
1852
1853 BIO_set_data(dtls->write_bio, instance);
1854#else
1855 if (!(dtls->write_bio = BIO_new(&dtls_bio_methods))) {
1856 ast_log(LOG_ERROR, "Failed to allocate memory for outbound SSL traffic\n");
1857 goto error;
1858 }
1859 dtls->write_bio->ptr = instance;
1860#endif
1861 SSL_set_bio(dtls->ssl, dtls->read_bio, dtls->write_bio);
1862
1863 if (dtls->dtls_setup == AST_RTP_DTLS_SETUP_PASSIVE) {
1864 SSL_set_accept_state(dtls->ssl);
1865 } else {
1866 SSL_set_connect_state(dtls->ssl);
1867 }
1868 dtls->connection = AST_RTP_DTLS_CONNECTION_NEW;
1869
1870 return 0;
1871
1872error:
1873 if (dtls->read_bio) {
1874 BIO_free(dtls->read_bio);
1875 dtls->read_bio = NULL;
1876 }
1877
1878 if (dtls->write_bio) {
1879 BIO_free(dtls->write_bio);
1880 dtls->write_bio = NULL;
1881 }
1882
1883 if (dtls->ssl) {
1884 SSL_free(dtls->ssl);
1885 dtls->ssl = NULL;
1886 }
1887 return -1;
1888}
1889
1890static int dtls_setup_rtcp(struct ast_rtp_instance *instance)
1891{
1892 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1893
1894 if (!rtp->ssl_ctx || !rtp->rtcp) {
1895 return 0;
1896 }
1897
1898 ast_debug_dtls(3, "(%p) DTLS RTCP setup\n", instance);
1899 return dtls_details_initialize(&rtp->rtcp->dtls, rtp->ssl_ctx, rtp->dtls.dtls_setup, instance);
1900}
1901
1902static const SSL_METHOD *get_dtls_method(void)
1903{
1904#if OPENSSL_VERSION_NUMBER < 0x10002000L
1905 return DTLSv1_method();
1906#else
1907 return DTLS_method();
1908#endif
1909}
1910
1911struct dtls_cert_info {
1912 EVP_PKEY *private_key;
1913 X509 *certificate;
1914};
1915
1916static int apply_dh_params(SSL_CTX *ctx, BIO *bio)
1917{
1918 int res = 0;
1919
1920#if OPENSSL_VERSION_NUMBER >= 0x30000000L
1921 EVP_PKEY *dhpkey = PEM_read_bio_Parameters(bio, NULL);
1922 if (dhpkey && EVP_PKEY_is_a(dhpkey, "DH")) {
1923 res = SSL_CTX_set0_tmp_dh_pkey(ctx, dhpkey);
1924 }
1925 if (!res) {
1926 /* A successful call to SSL_CTX_set0_tmp_dh_pkey() means
1927 that we lost ownership of dhpkey and should not free
1928 it ourselves */
1929 EVP_PKEY_free(dhpkey);
1930 }
1931#else
1932 DH *dh = PEM_read_bio_DHparams(bio, NULL, NULL, NULL);
1933 if (dh) {
1934 res = SSL_CTX_set_tmp_dh(ctx, dh);
1935 }
1936 DH_free(dh);
1937#endif
1938
1939 return res;
1940}
1941
1942static void configure_dhparams(const struct ast_rtp *rtp, const struct ast_rtp_dtls_cfg *dtls_cfg)
1943{
1944#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L) && (OPENSSL_VERSION_NUMBER < 0x10100000L)
1945 EC_KEY *ecdh;
1946#endif
1947
1948#ifndef OPENSSL_NO_DH
1949 if (!ast_strlen_zero(dtls_cfg->pvtfile)) {
1950 BIO *bio = BIO_new_file(dtls_cfg->pvtfile, "r");
1951 if (bio) {
1952 if (apply_dh_params(rtp->ssl_ctx, bio)) {
1953 long options = SSL_OP_CIPHER_SERVER_PREFERENCE |
1954 SSL_OP_SINGLE_DH_USE | SSL_OP_SINGLE_ECDH_USE;
1955 options = SSL_CTX_set_options(rtp->ssl_ctx, options);
1956 ast_verb(2, "DTLS DH initialized, PFS enabled\n");
1957 }
1958 BIO_free(bio);
1959 }
1960 }
1961#endif /* !OPENSSL_NO_DH */
1962
1963#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L) && (OPENSSL_VERSION_NUMBER < 0x10100000L)
1964 /* enables AES-128 ciphers, to get AES-256 use NID_secp384r1 */
1965 ecdh = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1);
1966 if (ecdh) {
1967 if (SSL_CTX_set_tmp_ecdh(rtp->ssl_ctx, ecdh)) {
1968 #ifndef SSL_CTRL_SET_ECDH_AUTO
1969 #define SSL_CTRL_SET_ECDH_AUTO 94
1970 #endif
1971 /* SSL_CTX_set_ecdh_auto(rtp->ssl_ctx, on); requires OpenSSL 1.0.2 which wraps: */
1972 if (SSL_CTX_ctrl(rtp->ssl_ctx, SSL_CTRL_SET_ECDH_AUTO, 1, NULL)) {
1973 ast_verb(2, "DTLS ECDH initialized (automatic), faster PFS enabled\n");
1974 } else {
1975 ast_verb(2, "DTLS ECDH initialized (secp256r1), faster PFS enabled\n");
1976 }
1977 }
1978 EC_KEY_free(ecdh);
1979 }
1980#endif /* !OPENSSL_NO_ECDH */
1981}
1982
1983#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L)
1984
1985static int create_ephemeral_ec_keypair(EVP_PKEY **keypair)
1986{
1987#if OPENSSL_VERSION_NUMBER >= 0x30000000L
1988 *keypair = EVP_EC_gen(SN_X9_62_prime256v1);
1989 return *keypair ? 0 : -1;
1990#else
1991 EC_KEY *eckey = NULL;
1992 EC_GROUP *group = NULL;
1993
1994 group = EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1);
1995 if (!group) {
1996 goto error;
1997 }
1998
1999 EC_GROUP_set_asn1_flag(group, OPENSSL_EC_NAMED_CURVE);
2000 EC_GROUP_set_point_conversion_form(group, POINT_CONVERSION_UNCOMPRESSED);
2001
2002 eckey = EC_KEY_new();
2003 if (!eckey) {
2004 goto error;
2005 }
2006
2007 if (!EC_KEY_set_group(eckey, group)) {
2008 goto error;
2009 }
2010
2011 if (!EC_KEY_generate_key(eckey)) {
2012 goto error;
2013 }
2014
2015 *keypair = EVP_PKEY_new();
2016 if (!*keypair) {
2017 goto error;
2018 }
2019
2020 EVP_PKEY_assign_EC_KEY(*keypair, eckey);
2021 EC_GROUP_free(group);
2022
2023 return 0;
2024
2025error:
2026 EC_KEY_free(eckey);
2027 EC_GROUP_free(group);
2028
2029 return -1;
2030#endif
2031}
2032
2033/* From OpenSSL's x509 command */
2034#define SERIAL_RAND_BITS 159
2035
2036static int create_ephemeral_certificate(EVP_PKEY *keypair, X509 **certificate)
2037{
2038 X509 *cert = NULL;
2039 BIGNUM *serial = NULL;
2040 X509_NAME *name = NULL;
2041
2042 cert = X509_new();
2043 if (!cert) {
2044 goto error;
2045 }
2046
2047 if (!X509_set_version(cert, 2)) {
2048 goto error;
2049 }
2050
2051 /* Set the public key */
2052 X509_set_pubkey(cert, keypair);
2053
2054 /* Generate a random serial number */
2055 if (!(serial = BN_new())
2056 || !BN_rand(serial, SERIAL_RAND_BITS, -1, 0)
2057 || !BN_to_ASN1_INTEGER(serial, X509_get_serialNumber(cert))) {
2058 BN_free(serial);
2059 goto error;
2060 }
2061
2062 BN_free(serial);
2063
2064 /*
2065 * Validity period - Current Chrome & Firefox make it 31 days starting
2066 * with yesterday at the current time, so we will do the same.
2067 */
2068#if OPENSSL_VERSION_NUMBER < 0x10100000L
2069 if (!X509_time_adj_ex(X509_get_notBefore(cert), -1, 0, NULL)
2070 || !X509_time_adj_ex(X509_get_notAfter(cert), 30, 0, NULL)) {
2071 goto error;
2072 }
2073#else
2074 if (!X509_time_adj_ex(X509_getm_notBefore(cert), -1, 0, NULL)
2075 || !X509_time_adj_ex(X509_getm_notAfter(cert), 30, 0, NULL)) {
2076 goto error;
2077 }
2078#endif
2079
2080 /* Set the name and issuer */
2081 if (!(name = X509_get_subject_name(cert))
2082 || !X509_NAME_add_entry_by_NID(name, NID_commonName, MBSTRING_ASC,
2083 (unsigned char *) "asterisk", -1, -1, 0)
2084 || !X509_set_issuer_name(cert, name)) {
2085 goto error;
2086 }
2087
2088 /* Sign it */
2089 if (!X509_sign(cert, keypair, EVP_sha256())) {
2090 goto error;
2091 }
2092
2093 *certificate = cert;
2094
2095 return 0;
2096
2097error:
2098 X509_free(cert);
2099
2100 return -1;
2101}
2102
2103static int create_certificate_ephemeral(struct ast_rtp_instance *instance,
2104 const struct ast_rtp_dtls_cfg *dtls_cfg,
2105 struct dtls_cert_info *cert_info)
2106{
2107 /* Make sure these are initialized */
2108 cert_info->private_key = NULL;
2109 cert_info->certificate = NULL;
2110
2111 if (create_ephemeral_ec_keypair(&cert_info->private_key)) {
2112 ast_log(LOG_ERROR, "Failed to create ephemeral ECDSA keypair\n");
2113 goto error;
2114 }
2115
2116 if (create_ephemeral_certificate(cert_info->private_key, &cert_info->certificate)) {
2117 ast_log(LOG_ERROR, "Failed to create ephemeral X509 certificate\n");
2118 goto error;
2119 }
2120
2121 return 0;
2122
2123 error:
2124 X509_free(cert_info->certificate);
2125 EVP_PKEY_free(cert_info->private_key);
2126
2127 return -1;
2128}
2129
2130#else
2131
2132static int create_certificate_ephemeral(struct ast_rtp_instance *instance,
2133 const struct ast_rtp_dtls_cfg *dtls_cfg,
2134 struct dtls_cert_info *cert_info)
2135{
2136 ast_log(LOG_ERROR, "Your version of OpenSSL does not support ECDSA keys\n");
2137 return -1;
2138}
2139
2140#endif /* !OPENSSL_NO_ECDH */
2141
2142static int create_certificate_from_file(struct ast_rtp_instance *instance,
2143 const struct ast_rtp_dtls_cfg *dtls_cfg,
2144 struct dtls_cert_info *cert_info)
2145{
2146 FILE *fp;
2147 BIO *certbio = NULL;
2148 EVP_PKEY *private_key = NULL;
2149 X509 *cert = NULL;
2150 char *private_key_file = ast_strlen_zero(dtls_cfg->pvtfile) ? dtls_cfg->certfile : dtls_cfg->pvtfile;
2151
2152 fp = fopen(private_key_file, "r");
2153 if (!fp) {
2154 ast_log(LOG_ERROR, "Failed to read private key from file '%s': %s\n", private_key_file, strerror(errno));
2155 goto error;
2156 }
2157
2158 if (!PEM_read_PrivateKey(fp, &private_key, NULL, NULL)) {
2159 ast_log(LOG_ERROR, "Failed to read private key from PEM file '%s'\n", private_key_file);
2160 fclose(fp);
2161 goto error;
2162 }
2163
2164 if (fclose(fp)) {
2165 ast_log(LOG_ERROR, "Failed to close private key file '%s': %s\n", private_key_file, strerror(errno));
2166 goto error;
2167 }
2168
2169 certbio = BIO_new(BIO_s_file());
2170 if (!certbio) {
2171 ast_log(LOG_ERROR, "Failed to allocate memory for certificate fingerprinting on RTP instance '%p'\n",
2172 instance);
2173 goto error;
2174 }
2175
2176 if (!BIO_read_filename(certbio, dtls_cfg->certfile)
2177 || !(cert = PEM_read_bio_X509(certbio, NULL, 0, NULL))) {
2178 ast_log(LOG_ERROR, "Failed to read certificate from file '%s'\n", dtls_cfg->certfile);
2179 goto error;
2180 }
2181
2182 cert_info->private_key = private_key;
2183 cert_info->certificate = cert;
2184
2185 BIO_free_all(certbio);
2186
2187 return 0;
2188
2189error:
2190 X509_free(cert);
2191 BIO_free_all(certbio);
2192 EVP_PKEY_free(private_key);
2193
2194 return -1;
2195}
2196
2197static int load_dtls_certificate(struct ast_rtp_instance *instance,
2198 const struct ast_rtp_dtls_cfg *dtls_cfg,
2199 struct dtls_cert_info *cert_info)
2200{
2201 if (dtls_cfg->ephemeral_cert) {
2202 return create_certificate_ephemeral(instance, dtls_cfg, cert_info);
2203 } else if (!ast_strlen_zero(dtls_cfg->certfile)) {
2204 return create_certificate_from_file(instance, dtls_cfg, cert_info);
2205 } else {
2206 return -1;
2207 }
2208}
2209
2210/*! \pre instance is locked */
2211static int ast_rtp_dtls_set_configuration(struct ast_rtp_instance *instance, const struct ast_rtp_dtls_cfg *dtls_cfg)
2212{
2213 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2214 struct dtls_cert_info cert_info = { 0 };
2215 int res;
2216
2217 if (!dtls_cfg->enabled) {
2218 return 0;
2219 }
2220
2221 ast_debug_dtls(3, "(%p) DTLS RTP setup\n", instance);
2222
2224 ast_log(LOG_ERROR, "SRTP support module is not loaded or available. Try loading res_srtp.so.\n");
2225 return -1;
2226 }
2227
2228 if (rtp->ssl_ctx) {
2229 return 0;
2230 }
2231
2232 rtp->ssl_ctx = SSL_CTX_new(get_dtls_method());
2233 if (!rtp->ssl_ctx) {
2234 return -1;
2235 }
2236
2237 SSL_CTX_set_read_ahead(rtp->ssl_ctx, 1);
2238
2239 configure_dhparams(rtp, dtls_cfg);
2240
2241 rtp->dtls_verify = dtls_cfg->verify;
2242
2243 SSL_CTX_set_verify(rtp->ssl_ctx, (rtp->dtls_verify & AST_RTP_DTLS_VERIFY_FINGERPRINT) || (rtp->dtls_verify & AST_RTP_DTLS_VERIFY_CERTIFICATE) ?
2244 SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT : SSL_VERIFY_NONE, !(rtp->dtls_verify & AST_RTP_DTLS_VERIFY_CERTIFICATE) ?
2245 dtls_verify_callback : NULL);
2246
2247 if (dtls_cfg->suite == AST_AES_CM_128_HMAC_SHA1_80) {
2248 SSL_CTX_set_tlsext_use_srtp(rtp->ssl_ctx, "SRTP_AES128_CM_SHA1_80");
2249 } else if (dtls_cfg->suite == AST_AES_CM_128_HMAC_SHA1_32) {
2250 SSL_CTX_set_tlsext_use_srtp(rtp->ssl_ctx, "SRTP_AES128_CM_SHA1_32");
2251 } else {
2252 ast_log(LOG_ERROR, "Unsupported suite specified for DTLS-SRTP on RTP instance '%p'\n", instance);
2253 return -1;
2254 }
2255
2256 rtp->local_hash = dtls_cfg->hash;
2257
2258 if (!load_dtls_certificate(instance, dtls_cfg, &cert_info)) {
2259 const EVP_MD *type;
2260 unsigned int size, i;
2261 unsigned char fingerprint[EVP_MAX_MD_SIZE];
2262 char *local_fingerprint = rtp->local_fingerprint;
2263
2264 if (!SSL_CTX_use_certificate(rtp->ssl_ctx, cert_info.certificate)) {
2265 ast_log(LOG_ERROR, "Specified certificate for RTP instance '%p' could not be used\n",
2266 instance);
2267 return -1;
2268 }
2269
2270 if (!SSL_CTX_use_PrivateKey(rtp->ssl_ctx, cert_info.private_key)
2271 || !SSL_CTX_check_private_key(rtp->ssl_ctx)) {
2272 ast_log(LOG_ERROR, "Specified private key for RTP instance '%p' could not be used\n",
2273 instance);
2274 return -1;
2275 }
2276
2277 if (rtp->local_hash == AST_RTP_DTLS_HASH_SHA1) {
2278 type = EVP_sha1();
2279 } else if (rtp->local_hash == AST_RTP_DTLS_HASH_SHA256) {
2280 type = EVP_sha256();
2281 } else {
2282 ast_log(LOG_ERROR, "Unsupported fingerprint hash type on RTP instance '%p'\n",
2283 instance);
2284 return -1;
2285 }
2286
2287 if (!X509_digest(cert_info.certificate, type, fingerprint, &size) || !size) {
2288 ast_log(LOG_ERROR, "Could not produce fingerprint from certificate for RTP instance '%p'\n",
2289 instance);
2290 return -1;
2291 }
2292
2293 for (i = 0; i < size; i++) {
2294 sprintf(local_fingerprint, "%02hhX:", fingerprint[i]);
2295 local_fingerprint += 3;
2296 }
2297
2298 *(local_fingerprint - 1) = 0;
2299
2300 EVP_PKEY_free(cert_info.private_key);
2301 X509_free(cert_info.certificate);
2302 }
2303
2304 if (!ast_strlen_zero(dtls_cfg->cipher)) {
2305 if (!SSL_CTX_set_cipher_list(rtp->ssl_ctx, dtls_cfg->cipher)) {
2306 ast_log(LOG_ERROR, "Invalid cipher specified in cipher list '%s' for RTP instance '%p'\n",
2307 dtls_cfg->cipher, instance);
2308 return -1;
2309 }
2310 }
2311
2312 if (!ast_strlen_zero(dtls_cfg->cafile) || !ast_strlen_zero(dtls_cfg->capath)) {
2313 if (!SSL_CTX_load_verify_locations(rtp->ssl_ctx, S_OR(dtls_cfg->cafile, NULL), S_OR(dtls_cfg->capath, NULL))) {
2314 ast_log(LOG_ERROR, "Invalid certificate authority file '%s' or path '%s' specified for RTP instance '%p'\n",
2315 S_OR(dtls_cfg->cafile, ""), S_OR(dtls_cfg->capath, ""), instance);
2316 return -1;
2317 }
2318 }
2319
2320 rtp->rekey = dtls_cfg->rekey;
2321 rtp->suite = dtls_cfg->suite;
2322
2323 res = dtls_details_initialize(&rtp->dtls, rtp->ssl_ctx, dtls_cfg->default_setup, instance);
2324 if (!res) {
2325 dtls_setup_rtcp(instance);
2326 }
2327
2328 return res;
2329}
2330
2331/*! \pre instance is locked */
2332static int ast_rtp_dtls_active(struct ast_rtp_instance *instance)
2333{
2334 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2335
2336 return !rtp->ssl_ctx ? 0 : 1;
2337}
2338
2339/*! \pre instance is locked */
2340static void ast_rtp_dtls_stop(struct ast_rtp_instance *instance)
2341{
2342 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2343 SSL *ssl = rtp->dtls.ssl;
2344
2345 ast_debug_dtls(3, "(%p) DTLS stop\n", instance);
2346 ao2_unlock(instance);
2347 dtls_srtp_stop_timeout_timer(instance, rtp, 0);
2348 ao2_lock(instance);
2349
2350 if (rtp->ssl_ctx) {
2351 SSL_CTX_free(rtp->ssl_ctx);
2352 rtp->ssl_ctx = NULL;
2353 }
2354
2355 if (rtp->dtls.ssl) {
2356 SSL_free(rtp->dtls.ssl);
2357 rtp->dtls.ssl = NULL;
2358 }
2359
2360 if (rtp->rtcp) {
2361 ao2_unlock(instance);
2362 dtls_srtp_stop_timeout_timer(instance, rtp, 1);
2363 ao2_lock(instance);
2364
2365 if (rtp->rtcp->dtls.ssl) {
2366 if (rtp->rtcp->dtls.ssl != ssl) {
2367 SSL_free(rtp->rtcp->dtls.ssl);
2368 }
2369 rtp->rtcp->dtls.ssl = NULL;
2370 }
2371 }
2372}
2373
2374/*! \pre instance is locked */
2375static void ast_rtp_dtls_reset(struct ast_rtp_instance *instance)
2376{
2377 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2378
2379 if (SSL_is_init_finished(rtp->dtls.ssl)) {
2380 SSL_shutdown(rtp->dtls.ssl);
2381 rtp->dtls.connection = AST_RTP_DTLS_CONNECTION_NEW;
2382 }
2383
2384 if (rtp->rtcp && SSL_is_init_finished(rtp->rtcp->dtls.ssl)) {
2385 SSL_shutdown(rtp->rtcp->dtls.ssl);
2386 rtp->rtcp->dtls.connection = AST_RTP_DTLS_CONNECTION_NEW;
2387 }
2388}
2389
2390/*! \pre instance is locked */
2391static enum ast_rtp_dtls_connection ast_rtp_dtls_get_connection(struct ast_rtp_instance *instance)
2392{
2393 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2394
2395 return rtp->dtls.connection;
2396}
2397
2398/*! \pre instance is locked */
2399static enum ast_rtp_dtls_setup ast_rtp_dtls_get_setup(struct ast_rtp_instance *instance)
2400{
2401 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2402
2403 return rtp->dtls.dtls_setup;
2404}
2405
2406static void dtls_set_setup(enum ast_rtp_dtls_setup *dtls_setup, enum ast_rtp_dtls_setup setup, SSL *ssl)
2407{
2408 enum ast_rtp_dtls_setup old = *dtls_setup;
2409
2410 switch (setup) {
2412 *dtls_setup = AST_RTP_DTLS_SETUP_PASSIVE;
2413 break;
2415 *dtls_setup = AST_RTP_DTLS_SETUP_ACTIVE;
2416 break;
2418 /* We can't respond to an actpass setup with actpass ourselves... so respond with active, as we can initiate connections */
2419 if (*dtls_setup == AST_RTP_DTLS_SETUP_ACTPASS) {
2420 *dtls_setup = AST_RTP_DTLS_SETUP_ACTIVE;
2421 }
2422 break;
2424 *dtls_setup = AST_RTP_DTLS_SETUP_HOLDCONN;
2425 break;
2426 default:
2427 /* This should never occur... if it does exit early as we don't know what state things are in */
2428 return;
2429 }
2430
2431 /* If the setup state did not change we go on as if nothing happened */
2432 if (old == *dtls_setup) {
2433 return;
2434 }
2435
2436 /* If they don't want us to establish a connection wait until later */
2437 if (*dtls_setup == AST_RTP_DTLS_SETUP_HOLDCONN) {
2438 return;
2439 }
2440
2441 if (*dtls_setup == AST_RTP_DTLS_SETUP_ACTIVE) {
2442 SSL_set_connect_state(ssl);
2443 } else if (*dtls_setup == AST_RTP_DTLS_SETUP_PASSIVE) {
2444 SSL_set_accept_state(ssl);
2445 } else {
2446 return;
2447 }
2448}
2449
2450/*! \pre instance is locked */
2451static void ast_rtp_dtls_set_setup(struct ast_rtp_instance *instance, enum ast_rtp_dtls_setup setup)
2452{
2453 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2454
2455 if (rtp->dtls.ssl) {
2456 dtls_set_setup(&rtp->dtls.dtls_setup, setup, rtp->dtls.ssl);
2457 }
2458
2459 if (rtp->rtcp && rtp->rtcp->dtls.ssl) {
2460 dtls_set_setup(&rtp->rtcp->dtls.dtls_setup, setup, rtp->rtcp->dtls.ssl);
2461 }
2462}
2463
2464/*! \pre instance is locked */
2465static void ast_rtp_dtls_set_fingerprint(struct ast_rtp_instance *instance, enum ast_rtp_dtls_hash hash, const char *fingerprint)
2466{
2467 char *tmp = ast_strdupa(fingerprint), *value;
2468 int pos = 0;
2469 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2470
2471 if (hash != AST_RTP_DTLS_HASH_SHA1 && hash != AST_RTP_DTLS_HASH_SHA256) {
2472 return;
2473 }
2474
2475 rtp->remote_hash = hash;
2476
2477 while ((value = strsep(&tmp, ":")) && (pos != (EVP_MAX_MD_SIZE - 1))) {
2478 sscanf(value, "%02hhx", &rtp->remote_fingerprint[pos++]);
2479 }
2480}
2481
2482/*! \pre instance is locked */
2483static enum ast_rtp_dtls_hash ast_rtp_dtls_get_fingerprint_hash(struct ast_rtp_instance *instance)
2484{
2485 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2486
2487 return rtp->local_hash;
2488}
2489
2490/*! \pre instance is locked */
2491static const char *ast_rtp_dtls_get_fingerprint(struct ast_rtp_instance *instance)
2492{
2493 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2494
2495 return rtp->local_fingerprint;
2496}
2497
2498/* DTLS RTP Engine interface declaration */
2499static struct ast_rtp_engine_dtls ast_rtp_dtls = {
2500 .set_configuration = ast_rtp_dtls_set_configuration,
2501 .active = ast_rtp_dtls_active,
2502 .stop = ast_rtp_dtls_stop,
2503 .reset = ast_rtp_dtls_reset,
2504 .get_connection = ast_rtp_dtls_get_connection,
2505 .get_setup = ast_rtp_dtls_get_setup,
2506 .set_setup = ast_rtp_dtls_set_setup,
2507 .set_fingerprint = ast_rtp_dtls_set_fingerprint,
2508 .get_fingerprint_hash = ast_rtp_dtls_get_fingerprint_hash,
2509 .get_fingerprint = ast_rtp_dtls_get_fingerprint,
2510};
2511
2512#endif
2513
2514#ifdef TEST_FRAMEWORK
2515static size_t get_recv_buffer_count(struct ast_rtp_instance *instance)
2516{
2517 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2518
2519 if (rtp && rtp->recv_buffer) {
2521 }
2522
2523 return 0;
2524}
2525
2526static size_t get_recv_buffer_max(struct ast_rtp_instance *instance)
2527{
2528 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2529
2530 if (rtp && rtp->recv_buffer) {
2531 return ast_data_buffer_max(rtp->recv_buffer);
2532 }
2533
2534 return 0;
2535}
2536
2537static size_t get_send_buffer_count(struct ast_rtp_instance *instance)
2538{
2539 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2540
2541 if (rtp && rtp->send_buffer) {
2543 }
2544
2545 return 0;
2546}
2547
2548static void set_rtp_rtcp_schedid(struct ast_rtp_instance *instance, int id)
2549{
2550 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2551
2552 if (rtp && rtp->rtcp) {
2553 rtp->rtcp->schedid = id;
2554 }
2555}
2556
2557static struct ast_rtp_engine_test ast_rtp_test = {
2558 .packets_to_drop = 0,
2559 .send_report = 0,
2560 .sdes_received = 0,
2561 .recv_buffer_count = get_recv_buffer_count,
2562 .recv_buffer_max = get_recv_buffer_max,
2563 .send_buffer_count = get_send_buffer_count,
2564 .set_schedid = set_rtp_rtcp_schedid,
2565};
2566#endif
2567
2568/* RTP Engine Declaration */
2570 .name = "asterisk",
2571 .new = ast_rtp_new,
2572 .destroy = ast_rtp_destroy,
2573 .dtmf_begin = ast_rtp_dtmf_begin,
2574 .dtmf_end = ast_rtp_dtmf_end,
2575 .dtmf_end_with_duration = ast_rtp_dtmf_end_with_duration,
2576 .dtmf_mode_set = ast_rtp_dtmf_mode_set,
2577 .dtmf_mode_get = ast_rtp_dtmf_mode_get,
2578 .update_source = ast_rtp_update_source,
2579 .change_source = ast_rtp_change_source,
2580 .write = ast_rtp_write,
2581 .read = ast_rtp_read,
2582 .prop_set = ast_rtp_prop_set,
2583 .fd = ast_rtp_fd,
2584 .remote_address_set = ast_rtp_remote_address_set,
2585 .red_init = rtp_red_init,
2586 .red_buffer = rtp_red_buffer,
2587 .local_bridge = ast_rtp_local_bridge,
2588 .get_stat = ast_rtp_get_stat,
2589 .dtmf_compatible = ast_rtp_dtmf_compatible,
2590 .stun_request = ast_rtp_stun_request,
2591 .stop = ast_rtp_stop,
2592 .qos = ast_rtp_qos_set,
2593 .sendcng = ast_rtp_sendcng,
2594#ifdef HAVE_PJPROJECT
2595 .ice = &ast_rtp_ice,
2596#endif
2597#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2598 .dtls = &ast_rtp_dtls,
2599 .activate = ast_rtp_activate,
2600#endif
2601 .ssrc_get = ast_rtp_get_ssrc,
2602 .cname_get = ast_rtp_get_cname,
2603 .set_remote_ssrc = ast_rtp_set_remote_ssrc,
2604 .set_stream_num = ast_rtp_set_stream_num,
2605 .extension_enable = ast_rtp_extension_enable,
2606 .bundle = ast_rtp_bundle,
2607#ifdef TEST_FRAMEWORK
2608 .test = &ast_rtp_test,
2609#endif
2610};
2611
2612#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2613/*! \pre instance is locked */
2614static void dtls_perform_handshake(struct ast_rtp_instance *instance, struct dtls_details *dtls, int rtcp)
2615{
2616 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2617
2618 ast_debug_dtls(3, "(%p) DTLS perform handshake - ssl = %p, setup = %d\n",
2619 rtp, dtls->ssl, dtls->dtls_setup);
2620
2621 /* If we are not acting as a client connecting to the remote side then
2622 * don't start the handshake as it will accomplish nothing and would conflict
2623 * with the handshake we receive from the remote side.
2624 */
2625 if (!dtls->ssl || (dtls->dtls_setup != AST_RTP_DTLS_SETUP_ACTIVE)) {
2626 return;
2627 }
2628
2629 SSL_do_handshake(dtls->ssl);
2630
2631 /*
2632 * A race condition is prevented between this function and __rtp_recvfrom()
2633 * because both functions have to get the instance lock before they can do
2634 * anything. Without holding the instance lock, this function could start
2635 * the SSL handshake above in one thread and the __rtp_recvfrom() function
2636 * called by the channel thread could read the response and stop the timeout
2637 * timer before we have a chance to even start it.
2638 */
2639 dtls_srtp_start_timeout_timer(instance, rtp, rtcp);
2640}
2641#endif
2642
2643#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2644static void dtls_perform_setup(struct dtls_details *dtls)
2645{
2646 if (!dtls->ssl || !SSL_is_init_finished(dtls->ssl)) {
2647 return;
2648 }
2649
2650 SSL_clear(dtls->ssl);
2651 if (dtls->dtls_setup == AST_RTP_DTLS_SETUP_PASSIVE) {
2652 SSL_set_accept_state(dtls->ssl);
2653 } else {
2654 SSL_set_connect_state(dtls->ssl);
2655 }
2656 dtls->connection = AST_RTP_DTLS_CONNECTION_NEW;
2657
2658 ast_debug_dtls(3, "DTLS perform setup - connection reset\n");
2659}
2660#endif
2661
2662#ifdef HAVE_PJPROJECT
2663static void rtp_learning_start(struct ast_rtp *rtp);
2664
2665/* Handles start of media during ICE negotiation or completion */
2666static void ast_rtp_ice_start_media(pj_ice_sess *ice, pj_status_t status)
2667{
2668 struct ast_rtp_instance *instance = ice->user_data;
2669 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2670
2671 ao2_lock(instance);
2672
2673 if (status == PJ_SUCCESS) {
2674 struct ast_sockaddr remote_address;
2675
2676 ast_sockaddr_setnull(&remote_address);
2677 update_address_with_ice_candidate(ice, AST_RTP_ICE_COMPONENT_RTP, &remote_address);
2678 if (!ast_sockaddr_isnull(&remote_address)) {
2679 /* Symmetric RTP must be disabled for the remote address to not get overwritten */
2681
2682 ast_rtp_instance_set_remote_address(instance, &remote_address);
2683 }
2684
2685 if (rtp->rtcp) {
2686 update_address_with_ice_candidate(ice, AST_RTP_ICE_COMPONENT_RTCP, &rtp->rtcp->them);
2687 }
2688 }
2689
2690#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2691 /* If we've already started media, no need to do all of this again */
2692 if (rtp->ice_media_started) {
2693 ao2_unlock(instance);
2694 return;
2695 }
2696
2698 "(%p) ICE starting media - perform DTLS - (%p)\n", instance, rtp);
2699
2700 /*
2701 * Seemingly no reason to call dtls_perform_setup here. Currently we'll do a full
2702 * protocol level renegotiation if things do change. And if bundled is being used
2703 * then ICE is reused when a stream is added.
2704 *
2705 * Note, if for some reason in the future dtls_perform_setup does need to done here
2706 * be aware that creates a race condition between the call here (on ice completion)
2707 * and potential DTLS handshaking when receiving RTP. What happens is the ssl object
2708 * can get cleared (SSL_clear) during that handshaking process (DTLS init). If that
2709 * happens then Asterisk won't complete DTLS initialization. RTP packets are still
2710 * sent/received but won't be encrypted/decrypted.
2711 */
2712 dtls_perform_handshake(instance, &rtp->dtls, 0);
2713
2714 if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
2715 dtls_perform_handshake(instance, &rtp->rtcp->dtls, 1);
2716 }
2717#endif
2718
2719 rtp->ice_media_started = 1;
2720
2721 if (!strictrtp) {
2722 ao2_unlock(instance);
2723 return;
2724 }
2725
2726 ast_verb(4, "%p -- Strict RTP learning after ICE completion\n", rtp);
2727 rtp_learning_start(rtp);
2728 ao2_unlock(instance);
2729}
2730
2731#ifdef HAVE_PJPROJECT_ON_VALID_ICE_PAIR_CALLBACK
2732/* PJPROJECT ICE optional callback */
2733static void ast_rtp_on_valid_pair(pj_ice_sess *ice)
2734{
2735 ast_debug_ice(2, "(%p) ICE valid pair, start media\n", ice->user_data);
2736 ast_rtp_ice_start_media(ice, PJ_SUCCESS);
2737}
2738#endif
2739
2740/* PJPROJECT ICE callback */
2741static void ast_rtp_on_ice_complete(pj_ice_sess *ice, pj_status_t status)
2742{
2743 ast_debug_ice(2, "(%p) ICE complete, start media\n", ice->user_data);
2744 ast_rtp_ice_start_media(ice, status);
2745}
2746
2747/* PJPROJECT ICE callback */
2748static void ast_rtp_on_ice_rx_data(pj_ice_sess *ice, unsigned comp_id, unsigned transport_id, void *pkt, pj_size_t size, const pj_sockaddr_t *src_addr, unsigned src_addr_len)
2749{
2750 struct ast_rtp_instance *instance = ice->user_data;
2751 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2752
2753 /* Instead of handling the packet here (which really doesn't work with our architecture) we set a bit to indicate that it should be handled after pj_ice_sess_on_rx_pkt
2754 * returns */
2755 if (transport_id == TRANSPORT_SOCKET_RTP || transport_id == TRANSPORT_SOCKET_RTCP) {
2756 rtp->passthrough = 1;
2757 } else if (transport_id == TRANSPORT_TURN_RTP) {
2758 rtp->rtp_passthrough = 1;
2759 } else if (transport_id == TRANSPORT_TURN_RTCP) {
2760 rtp->rtcp_passthrough = 1;
2761 }
2762}
2763
2764/* PJPROJECT ICE callback */
2765static pj_status_t ast_rtp_on_ice_tx_pkt(pj_ice_sess *ice, unsigned comp_id, unsigned transport_id, const void *pkt, pj_size_t size, const pj_sockaddr_t *dst_addr, unsigned dst_addr_len)
2766{
2767 struct ast_rtp_instance *instance = ice->user_data;
2768 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2769 pj_status_t status = PJ_EINVALIDOP;
2770 pj_ssize_t _size = (pj_ssize_t)size;
2771
2772 if (transport_id == TRANSPORT_SOCKET_RTP) {
2773 /* Traffic is destined to go right out the RTP socket we already have */
2774 status = pj_sock_sendto(rtp->s, pkt, &_size, 0, dst_addr, dst_addr_len);
2775 /* sendto on a connectionless socket should send all the data, or none at all */
2776 ast_assert(_size == size || status != PJ_SUCCESS);
2777 } else if (transport_id == TRANSPORT_SOCKET_RTCP) {
2778 /* Traffic is destined to go right out the RTCP socket we already have */
2779 if (rtp->rtcp) {
2780 status = pj_sock_sendto(rtp->rtcp->s, pkt, &_size, 0, dst_addr, dst_addr_len);
2781 /* sendto on a connectionless socket should send all the data, or none at all */
2782 ast_assert(_size == size || status != PJ_SUCCESS);
2783 } else {
2784 status = PJ_SUCCESS;
2785 }
2786 } else if (transport_id == TRANSPORT_TURN_RTP) {
2787 /* Traffic is going through the RTP TURN relay */
2788 if (rtp->turn_rtp) {
2789 status = pj_turn_sock_sendto(rtp->turn_rtp, pkt, size, dst_addr, dst_addr_len);
2790 }
2791 } else if (transport_id == TRANSPORT_TURN_RTCP) {
2792 /* Traffic is going through the RTCP TURN relay */
2793 if (rtp->turn_rtcp) {
2794 status = pj_turn_sock_sendto(rtp->turn_rtcp, pkt, size, dst_addr, dst_addr_len);
2795 }
2796 }
2797
2798 return status;
2799}
2800
2801/* ICE Session interface declaration */
2802static pj_ice_sess_cb ast_rtp_ice_sess_cb = {
2803#ifdef HAVE_PJPROJECT_ON_VALID_ICE_PAIR_CALLBACK
2804 .on_valid_pair = ast_rtp_on_valid_pair,
2805#endif
2806 .on_ice_complete = ast_rtp_on_ice_complete,
2807 .on_rx_data = ast_rtp_on_ice_rx_data,
2808 .on_tx_pkt = ast_rtp_on_ice_tx_pkt,
2809};
2810
2811/*! \brief Worker thread for timerheap */
2812static int timer_worker_thread(void *data)
2813{
2814 pj_ioqueue_t *ioqueue;
2815
2816 if (pj_ioqueue_create(pool, 1, &ioqueue) != PJ_SUCCESS) {
2817 return -1;
2818 }
2819
2820 while (!timer_terminate) {
2821 const pj_time_val delay = {0, 10};
2822
2823 pj_timer_heap_poll(timer_heap, NULL);
2824 pj_ioqueue_poll(ioqueue, &delay);
2825 }
2826
2827 return 0;
2828}
2829#endif
2830
2831static inline int rtp_debug_test_addr(struct ast_sockaddr *addr)
2832{
2834 return 0;
2835 }
2837 if (rtpdebugport) {
2838 return (ast_sockaddr_cmp(&rtpdebugaddr, addr) == 0); /* look for RTP packets from IP+Port */
2839 } else {
2840 return (ast_sockaddr_cmp_addr(&rtpdebugaddr, addr) == 0); /* only look for RTP packets from IP */
2841 }
2842 }
2843
2844 return 1;
2845}
2846
2847static inline int rtcp_debug_test_addr(struct ast_sockaddr *addr)
2848{
2850 return 0;
2851 }
2853 if (rtcpdebugport) {
2854 return (ast_sockaddr_cmp(&rtcpdebugaddr, addr) == 0); /* look for RTCP packets from IP+Port */
2855 } else {
2856 return (ast_sockaddr_cmp_addr(&rtcpdebugaddr, addr) == 0); /* only look for RTCP packets from IP */
2857 }
2858 }
2859
2860 return 1;
2861}
2862
2863#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2864/*! \pre instance is locked */
2865static int dtls_srtp_handle_timeout(struct ast_rtp_instance *instance, int rtcp)
2866{
2867 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2868 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
2869 struct timeval dtls_timeout;
2870
2871 ast_debug_dtls(3, "(%p) DTLS srtp - handle timeout - rtcp=%d\n", instance, rtcp);
2872 DTLSv1_handle_timeout(dtls->ssl);
2873
2874 /* If a timeout can't be retrieved then this recurring scheduled item must stop */
2875 if (!DTLSv1_get_timeout(dtls->ssl, &dtls_timeout)) {
2876 dtls->timeout_timer = -1;
2877 return 0;
2878 }
2879
2880 return dtls_timeout.tv_sec * 1000 + dtls_timeout.tv_usec / 1000;
2881}
2882
2883/* Scheduler callback */
2884static int dtls_srtp_handle_rtp_timeout(const void *data)
2885{
2886 struct ast_rtp_instance *instance = (struct ast_rtp_instance *)data;
2887 int reschedule;
2888
2889 ao2_lock(instance);
2890 reschedule = dtls_srtp_handle_timeout(instance, 0);
2891 ao2_unlock(instance);
2892 if (!reschedule) {
2893 ao2_ref(instance, -1);
2894 }
2895
2896 return reschedule;
2897}
2898
2899/* Scheduler callback */
2900static int dtls_srtp_handle_rtcp_timeout(const void *data)
2901{
2902 struct ast_rtp_instance *instance = (struct ast_rtp_instance *)data;
2903 int reschedule;
2904
2905 ao2_lock(instance);
2906 reschedule = dtls_srtp_handle_timeout(instance, 1);
2907 ao2_unlock(instance);
2908 if (!reschedule) {
2909 ao2_ref(instance, -1);
2910 }
2911
2912 return reschedule;
2913}
2914
2915static void dtls_srtp_start_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp)
2916{
2917 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
2918 struct timeval dtls_timeout;
2919
2920 if (DTLSv1_get_timeout(dtls->ssl, &dtls_timeout)) {
2921 int timeout = dtls_timeout.tv_sec * 1000 + dtls_timeout.tv_usec / 1000;
2922
2923 ast_assert(dtls->timeout_timer == -1);
2924
2925 ao2_ref(instance, +1);
2926 if ((dtls->timeout_timer = ast_sched_add(rtp->sched, timeout,
2927 !rtcp ? dtls_srtp_handle_rtp_timeout : dtls_srtp_handle_rtcp_timeout, instance)) < 0) {
2928 ao2_ref(instance, -1);
2929 ast_log(LOG_WARNING, "Scheduling '%s' DTLS retransmission for RTP instance [%p] failed.\n",
2930 !rtcp ? "RTP" : "RTCP", instance);
2931 } else {
2932 ast_debug_dtls(3, "(%p) DTLS srtp - scheduled timeout timer for '%d'\n", instance, timeout);
2933 }
2934 }
2935}
2936
2937/*! \pre Must not be called with the instance locked. */
2938static void dtls_srtp_stop_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp)
2939{
2940 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
2941
2942 AST_SCHED_DEL_UNREF(rtp->sched, dtls->timeout_timer, ao2_ref(instance, -1));
2943 ast_debug_dtls(3, "(%p) DTLS srtp - stopped timeout timer'\n", instance);
2944}
2945
2946/* Scheduler callback */
2947static int dtls_srtp_renegotiate(const void *data)
2948{
2949 struct ast_rtp_instance *instance = (struct ast_rtp_instance *)data;
2950 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2951
2952 ao2_lock(instance);
2953
2954 ast_debug_dtls(3, "(%p) DTLS srtp - renegotiate'\n", instance);
2955 SSL_renegotiate(rtp->dtls.ssl);
2956 SSL_do_handshake(rtp->dtls.ssl);
2957
2958 if (rtp->rtcp && rtp->rtcp->dtls.ssl && rtp->rtcp->dtls.ssl != rtp->dtls.ssl) {
2959 SSL_renegotiate(rtp->rtcp->dtls.ssl);
2960 SSL_do_handshake(rtp->rtcp->dtls.ssl);
2961 }
2962
2963 rtp->rekeyid = -1;
2964
2965 ao2_unlock(instance);
2966 ao2_ref(instance, -1);
2967
2968 return 0;
2969}
2970
2971static int dtls_srtp_add_local_ssrc(struct ast_rtp *rtp, struct ast_rtp_instance *instance, int rtcp, unsigned int ssrc, int set_remote_policy)
2972{
2973 unsigned char material[SRTP_MASTER_LEN * 2];
2974 unsigned char *local_key, *local_salt, *remote_key, *remote_salt;
2975 struct ast_srtp_policy *local_policy, *remote_policy = NULL;
2976 int res = -1;
2977 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
2978
2979 ast_debug_dtls(3, "(%p) DTLS srtp - add local ssrc - rtcp=%d, set_remote_policy=%d'\n",
2980 instance, rtcp, set_remote_policy);
2981
2982 /* Produce key information and set up SRTP */
2983 if (!SSL_export_keying_material(dtls->ssl, material, SRTP_MASTER_LEN * 2, "EXTRACTOR-dtls_srtp", 19, NULL, 0, 0)) {
2984 ast_log(LOG_WARNING, "Unable to extract SRTP keying material from DTLS-SRTP negotiation on RTP instance '%p'\n",
2985 instance);
2986 return -1;
2987 }
2988
2989 /* Whether we are acting as a server or client determines where the keys/salts are */
2990 if (rtp->dtls.dtls_setup == AST_RTP_DTLS_SETUP_ACTIVE) {
2991 local_key = material;
2992 remote_key = local_key + SRTP_MASTER_KEY_LEN;
2993 local_salt = remote_key + SRTP_MASTER_KEY_LEN;
2994 remote_salt = local_salt + SRTP_MASTER_SALT_LEN;
2995 } else {
2996 remote_key = material;
2997 local_key = remote_key + SRTP_MASTER_KEY_LEN;
2998 remote_salt = local_key + SRTP_MASTER_KEY_LEN;
2999 local_salt = remote_salt + SRTP_MASTER_SALT_LEN;
3000 }
3001
3002 if (!(local_policy = res_srtp_policy->alloc())) {
3003 return -1;
3004 }
3005
3006 if (res_srtp_policy->set_master_key(local_policy, local_key, SRTP_MASTER_KEY_LEN, local_salt, SRTP_MASTER_SALT_LEN) < 0) {
3007 ast_log(LOG_WARNING, "Could not set key/salt information on local policy of '%p' when setting up DTLS-SRTP\n", rtp);
3008 goto error;
3009 }
3010
3011 if (res_srtp_policy->set_suite(local_policy, rtp->suite)) {
3012 ast_log(LOG_WARNING, "Could not set suite to '%u' on local policy of '%p' when setting up DTLS-SRTP\n", rtp->suite, rtp);
3013 goto error;
3014 }
3015
3016 res_srtp_policy->set_ssrc(local_policy, ssrc, 0);
3017
3018 if (set_remote_policy) {
3019 if (!(remote_policy = res_srtp_policy->alloc())) {
3020 goto error;
3021 }
3022
3023 if (res_srtp_policy->set_master_key(remote_policy, remote_key, SRTP_MASTER_KEY_LEN, remote_salt, SRTP_MASTER_SALT_LEN) < 0) {
3024 ast_log(LOG_WARNING, "Could not set key/salt information on remote policy of '%p' when setting up DTLS-SRTP\n", rtp);
3025 goto error;
3026 }
3027
3028 if (res_srtp_policy->set_suite(remote_policy, rtp->suite)) {
3029 ast_log(LOG_WARNING, "Could not set suite to '%u' on remote policy of '%p' when setting up DTLS-SRTP\n", rtp->suite, rtp);
3030 goto error;
3031 }
3032
3033 res_srtp_policy->set_ssrc(remote_policy, 0, 1);
3034 }
3035
3036 if (ast_rtp_instance_add_srtp_policy(instance, remote_policy, local_policy, rtcp)) {
3037 ast_log(LOG_WARNING, "Could not set policies when setting up DTLS-SRTP on '%p'\n", rtp);
3038 goto error;
3039 }
3040
3041 res = 0;
3042
3043error:
3044 /* policy->destroy() called even on success to release local reference to these resources */
3045 res_srtp_policy->destroy(local_policy);
3046
3047 if (remote_policy) {
3048 res_srtp_policy->destroy(remote_policy);
3049 }
3050
3051 return res;
3052}
3053
3054static int dtls_srtp_setup(struct ast_rtp *rtp, struct ast_rtp_instance *instance, int rtcp)
3055{
3056 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
3057 int index;
3058
3059 ast_debug_dtls(3, "(%p) DTLS setup SRTP rtp=%p'\n", instance, rtp);
3060
3061 /* If a fingerprint is present in the SDP make sure that the peer certificate matches it */
3062 if (rtp->dtls_verify & AST_RTP_DTLS_VERIFY_FINGERPRINT) {
3063 X509 *certificate;
3064
3065 if (!(certificate = SSL_get_peer_certificate(dtls->ssl))) {
3066 ast_log(LOG_WARNING, "No certificate was provided by the peer on RTP instance '%p'\n", instance);
3067 return -1;
3068 }
3069
3070 /* If a fingerprint is present in the SDP make sure that the peer certificate matches it */
3071 if (rtp->remote_fingerprint[0]) {
3072 const EVP_MD *type;
3073 unsigned char fingerprint[EVP_MAX_MD_SIZE];
3074 unsigned int size;
3075
3076 if (rtp->remote_hash == AST_RTP_DTLS_HASH_SHA1) {
3077 type = EVP_sha1();
3078 } else if (rtp->remote_hash == AST_RTP_DTLS_HASH_SHA256) {
3079 type = EVP_sha256();
3080 } else {
3081 ast_log(LOG_WARNING, "Unsupported fingerprint hash type on RTP instance '%p'\n", instance);
3082 return -1;
3083 }
3084
3085 if (!X509_digest(certificate, type, fingerprint, &size) ||
3086 !size ||
3087 memcmp(fingerprint, rtp->remote_fingerprint, size)) {
3088 X509_free(certificate);
3089 ast_log(LOG_WARNING, "Fingerprint provided by remote party does not match that of peer certificate on RTP instance '%p'\n",
3090 instance);
3091 return -1;
3092 }
3093 }
3094
3095 X509_free(certificate);
3096 }
3097
3098 if (dtls_srtp_add_local_ssrc(rtp, instance, rtcp, ast_rtp_instance_get_ssrc(instance), 1)) {
3099 ast_log(LOG_ERROR, "Failed to add local source '%p'\n", rtp);
3100 return -1;
3101 }
3102
3103 for (index = 0; index < AST_VECTOR_SIZE(&rtp->ssrc_mapping); ++index) {
3104 struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&rtp->ssrc_mapping, index);
3105
3106 if (dtls_srtp_add_local_ssrc(rtp, instance, rtcp, ast_rtp_instance_get_ssrc(mapping->instance), 0)) {
3107 return -1;
3108 }
3109 }
3110
3111 if (rtp->rekey) {
3112 ao2_ref(instance, +1);
3113 if ((rtp->rekeyid = ast_sched_add(rtp->sched, rtp->rekey * 1000, dtls_srtp_renegotiate, instance)) < 0) {
3114 ao2_ref(instance, -1);
3115 return -1;
3116 }
3117 }
3118
3119 return 0;
3120}
3121#endif
3122
3123/*! \brief Helper function to compare an elem in a vector by value */
3124static int compare_by_value(int elem, int value)
3125{
3126 return elem - value;
3127}
3128
3129/*! \brief Helper function to find an elem in a vector by value */
3130static int find_by_value(int elem, int value)
3131{
3132 return elem == value;
3133}
3134
3135static int rtcp_mux(struct ast_rtp *rtp, const unsigned char *packet)
3136{
3137 uint8_t version;
3138 uint8_t pt;
3139 uint8_t m;
3140
3141 if (!rtp->rtcp || rtp->rtcp->type != AST_RTP_INSTANCE_RTCP_MUX) {
3142 return 0;
3143 }
3144
3145 version = (packet[0] & 0XC0) >> 6;
3146 if (version == 0) {
3147 /* version 0 indicates this is a STUN packet and shouldn't
3148 * be interpreted as a possible RTCP packet
3149 */
3150 return 0;
3151 }
3152
3153 /* The second octet of a packet will be one of the following:
3154 * For RTP: The marker bit (1 bit) and the RTP payload type (7 bits)
3155 * For RTCP: The payload type (8)
3156 *
3157 * RTP has a forbidden range of payload types (64-95) since these
3158 * will conflict with RTCP payload numbers if the marker bit is set.
3159 */
3160 m = packet[1] & 0x80;
3161 pt = packet[1] & 0x7F;
3162 if (m && pt >= 64 && pt <= 95) {
3163 return 1;
3164 }
3165 return 0;
3166}
3167
3168/*! \pre instance is locked */
3169static int __rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp)
3170{
3171 int len;
3172 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3173#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
3174 char *in = buf;
3175#endif
3176#ifdef HAVE_PJPROJECT
3177 struct ast_sockaddr *loop = rtcp ? &rtp->rtcp_loop : &rtp->rtp_loop;
3178#endif
3179#ifdef TEST_FRAMEWORK
3180 struct ast_rtp_engine_test *test = ast_rtp_instance_get_test(instance);
3181#endif
3182
3183 if ((len = ast_recvfrom(rtcp ? rtp->rtcp->s : rtp->s, buf, size, flags, sa)) < 0) {
3184 return len;
3185 }
3186
3187#ifdef TEST_FRAMEWORK
3188 if (test && test->packets_to_drop > 0) {
3189 test->packets_to_drop--;
3190 return 0;
3191 }
3192#endif
3193
3194#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
3195 /* If this is an SSL packet pass it to OpenSSL for processing. RFC section for first byte value:
3196 * https://tools.ietf.org/html/rfc5764#section-5.1.2 */
3197 if ((*in >= 20) && (*in <= 63)) {
3198 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
3199 int res = 0;
3200
3201 /* If no SSL session actually exists terminate things */
3202 if (!dtls->ssl) {
3203 ast_log(LOG_ERROR, "Received SSL traffic on RTP instance '%p' without an SSL session\n",
3204 instance);
3205 return -1;
3206 }
3207
3208 ast_debug_dtls(3, "(%p) DTLS - __rtp_recvfrom rtp=%p - Got SSL packet '%d'\n", instance, rtp, *in);
3209
3210 /*
3211 * If ICE is in use, we can prevent a possible DOS attack
3212 * by allowing DTLS protocol messages (client hello, etc)
3213 * only from sources that are in the active remote
3214 * candidates list.
3215 */
3216
3217#ifdef HAVE_PJPROJECT
3218 if (rtp->ice) {
3219 int pass_src_check = 0;
3220 int ix = 0;
3221
3222 /*
3223 * You'd think that this check would cause a "deadlock"
3224 * because ast_rtp_ice_start_media calls dtls_perform_handshake
3225 * before it sets ice_media_started = 1 so how can we do a
3226 * handshake if we're dropping packets before we send them
3227 * to openssl. Fortunately, dtls_perform_handshake just sets
3228 * up openssl to do the handshake and doesn't actually perform it
3229 * itself and the locking prevents __rtp_recvfrom from
3230 * running before the ice_media_started flag is set. So only
3231 * unexpected DTLS packets can get dropped here.
3232 */
3233 if (!rtp->ice_media_started) {
3234 ast_log(LOG_WARNING, "%s: DTLS packet from %s dropped. ICE not completed yet.\n",
3237 return 0;
3238 }
3239
3240 /*
3241 * If we got this far, then there have to be candidates.
3242 * We have to use pjproject's rcands because they may have
3243 * peer reflexive candidates that our ice_active_remote_candidates
3244 * won't.
3245 */
3246 for (ix = 0; ix < rtp->ice->real_ice->rcand_cnt; ix++) {
3247 pj_ice_sess_cand *rcand = &rtp->ice->real_ice->rcand[ix];
3248 if (ast_sockaddr_pj_sockaddr_cmp(sa, &rcand->addr) == 0) {
3249 pass_src_check = 1;
3250 break;
3251 }
3252 }
3253
3254 if (!pass_src_check) {
3255 ast_log(LOG_WARNING, "%s: DTLS packet from %s dropped. Source not in ICE active candidate list.\n",
3258 return 0;
3259 }
3260 }
3261#endif
3262
3263 /*
3264 * A race condition is prevented between dtls_perform_handshake()
3265 * and this function because both functions have to get the
3266 * instance lock before they can do anything. The
3267 * dtls_perform_handshake() function needs to start the timer
3268 * before we stop it below.
3269 */
3270
3271 /* Before we feed data into OpenSSL ensure that the timeout timer is either stopped or completed */
3272 ao2_unlock(instance);
3273 dtls_srtp_stop_timeout_timer(instance, rtp, rtcp);
3274 ao2_lock(instance);
3275
3276 /* If we don't yet know if we are active or passive and we receive a packet... we are obviously passive */
3277 if (dtls->dtls_setup == AST_RTP_DTLS_SETUP_ACTPASS) {
3278 dtls->dtls_setup = AST_RTP_DTLS_SETUP_PASSIVE;
3279 SSL_set_accept_state(dtls->ssl);
3280 }
3281
3282 BIO_write(dtls->read_bio, buf, len);
3283
3284 len = SSL_read(dtls->ssl, buf, len);
3285
3286 if ((len < 0) && (SSL_get_error(dtls->ssl, len) == SSL_ERROR_SSL)) {
3287 unsigned long error = ERR_get_error();
3288 ast_log(LOG_ERROR, "DTLS failure occurred on RTP instance '%p' due to reason '%s', terminating\n",
3289 instance, ERR_reason_error_string(error));
3290 return -1;
3291 }
3292
3293 if (SSL_is_init_finished(dtls->ssl)) {
3294 /* Any further connections will be existing since this is now established */
3295 dtls->connection = AST_RTP_DTLS_CONNECTION_EXISTING;
3296 /* Use the keying material to set up key/salt information */
3297 if ((res = dtls_srtp_setup(rtp, instance, rtcp))) {
3298 return res;
3299 }
3300 /* Notify that dtls has been established */
3302
3303 ast_debug_dtls(3, "(%p) DTLS - __rtp_recvfrom rtp=%p - established'\n", instance, rtp);
3304 } else {
3305 /* Since we've sent additional traffic start the timeout timer for retransmission */
3306 dtls_srtp_start_timeout_timer(instance, rtp, rtcp);
3307 }
3308
3309 return res;
3310 }
3311#endif
3312
3313#ifdef HAVE_PJPROJECT
3314 if (!ast_sockaddr_isnull(loop) && !ast_sockaddr_cmp(loop, sa)) {
3315 /* ICE traffic will have been handled in the TURN callback, so skip it but update the address
3316 * so it reflects the actual source and not the loopback
3317 */
3318 if (rtcp) {
3319 ast_sockaddr_copy(sa, &rtp->rtcp->them);
3320 } else {
3322 }
3323 } else if (rtp->ice) {
3324 pj_str_t combined = pj_str(ast_sockaddr_stringify(sa));
3325 pj_sockaddr address;
3326 pj_status_t status;
3327 struct ice_wrap *ice;
3328
3329 pj_thread_register_check();
3330
3331 pj_sockaddr_parse(pj_AF_UNSPEC(), 0, &combined, &address);
3332
3333 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
3334 ice = rtp->ice;
3335 ao2_ref(ice, +1);
3336 ao2_unlock(instance);
3337 status = pj_ice_sess_on_rx_pkt(ice->real_ice,
3340 pj_sockaddr_get_len(&address));
3341 ao2_ref(ice, -1);
3342 ao2_lock(instance);
3343 if (status != PJ_SUCCESS) {
3344 char err_buf[100];
3345
3346 pj_strerror(status, err_buf, sizeof(err_buf));
3347 ast_log(LOG_WARNING, "PJ ICE Rx error status code: %d '%s'.\n",
3348 (int)status, err_buf);
3349 return -1;
3350 }
3351 if (!rtp->passthrough) {
3352 /* If a unidirectional ICE negotiation occurs then lock on to the source of the
3353 * ICE traffic and use it as the target. This will occur if the remote side only
3354 * wants to receive media but never send to us.
3355 */
3356 if (!rtp->ice_active_remote_candidates && !rtp->ice_proposed_remote_candidates) {
3357 if (rtcp) {
3358 ast_sockaddr_copy(&rtp->rtcp->them, sa);
3359 } else {
3361 }
3362 }
3363 return 0;
3364 }
3365 rtp->passthrough = 0;
3366 }
3367#endif
3368
3369 return len;
3370}
3371
3372/*! \pre instance is locked */
3373static int rtcp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
3374{
3375 return __rtp_recvfrom(instance, buf, size, flags, sa, 1);
3376}
3377
3378/*! \pre instance is locked */
3379static int rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
3380{
3381 return __rtp_recvfrom(instance, buf, size, flags, sa, 0);
3382}
3383
3384/*! \pre instance is locked */
3385static int __rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp, int *via_ice, int use_srtp)
3386{
3387 int len = size;
3388 void *temp = buf;
3389 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3390 struct ast_rtp_instance *transport = rtp->bundled ? rtp->bundled : instance;
3391 struct ast_rtp *transport_rtp = ast_rtp_instance_get_data(transport);
3392 struct ast_srtp *srtp = ast_rtp_instance_get_srtp(transport, rtcp);
3393 int res;
3394
3395 *via_ice = 0;
3396
3397 if (use_srtp && res_srtp && srtp && res_srtp->protect(srtp, &temp, &len, rtcp) < 0) {
3398 return -1;
3399 }
3400
3401#ifdef HAVE_PJPROJECT
3402 if (transport_rtp->ice) {
3404 pj_status_t status;
3405 struct ice_wrap *ice;
3406
3407 /* If RTCP is sharing the same socket then use the same component */
3408 if (rtcp && rtp->rtcp->s == rtp->s) {
3409 component = AST_RTP_ICE_COMPONENT_RTP;
3410 }
3411
3412 pj_thread_register_check();
3413
3414 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
3415 ice = transport_rtp->ice;
3416 ao2_ref(ice, +1);
3417 if (instance == transport) {
3418 ao2_unlock(instance);
3419 }
3420 status = pj_ice_sess_send_data(ice->real_ice, component, temp, len);
3421 ao2_ref(ice, -1);
3422 if (instance == transport) {
3423 ao2_lock(instance);
3424 }
3425 if (status == PJ_SUCCESS) {
3426 *via_ice = 1;
3427 return len;
3428 }
3429 }
3430#endif
3431
3432 res = ast_sendto(rtcp ? transport_rtp->rtcp->s : transport_rtp->s, temp, len, flags, sa);
3433 if (res > 0) {
3434 ast_rtp_instance_set_last_tx(instance, time(NULL));
3435 }
3436
3437 return res;
3438}
3439
3440/*! \pre instance is locked */
3441static int rtcp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
3442{
3443 return __rtp_sendto(instance, buf, size, flags, sa, 1, ice, 1);
3444}
3445
3446/*! \pre instance is locked */
3447static int rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
3448{
3449 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3450 int hdrlen = 12;
3451 int res;
3452
3453 if ((res = __rtp_sendto(instance, buf, size, flags, sa, 0, ice, 1)) > 0) {
3454 rtp->txcount++;
3455 rtp->txoctetcount += (res - hdrlen);
3456 }
3457
3458 return res;
3459}
3460
3461static unsigned int ast_rtcp_calc_interval(struct ast_rtp *rtp)
3462{
3463 unsigned int interval;
3464 /*! \todo XXX Do a more reasonable calculation on this one
3465 * Look in RFC 3550 Section A.7 for an example*/
3466 interval = rtcpinterval;
3467 return interval;
3468}
3469
3470static void calc_mean_and_standard_deviation(double new_sample, double *mean, double *std_dev, unsigned int *count)
3471{
3472 double delta1;
3473 double delta2;
3474
3475 /* First convert the standard deviation back into a sum of squares. */
3476 double last_sum_of_squares = (*std_dev) * (*std_dev) * (*count ?: 1);
3477
3478 if (++(*count) == 0) {
3479 /* Avoid potential divide by zero on an overflow */
3480 *count = 1;
3481 }
3482
3483 /*
3484 * Below is an implementation of Welford's online algorithm [1] for calculating
3485 * mean and variance in a single pass.
3486 *
3487 * [1] https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
3488 */
3489
3490 delta1 = new_sample - *mean;
3491 *mean += (delta1 / *count);
3492 delta2 = new_sample - *mean;
3493
3494 /* Now calculate the new variance, and subsequent standard deviation */
3495 *std_dev = sqrt((last_sum_of_squares + (delta1 * delta2)) / *count);
3496}
3497
3498static int create_new_socket(const char *type, int af)
3499{
3500 int sock = ast_socket_nonblock(af, SOCK_DGRAM, 0);
3501
3502 if (sock < 0) {
3503 ast_log(LOG_WARNING, "Unable to allocate %s socket: %s\n", type, strerror(errno));
3504 return sock;
3505 }
3506
3507#ifdef SO_NO_CHECK
3508 if (nochecksums) {
3509 setsockopt(sock, SOL_SOCKET, SO_NO_CHECK, &nochecksums, sizeof(nochecksums));
3510 }
3511#endif
3512
3513 return sock;
3514}
3515
3516/*!
3517 * \internal
3518 * \brief Initializes sequence values and probation for learning mode.
3519 * \note This is an adaptation of pjmedia's pjmedia_rtp_seq_init function.
3520 *
3521 * \param info The learning information to track
3522 * \param seq sequence number read from the rtp header to initialize the information with
3523 */
3524static void rtp_learning_seq_init(struct rtp_learning_info *info, uint16_t seq)
3525{
3526 info->max_seq = seq;
3527 info->packets = learning_min_sequential;
3528 memset(&info->received, 0, sizeof(info->received));
3529}
3530
3531/*!
3532 * \internal
3533 * \brief Updates sequence information for learning mode and determines if probation/learning mode should remain in effect.
3534 * \note This function was adapted from pjmedia's pjmedia_rtp_seq_update function.
3535 *
3536 * \param info Structure tracking the learning progress of some address
3537 * \param seq sequence number read from the rtp header
3538 * \retval 0 if probation mode should exit for this address
3539 * \retval non-zero if probation mode should continue
3540 */
3542{
3543 if (seq == (uint16_t) (info->max_seq + 1)) {
3544 /* packet is in sequence */
3545 info->packets--;
3546 } else {
3547 /* Sequence discontinuity; reset */
3548 info->packets = learning_min_sequential - 1;
3549 info->received = ast_tvnow();
3550 }
3551
3552 /* Only check time if strictrtp is set to yes. Otherwise, we only needed to check seqno */
3553 if (strictrtp == STRICT_RTP_YES) {
3554 switch (info->stream_type) {
3557 /*
3558 * Protect against packet floods by checking that we
3559 * received the packet sequence in at least the minimum
3560 * allowed time.
3561 */
3562 if (ast_tvzero(info->received)) {
3563 info->received = ast_tvnow();
3564 } else if (!info->packets
3566 /* Packet flood; reset */
3567 info->packets = learning_min_sequential - 1;
3568 info->received = ast_tvnow();
3569 }
3570 break;
3574 case AST_MEDIA_TYPE_END:
3575 break;
3576 }
3577 }
3578
3579 info->max_seq = seq;
3580
3581 return info->packets;
3582}
3583
3584/*!
3585 * \brief Start the strictrtp learning mode.
3586 *
3587 * \param rtp RTP session description
3588 */
3589static void rtp_learning_start(struct ast_rtp *rtp)
3590{
3592 memset(&rtp->rtp_source_learn.proposed_address, 0,
3593 sizeof(rtp->rtp_source_learn.proposed_address));
3595 rtp_learning_seq_init(&rtp->rtp_source_learn, (uint16_t) rtp->lastrxseqno);
3596}
3597
3598#ifdef HAVE_PJPROJECT
3599static void acl_change_stasis_cb(void *data, struct stasis_subscription *sub, struct stasis_message *message);
3600
3601/*!
3602 * \internal
3603 * \brief Resets and ACL to empty state.
3604 */
3605static void rtp_unload_acl(ast_rwlock_t *lock, struct ast_acl_list **acl)
3606{
3610}
3611
3612/*!
3613 * \internal
3614 * \brief Checks an address against the ICE blacklist
3615 * \note If there is no ice_blacklist list, always returns 0
3616 *
3617 * \param address The address to consider
3618 * \retval 0 if address is not ICE blacklisted
3619 * \retval 1 if address is ICE blacklisted
3620 */
3621static int rtp_address_is_ice_blacklisted(const struct ast_sockaddr *address)
3622{
3623 int result = 0;
3624
3625 ast_rwlock_rdlock(&ice_acl_lock);
3627 ast_rwlock_unlock(&ice_acl_lock);
3628
3629 return result;
3630}
3631
3632/*!
3633 * \internal
3634 * \brief Checks an address against the STUN blacklist
3635 * \since 13.16.0
3636 *
3637 * \note If there is no stun_blacklist list, always returns 0
3638 *
3639 * \param addr The address to consider
3640 *
3641 * \retval 0 if address is not STUN blacklisted
3642 * \retval 1 if address is STUN blacklisted
3643 */
3644static int stun_address_is_blacklisted(const struct ast_sockaddr *addr)
3645{
3646 int result = 0;
3647
3648 ast_rwlock_rdlock(&stun_acl_lock);
3649 result |= ast_apply_acl_nolog(stun_acl, addr) == AST_SENSE_DENY;
3650 ast_rwlock_unlock(&stun_acl_lock);
3651
3652 return result;
3653}
3654
3655/*! \pre instance is locked */
3656static void rtp_add_candidates_to_ice(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_sockaddr *addr, int port, int component,
3657 int transport)
3658{
3659 unsigned int count = 0;
3660 struct ifaddrs *ifa, *ia;
3661 struct ast_sockaddr tmp;
3662 pj_sockaddr pjtmp;
3663 struct ast_ice_host_candidate *candidate;
3664 int af_inet_ok = 0, af_inet6_ok = 0;
3665 struct sockaddr_in stunaddr_copy;
3666
3667 if (ast_sockaddr_is_ipv4(addr)) {
3668 af_inet_ok = 1;
3669 } else if (ast_sockaddr_is_any(addr)) {
3670 af_inet_ok = af_inet6_ok = 1;
3671 } else {
3672 af_inet6_ok = 1;
3673 }
3674
3675 if (getifaddrs(&ifa) < 0) {
3676 /* If we can't get addresses, we can't load ICE candidates */
3677 ast_log(LOG_ERROR, "(%p) ICE Error obtaining list of local addresses: %s\n",
3678 instance, strerror(errno));
3679 } else {
3680 ast_debug_ice(2, "(%p) ICE add system candidates\n", instance);
3681 /* Iterate through the list of addresses obtained from the system,
3682 * until we've iterated through all of them, or accepted
3683 * PJ_ICE_MAX_CAND candidates */
3684 for (ia = ifa; ia && count < PJ_ICE_MAX_CAND; ia = ia->ifa_next) {
3685 /* Interface is either not UP or doesn't have an address assigned,
3686 * eg, a ppp that just completed LCP but no IPCP yet */
3687 if (!ia->ifa_addr || (ia->ifa_flags & IFF_UP) == 0) {
3688 continue;
3689 }
3690
3691 /* Filter out non-IPvX addresses, eg, link-layer */
3692 if (ia->ifa_addr->sa_family != AF_INET && ia->ifa_addr->sa_family != AF_INET6) {
3693 continue;
3694 }
3695
3696 ast_sockaddr_from_sockaddr(&tmp, ia->ifa_addr);
3697
3698 if (ia->ifa_addr->sa_family == AF_INET) {
3699 const struct sockaddr_in *sa_in = (struct sockaddr_in*)ia->ifa_addr;
3700 if (!af_inet_ok) {
3701 continue;
3702 }
3703
3704 /* Skip 127.0.0.0/8 (loopback) */
3705 /* Don't use IFF_LOOPBACK check since one could assign usable
3706 * publics to the loopback */
3707 if ((sa_in->sin_addr.s_addr & htonl(0xFF000000)) == htonl(0x7F000000)) {
3708 continue;
3709 }
3710
3711 /* Skip 0.0.0.0/8 based on RFC1122, and from pjproject */
3712 if ((sa_in->sin_addr.s_addr & htonl(0xFF000000)) == 0) {
3713 continue;
3714 }
3715 } else { /* ia->ifa_addr->sa_family == AF_INET6 */
3716 if (!af_inet6_ok) {
3717 continue;
3718 }
3719
3720 /* Filter ::1 */
3721 if (!ast_sockaddr_cmp_addr(&lo6, &tmp)) {
3722 continue;
3723 }
3724 }
3725
3726 /* Pull in the host candidates from [ice_host_candidates] */
3727 AST_RWLIST_RDLOCK(&host_candidates);
3728 AST_LIST_TRAVERSE(&host_candidates, candidate, next) {
3729 if (!ast_sockaddr_cmp(&candidate->local, &tmp)) {
3730 /* candidate->local matches actual assigned, so check if
3731 * advertised is blacklisted, if not, add it to the
3732 * advertised list. Not that it would make sense to remap
3733 * a local address to a blacklisted address, but honour it
3734 * anyway. */
3735 if (!rtp_address_is_ice_blacklisted(&candidate->advertised)) {
3736 ast_sockaddr_to_pj_sockaddr(&candidate->advertised, &pjtmp);
3737 pj_sockaddr_set_port(&pjtmp, port);
3738 ast_rtp_ice_add_cand(instance, rtp, component, transport,
3739 PJ_ICE_CAND_TYPE_HOST, 65535, &pjtmp, &pjtmp, NULL,
3740 pj_sockaddr_get_len(&pjtmp));
3741 ++count;
3742 }
3743
3744 if (!candidate->include_local) {
3745 /* We don't want to advertise the actual address */
3747 }
3748
3749 break;
3750 }
3751 }
3752 AST_RWLIST_UNLOCK(&host_candidates);
3753
3754 /* we had an entry in [ice_host_candidates] that matched, and
3755 * didn't have include_local_address set. Alternatively, adding
3756 * that match resulted in us going to PJ_ICE_MAX_CAND */
3757 if (ast_sockaddr_isnull(&tmp) || count == PJ_ICE_MAX_CAND) {
3758 continue;
3759 }
3760
3761 if (rtp_address_is_ice_blacklisted(&tmp)) {
3762 continue;
3763 }
3764
3766 pj_sockaddr_set_port(&pjtmp, port);
3767 ast_rtp_ice_add_cand(instance, rtp, component, transport,
3768 PJ_ICE_CAND_TYPE_HOST, 65535, &pjtmp, &pjtmp, NULL,
3769 pj_sockaddr_get_len(&pjtmp));
3770 ++count;
3771 }
3772 freeifaddrs(ifa);
3773 }
3774
3775 ast_rwlock_rdlock(&stunaddr_lock);
3776 memcpy(&stunaddr_copy, &stunaddr, sizeof(stunaddr));
3777 ast_rwlock_unlock(&stunaddr_lock);
3778
3779 /* If configured to use a STUN server to get our external mapped address do so */
3780 if (stunaddr_copy.sin_addr.s_addr && !stun_address_is_blacklisted(addr) &&
3781 (ast_sockaddr_is_ipv4(addr) || ast_sockaddr_is_any(addr)) &&
3782 count < PJ_ICE_MAX_CAND) {
3783 struct sockaddr_in answer;
3784 int rsp;
3785
3787 "(%p) ICE request STUN %s %s candidate\n", instance,
3788 transport == AST_TRANSPORT_UDP ? "UDP" : "TCP",
3789 component == AST_RTP_ICE_COMPONENT_RTP ? "RTP" : "RTCP");
3790
3791 /*
3792 * The instance should not be locked because we can block
3793 * waiting for a STUN respone.
3794 */
3795 ao2_unlock(instance);
3797 ? rtp->rtcp->s : rtp->s, &stunaddr_copy, NULL, &answer);
3798 ao2_lock(instance);
3799 if (!rsp) {
3800 struct ast_rtp_engine_ice_candidate *candidate;
3801 pj_sockaddr ext, base;
3802 pj_str_t mapped = pj_str(ast_strdupa(ast_inet_ntoa(answer.sin_addr)));
3803 int srflx = 1, baseset = 0;
3804 struct ao2_iterator i;
3805
3806 pj_sockaddr_init(pj_AF_INET(), &ext, &mapped, ntohs(answer.sin_port));
3807
3808 /*
3809 * If the returned address is the same as one of our host
3810 * candidates, don't send the srflx. At the same time,
3811 * we need to set the base address (raddr).
3812 */
3813 i = ao2_iterator_init(rtp->ice_local_candidates, 0);
3814 while (srflx && (candidate = ao2_iterator_next(&i))) {
3815 if (!baseset && ast_sockaddr_is_ipv4(&candidate->address)) {
3816 baseset = 1;
3817 ast_sockaddr_to_pj_sockaddr(&candidate->address, &base);
3818 }
3819
3820 if (!pj_sockaddr_cmp(&candidate->address, &ext)) {
3821 srflx = 0;
3822 }
3823
3824 ao2_ref(candidate, -1);
3825 }
3827
3828 if (srflx && baseset) {
3829 pj_sockaddr_set_port(&base, port);
3830 ast_rtp_ice_add_cand(instance, rtp, component, transport,
3831 PJ_ICE_CAND_TYPE_SRFLX, 65535, &ext, &base, &base,
3832 pj_sockaddr_get_len(&ext));
3833 }
3834 }
3835 }
3836
3837 /* If configured to use a TURN relay create a session and allocate */
3838 if (pj_strlen(&turnaddr)) {
3839 ast_rtp_ice_turn_request(instance, component, AST_TRANSPORT_TCP, pj_strbuf(&turnaddr), turnport,
3840 pj_strbuf(&turnusername), pj_strbuf(&turnpassword));
3841 }
3842}
3843#endif
3844
3845/*!
3846 * \internal
3847 * \brief Calculates the elapsed time from issue of the first tx packet in an
3848 * rtp session and a specified time
3849 *
3850 * \param rtp pointer to the rtp struct with the transmitted rtp packet
3851 * \param delivery time of delivery - if NULL or zero value, will be ast_tvnow()
3852 *
3853 * \return time elapsed in milliseconds
3854 */
3855static unsigned int calc_txstamp(struct ast_rtp *rtp, struct timeval *delivery)
3856{
3857 struct timeval t;
3858 long ms;
3859
3860 if (ast_tvzero(rtp->txcore)) {
3861 rtp->txcore = ast_tvnow();
3862 rtp->txcore.tv_usec -= rtp->txcore.tv_usec % 20000;
3863 }
3864
3865 t = (delivery && !ast_tvzero(*delivery)) ? *delivery : ast_tvnow();
3866 if ((ms = ast_tvdiff_ms(t, rtp->txcore)) < 0) {
3867 ms = 0;
3868 }
3869 rtp->txcore = t;
3870
3871 return (unsigned int) ms;
3872}
3873
3874#ifdef HAVE_PJPROJECT
3875/*!
3876 * \internal
3877 * \brief Creates an ICE session. Can be used to replace a destroyed ICE session.
3878 *
3879 * \param instance RTP instance for which the ICE session is being replaced
3880 * \param addr ast_sockaddr to use for adding RTP candidates to the ICE session
3881 * \param port port to use for adding RTP candidates to the ICE session
3882 * \param replace 0 when creating a new session, 1 when replacing a destroyed session
3883 *
3884 * \pre instance is locked
3885 *
3886 * \retval 0 on success
3887 * \retval -1 on failure
3888 */
3889static int ice_create(struct ast_rtp_instance *instance, struct ast_sockaddr *addr,
3890 int port, int replace)
3891{
3892 pj_stun_config stun_config;
3893 pj_str_t ufrag, passwd;
3894 pj_status_t status;
3895 struct ice_wrap *ice_old;
3896 struct ice_wrap *ice;
3897 pj_ice_sess *real_ice = NULL;
3898 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3899
3900 ao2_cleanup(rtp->ice_local_candidates);
3901 rtp->ice_local_candidates = NULL;
3902
3903 ast_debug_ice(2, "(%p) ICE create%s\n", instance, replace ? " and replace" : "");
3904
3905 ice = ao2_alloc_options(sizeof(*ice), ice_wrap_dtor, AO2_ALLOC_OPT_LOCK_NOLOCK);
3906 if (!ice) {
3907 ast_rtp_ice_stop(instance);
3908 return -1;
3909 }
3910
3911 pj_thread_register_check();
3912
3913 pj_stun_config_init(&stun_config, &cachingpool.factory, 0, NULL, timer_heap);
3914 if (!stun_software_attribute) {
3915 stun_config.software_name = pj_str(NULL);
3916 }
3917
3918 ufrag = pj_str(rtp->local_ufrag);
3919 passwd = pj_str(rtp->local_passwd);
3920
3921 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
3922 ao2_unlock(instance);
3923 /* Create an ICE session for ICE negotiation */
3924 status = pj_ice_sess_create(&stun_config, NULL, PJ_ICE_SESS_ROLE_UNKNOWN,
3925 rtp->ice_num_components, &ast_rtp_ice_sess_cb, &ufrag, &passwd, NULL, &real_ice);
3926 ao2_lock(instance);
3927 if (status == PJ_SUCCESS) {
3928 /* Safely complete linking the ICE session into the instance */
3929 real_ice->user_data = instance;
3930 ice->real_ice = real_ice;
3931 ice_old = rtp->ice;
3932 rtp->ice = ice;
3933 if (ice_old) {
3934 ao2_unlock(instance);
3935 ao2_ref(ice_old, -1);
3936 ao2_lock(instance);
3937 }
3938
3939 /* Add all of the available candidates to the ICE session */
3940 rtp_add_candidates_to_ice(instance, rtp, addr, port, AST_RTP_ICE_COMPONENT_RTP,
3942
3943 /* Only add the RTCP candidates to ICE when replacing the session and if
3944 * the ICE session contains more than just an RTP component. New sessions
3945 * handle this in a separate part of the setup phase */
3946 if (replace && rtp->rtcp && rtp->ice_num_components > 1) {
3947 rtp_add_candidates_to_ice(instance, rtp, &rtp->rtcp->us,
3950 }
3951
3952 return 0;
3953 }
3954
3955 /*
3956 * It is safe to unref this while instance is locked here.
3957 * It was not initialized with a real_ice pointer.
3958 */
3959 ao2_ref(ice, -1);
3960
3961 ast_rtp_ice_stop(instance);
3962 return -1;
3963
3964}
3965#endif
3966
3967static int rtp_allocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
3968{
3969 int x, startplace, i, maxloops;
3970
3972
3973 /* Create a new socket for us to listen on and use */
3974 if ((rtp->s =
3975 create_new_socket("RTP",
3976 ast_sockaddr_is_ipv4(&rtp->bind_address) ? AF_INET :
3977 ast_sockaddr_is_ipv6(&rtp->bind_address) ? AF_INET6 : -1)) < 0) {
3978 ast_log(LOG_WARNING, "Failed to create a new socket for RTP instance '%p'\n", instance);
3979 return -1;
3980 }
3981
3982 /* Now actually find a free RTP port to use */
3983 x = (ast_random() % (rtpend - rtpstart)) + rtpstart;
3984 x = x & ~1;
3985 startplace = x;
3986
3987 /* Protection against infinite loops in the case there is a potential case where the loop is not broken such as an odd
3988 start port sneaking in (even though this condition is checked at load.) */
3989 maxloops = rtpend - rtpstart;
3990 for (i = 0; i <= maxloops; i++) {
3992 /* Try to bind, this will tell us whether the port is available or not */
3993 if (!ast_bind(rtp->s, &rtp->bind_address)) {
3994 ast_debug_rtp(1, "(%p) RTP allocated port %d\n", instance, x);
3996 ast_test_suite_event_notify("RTP_PORT_ALLOCATED", "Port: %d", x);
3997 break;
3998 }
3999
4000 x += 2;
4001 if (x > rtpend) {
4002 x = (rtpstart + 1) & ~1;
4003 }
4004
4005 /* See if we ran out of ports or if the bind actually failed because of something other than the address being in use */
4006 if (x == startplace || (errno != EADDRINUSE && errno != EACCES)) {
4007 ast_log(LOG_ERROR, "Oh dear... we couldn't allocate a port for RTP instance '%p'\n", instance);
4008 close(rtp->s);
4009 rtp->s = -1;
4010 return -1;
4011 }
4012 }
4013
4014#ifdef HAVE_PJPROJECT
4015 /* Initialize synchronization aspects */
4016 ast_cond_init(&rtp->cond, NULL);
4017
4018 generate_random_string(rtp->local_ufrag, sizeof(rtp->local_ufrag));
4019 generate_random_string(rtp->local_passwd, sizeof(rtp->local_passwd));
4020
4021 /* Create an ICE session for ICE negotiation */
4022 if (icesupport) {
4023 rtp->ice_num_components = 2;
4024 ast_debug_ice(2, "(%p) ICE creating session %s (%d)\n", instance,
4026 if (ice_create(instance, &rtp->bind_address, x, 0)) {
4027 ast_log(LOG_NOTICE, "(%p) ICE failed to create session\n", instance);
4028 } else {
4029 rtp->ice_port = x;
4030 ast_sockaddr_copy(&rtp->ice_original_rtp_addr, &rtp->bind_address);
4031 }
4032 }
4033#endif
4034
4035#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
4036 rtp->rekeyid = -1;
4037 rtp->dtls.timeout_timer = -1;
4038#endif
4039
4040 return 0;
4041}
4042
4043static void rtp_deallocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
4044{
4045 int saved_rtp_s = rtp->s;
4046#ifdef HAVE_PJPROJECT
4047 struct timeval wait = ast_tvadd(ast_tvnow(), ast_samp2tv(TURN_STATE_WAIT_TIME, 1000));
4048 struct timespec ts = { .tv_sec = wait.tv_sec, .tv_nsec = wait.tv_usec * 1000, };
4049#endif
4050
4051#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
4052 ast_rtp_dtls_stop(instance);
4053#endif
4054
4055 /* Close our own socket so we no longer get packets */
4056 if (rtp->s > -1) {
4057 close(rtp->s);
4058 rtp->s = -1;
4059 }
4060
4061 /* Destroy RTCP if it was being used */
4062 if (rtp->rtcp && rtp->rtcp->s > -1) {
4063 if (saved_rtp_s != rtp->rtcp->s) {
4064 close(rtp->rtcp->s);
4065 }
4066 rtp->rtcp->s = -1;
4067 }
4068
4069#ifdef HAVE_PJPROJECT
4070 pj_thread_register_check();
4071
4072 /*
4073 * The instance lock is already held.
4074 *
4075 * Destroy the RTP TURN relay if being used
4076 */
4077 if (rtp->turn_rtp) {
4078 rtp->turn_state = PJ_TURN_STATE_NULL;
4079
4080 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
4081 ao2_unlock(instance);
4082 pj_turn_sock_destroy(rtp->turn_rtp);
4083 ao2_lock(instance);
4084 while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
4085 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
4086 }
4087 rtp->turn_rtp = NULL;
4088 }
4089
4090 /* Destroy the RTCP TURN relay if being used */
4091 if (rtp->turn_rtcp) {
4092 rtp->turn_state = PJ_TURN_STATE_NULL;
4093
4094 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
4095 ao2_unlock(instance);
4096 pj_turn_sock_destroy(rtp->turn_rtcp);
4097 ao2_lock(instance);
4098 while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
4099 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
4100 }
4101 rtp->turn_rtcp = NULL;
4102 }
4103
4104 ast_debug_ice(2, "(%p) ICE RTP transport deallocating\n", instance);
4105 /* Destroy any ICE session */
4106 ast_rtp_ice_stop(instance);
4107
4108 /* Destroy any candidates */
4109 if (rtp->ice_local_candidates) {
4110 ao2_ref(rtp->ice_local_candidates, -1);
4111 rtp->ice_local_candidates = NULL;
4112 }
4113
4114 if (rtp->ice_active_remote_candidates) {
4115 ao2_ref(rtp->ice_active_remote_candidates, -1);
4116 rtp->ice_active_remote_candidates = NULL;
4117 }
4118
4119 if (rtp->ice_proposed_remote_candidates) {
4120 ao2_ref(rtp->ice_proposed_remote_candidates, -1);
4121 rtp->ice_proposed_remote_candidates = NULL;
4122 }
4123
4124 if (rtp->ioqueue) {
4125 /*
4126 * We cannot hold the instance lock because we could wait
4127 * for the ioqueue thread to die and we might deadlock as
4128 * a result.
4129 */
4130 ao2_unlock(instance);
4131 rtp_ioqueue_thread_remove(rtp->ioqueue);
4132 ao2_lock(instance);
4133 rtp->ioqueue = NULL;
4134 }
4135#endif
4136}
4137
4138/*! \pre instance is locked */
4139static int ast_rtp_new(struct ast_rtp_instance *instance,
4140 struct ast_sched_context *sched, struct ast_sockaddr *addr,
4141 void *data)
4142{
4143 struct ast_rtp *rtp = NULL;
4144
4145 /* Create a new RTP structure to hold all of our data */
4146 if (!(rtp = ast_calloc(1, sizeof(*rtp)))) {
4147 return -1;
4148 }
4149 rtp->owner = instance;
4150 /* Set default parameters on the newly created RTP structure */
4151 rtp->ssrc = ast_random();
4152 ast_uuid_generate_str(rtp->cname, sizeof(rtp->cname));
4153 rtp->seqno = ast_random() & 0x7fff;
4154 rtp->expectedrxseqno = -1;
4155 rtp->expectedseqno = -1;
4156 rtp->rxstart = -1;
4157 rtp->sched = sched;
4158 ast_sockaddr_copy(&rtp->bind_address, addr);
4159 /* Transport creation operations can grab the RTP data from the instance, so set it */
4160 ast_rtp_instance_set_data(instance, rtp);
4161
4162 if (rtp_allocate_transport(instance, rtp)) {
4163 return -1;
4164 }
4165
4166 if (AST_VECTOR_INIT(&rtp->ssrc_mapping, 1)) {
4167 return -1;
4168 }
4169
4171 return -1;
4172 }
4173 rtp->transport_wide_cc.schedid = -1;
4174
4178 rtp->stream_num = -1;
4179
4180 return 0;
4181}
4182
4183/*!
4184 * \brief SSRC mapping comparator for AST_VECTOR_REMOVE_CMP_UNORDERED()
4185 *
4186 * \param elem Element to compare against
4187 * \param value Value to compare with the vector element.
4188 *
4189 * \retval 0 if element does not match.
4190 * \retval Non-zero if element matches.
4191 */
4192#define SSRC_MAPPING_ELEM_CMP(elem, value) ((elem).instance == (value))
4193
4194/*! \pre instance is locked */
4195static int ast_rtp_destroy(struct ast_rtp_instance *instance)
4196{
4197 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4198
4199 if (rtp->bundled) {
4200 struct ast_rtp *bundled_rtp;
4201
4202 /* We can't hold our instance lock while removing ourselves from the parent */
4203 ao2_unlock(instance);
4204
4205 ao2_lock(rtp->bundled);
4206 bundled_rtp = ast_rtp_instance_get_data(rtp->bundled);
4208 ao2_unlock(rtp->bundled);
4209
4210 ao2_lock(instance);
4211 ao2_ref(rtp->bundled, -1);
4212 }
4213
4214 rtp_deallocate_transport(instance, rtp);
4215
4216 /* Destroy the smoother that was smoothing out audio if present */
4217 if (rtp->smoother) {
4219 }
4220
4221 /* Destroy RTCP if it was being used */
4222 if (rtp->rtcp) {
4223 /*
4224 * It is not possible for there to be an active RTCP scheduler
4225 * entry at this point since it holds a reference to the
4226 * RTP instance while it's active.
4227 */
4229 ast_free(rtp->rtcp);
4230 }
4231
4232 /* Destroy RED if it was being used */
4233 if (rtp->red) {
4234 ao2_unlock(instance);
4235 AST_SCHED_DEL(rtp->sched, rtp->red->schedid);
4236 ao2_lock(instance);
4237 ast_free(rtp->red);
4238 rtp->red = NULL;
4239 }
4240
4241 /* Destroy the send buffer if it was being used */
4242 if (rtp->send_buffer) {
4244 }
4245
4246 /* Destroy the recv buffer if it was being used */
4247 if (rtp->recv_buffer) {
4249 }
4250
4252
4258
4259 /* Finally destroy ourselves */
4260 rtp->owner = NULL;
4261 ast_free(rtp);
4262
4263 return 0;
4264}
4265
4266/*! \pre instance is locked */
4267static int ast_rtp_dtmf_mode_set(struct ast_rtp_instance *instance, enum ast_rtp_dtmf_mode dtmf_mode)
4268{
4269 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4270 rtp->dtmfmode = dtmf_mode;
4271 return 0;
4272}
4273
4274/*! \pre instance is locked */
4276{
4277 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4278 return rtp->dtmfmode;
4279}
4280
4281/*! \pre instance is locked */
4282static int ast_rtp_dtmf_begin(struct ast_rtp_instance *instance, char digit)
4283{
4284 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4285 struct ast_sockaddr remote_address = { {0,} };
4286 int hdrlen = 12, res = 0, i = 0, payload = 101;
4287 char data[256];
4288 unsigned int *rtpheader = (unsigned int*)data;
4289
4290 ast_rtp_instance_get_remote_address(instance, &remote_address);
4291
4292 /* If we have no remote address information bail out now */
4293 if (ast_sockaddr_isnull(&remote_address)) {
4294 return -1;
4295 }
4296
4297 /* Convert given digit into what we want to transmit */
4298 if ((digit <= '9') && (digit >= '0')) {
4299 digit -= '0';
4300 } else if (digit == '*') {
4301 digit = 10;
4302 } else if (digit == '#') {
4303 digit = 11;
4304 } else if ((digit >= 'A') && (digit <= 'D')) {
4305 digit = digit - 'A' + 12;
4306 } else if ((digit >= 'a') && (digit <= 'd')) {
4307 digit = digit - 'a' + 12;
4308 } else {
4309 ast_log(LOG_WARNING, "Don't know how to represent '%c'\n", digit);
4310 return -1;
4311 }
4312
4313 /* Grab the payload that they expect the RFC2833 packet to be received in */
4315
4316 rtp->dtmfmute = ast_tvadd(ast_tvnow(), ast_tv(0, 500000));
4317 rtp->send_duration = 160;
4319 rtp->lastdigitts = rtp->lastts + rtp->send_duration;
4320
4321 /* Create the actual packet that we will be sending */
4322 rtpheader[0] = htonl((2 << 30) | (1 << 23) | (payload << 16) | (rtp->seqno));
4323 rtpheader[1] = htonl(rtp->lastdigitts);
4324 rtpheader[2] = htonl(rtp->ssrc);
4325
4326 /* Actually send the packet */
4327 for (i = 0; i < 2; i++) {
4328 int ice;
4329
4330 rtpheader[3] = htonl((digit << 24) | (0xa << 16) | (rtp->send_duration));
4331 res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 4, 0, &remote_address, &ice);
4332 if (res < 0) {
4333 ast_log(LOG_ERROR, "RTP Transmission error to %s: %s\n",
4334 ast_sockaddr_stringify(&remote_address),
4335 strerror(errno));
4336 }
4337 if (rtp_debug_test_addr(&remote_address)) {
4338 ast_verbose("Sent RTP DTMF packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
4339 ast_sockaddr_stringify(&remote_address),
4340 ice ? " (via ICE)" : "",
4341 payload, rtp->seqno, rtp->lastdigitts, res - hdrlen);
4342 }
4343 rtp->seqno++;
4344 rtp->send_duration += 160;
4345 rtpheader[0] = htonl((2 << 30) | (payload << 16) | (rtp->seqno));
4346 }
4347
4348 /* Record that we are in the process of sending a digit and information needed to continue doing so */
4349 rtp->sending_digit = 1;
4350 rtp->send_digit = digit;
4351 rtp->send_payload = payload;
4352
4353 return 0;
4354}
4355
4356/*! \pre instance is locked */
4358{
4359 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4360 struct ast_sockaddr remote_address = { {0,} };
4361 int hdrlen = 12, res = 0;
4362 char data[256];
4363 unsigned int *rtpheader = (unsigned int*)data;
4364 int ice;
4365
4366 ast_rtp_instance_get_remote_address(instance, &remote_address);
4367
4368 /* Make sure we know where the other side is so we can send them the packet */
4369 if (ast_sockaddr_isnull(&remote_address)) {
4370 return -1;
4371 }
4372
4373 /* Actually create the packet we will be sending */
4374 rtpheader[0] = htonl((2 << 30) | (rtp->send_payload << 16) | (rtp->seqno));
4375 rtpheader[1] = htonl(rtp->lastdigitts);
4376 rtpheader[2] = htonl(rtp->ssrc);
4377 rtpheader[3] = htonl((rtp->send_digit << 24) | (0xa << 16) | (rtp->send_duration));
4378
4379 /* Boom, send it on out */
4380 res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 4, 0, &remote_address, &ice);
4381 if (res < 0) {
4382 ast_log(LOG_ERROR, "RTP Transmission error to %s: %s\n",
4383 ast_sockaddr_stringify(&remote_address),
4384 strerror(errno));
4385 }
4386
4387 if (rtp_debug_test_addr(&remote_address)) {
4388 ast_verbose("Sent RTP DTMF packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
4389 ast_sockaddr_stringify(&remote_address),
4390 ice ? " (via ICE)" : "",
4391 rtp->send_payload, rtp->seqno, rtp->lastdigitts, res - hdrlen);
4392 }
4393
4394 /* And now we increment some values for the next time we swing by */
4395 rtp->seqno++;
4396 rtp->send_duration += 160;
4398
4399 return 0;
4400}
4401
4402/*! \pre instance is locked */
4403static int ast_rtp_dtmf_end_with_duration(struct ast_rtp_instance *instance, char digit, unsigned int duration)
4404{
4405 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4406 struct ast_sockaddr remote_address = { {0,} };
4407 int hdrlen = 12, res = -1, i = 0;
4408 char data[256];
4409 unsigned int *rtpheader = (unsigned int*)data;
4410 unsigned int measured_samples;
4411
4412 ast_rtp_instance_get_remote_address(instance, &remote_address);
4413
4414 /* Make sure we know where the remote side is so we can send them the packet we construct */
4415 if (ast_sockaddr_isnull(&remote_address)) {
4416 goto cleanup;
4417 }
4418
4419 /* Convert the given digit to the one we are going to send */
4420 if ((digit <= '9') && (digit >= '0')) {
4421 digit -= '0';
4422 } else if (digit == '*') {
4423 digit = 10;
4424 } else if (digit == '#') {
4425 digit = 11;
4426 } else if ((digit >= 'A') && (digit <= 'D')) {
4427 digit = digit - 'A' + 12;
4428 } else if ((digit >= 'a') && (digit <= 'd')) {
4429 digit = digit - 'a' + 12;
4430 } else {
4431 ast_log(LOG_WARNING, "Don't know how to represent '%c'\n", digit);
4432 goto cleanup;
4433 }
4434
4435 rtp->dtmfmute = ast_tvadd(ast_tvnow(), ast_tv(0, 500000));
4436
4437 if (duration > 0 && (measured_samples = duration * ast_rtp_get_rate(rtp->f.subclass.format) / 1000) > rtp->send_duration) {
4438 ast_debug_rtp(2, "(%p) RTP adjusting final end duration from %d to %u\n",
4439 instance, rtp->send_duration, measured_samples);
4440 rtp->send_duration = measured_samples;
4441 }
4442
4443 /* Construct the packet we are going to send */
4444 rtpheader[1] = htonl(rtp->lastdigitts);
4445 rtpheader[2] = htonl(rtp->ssrc);
4446 rtpheader[3] = htonl((digit << 24) | (0xa << 16) | (rtp->send_duration));
4447 rtpheader[3] |= htonl((1 << 23));
4448
4449 /* Send it 3 times, that's the magical number */
4450 for (i = 0; i < 3; i++) {
4451 int ice;
4452
4453 rtpheader[0] = htonl((2 << 30) | (rtp->send_payload << 16) | (rtp->seqno));
4454
4455 res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 4, 0, &remote_address, &ice);
4456
4457 if (res < 0) {
4458 ast_log(LOG_ERROR, "RTP Transmission error to %s: %s\n",
4459 ast_sockaddr_stringify(&remote_address),
4460 strerror(errno));
4461 }
4462
4463 if (rtp_debug_test_addr(&remote_address)) {
4464 ast_verbose("Sent RTP DTMF packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
4465 ast_sockaddr_stringify(&remote_address),
4466 ice ? " (via ICE)" : "",
4467 rtp->send_payload, rtp->seqno, rtp->lastdigitts, res - hdrlen);
4468 }
4469
4470 rtp->seqno++;
4471 }
4472 res = 0;
4473
4474 /* Oh and we can't forget to turn off the stuff that says we are sending DTMF */
4476
4477 /* Reset the smoother as the delivery time stored in it is now out of date */
4478 if (rtp->smoother) {
4480 rtp->smoother = NULL;
4481 }
4482cleanup:
4483 rtp->sending_digit = 0;
4484 rtp->send_digit = 0;
4485
4486 /* Re-Learn expected seqno */
4487 rtp->expectedseqno = -1;
4488
4489 return res;
4490}
4491
4492/*! \pre instance is locked */
4493static int ast_rtp_dtmf_end(struct ast_rtp_instance *instance, char digit)
4494{
4495 return ast_rtp_dtmf_end_with_duration(instance, digit, 0);
4496}
4497
4498/*! \pre instance is locked */
4499static void ast_rtp_update_source(struct ast_rtp_instance *instance)
4500{
4501 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4502
4503 /* We simply set this bit so that the next packet sent will have the marker bit turned on */
4505 ast_debug_rtp(3, "(%p) RTP setting the marker bit due to a source update\n", instance);
4506
4507 return;
4508}
4509
4510/*! \pre instance is locked */
4511static void ast_rtp_change_source(struct ast_rtp_instance *instance)
4512{
4513 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4514 struct ast_srtp *srtp = ast_rtp_instance_get_srtp(instance, 0);
4515 struct ast_srtp *rtcp_srtp = ast_rtp_instance_get_srtp(instance, 1);
4516 unsigned int ssrc = ast_random();
4517
4518 if (rtp->lastts) {
4519 /* We simply set this bit so that the next packet sent will have the marker bit turned on */
4521 }
4522
4523 ast_debug_rtp(3, "(%p) RTP changing ssrc from %u to %u due to a source change\n",
4524 instance, rtp->ssrc, ssrc);
4525
4526 if (srtp) {
4527 ast_debug_rtp(3, "(%p) RTP changing ssrc for SRTP from %u to %u\n",
4528 instance, rtp->ssrc, ssrc);
4529 res_srtp->change_source(srtp, rtp->ssrc, ssrc);
4530 if (rtcp_srtp != srtp) {
4531 res_srtp->change_source(rtcp_srtp, rtp->ssrc, ssrc);
4532 }
4533 }
4534
4535 rtp->ssrc = ssrc;
4536
4537 /* Since the source is changing, we don't know what sequence number to expect next */
4538 rtp->expectedrxseqno = -1;
4539
4540 return;
4541}
4542
4543static void timeval2ntp(struct timeval tv, unsigned int *msw, unsigned int *lsw)
4544{
4545 unsigned int sec, usec, frac;
4546 sec = tv.tv_sec + 2208988800u; /* Sec between 1900 and 1970 */
4547 usec = tv.tv_usec;
4548 /*
4549 * Convert usec to 0.32 bit fixed point without overflow.
4550 *
4551 * = usec * 2^32 / 10^6
4552 * = usec * 2^32 / (2^6 * 5^6)
4553 * = usec * 2^26 / 5^6
4554 *
4555 * The usec value needs 20 bits to represent 999999 usec. So
4556 * splitting the 2^26 to get the most precision using 32 bit
4557 * values gives:
4558 *
4559 * = ((usec * 2^12) / 5^6) * 2^14
4560 *
4561 * Splitting the division into two stages preserves all the
4562 * available significant bits of usec over doing the division
4563 * all at once.
4564 *
4565 * = ((((usec * 2^12) / 5^3) * 2^7) / 5^3) * 2^7
4566 */
4567 frac = ((((usec << 12) / 125) << 7) / 125) << 7;
4568 *msw = sec;
4569 *lsw = frac;
4570}
4571
4572static void ntp2timeval(unsigned int msw, unsigned int lsw, struct timeval *tv)
4573{
4574 tv->tv_sec = msw - 2208988800u;
4575 /* Reverse the sequence in timeval2ntp() */
4576 tv->tv_usec = ((((lsw >> 7) * 125) >> 7) * 125) >> 12;
4577}
4578
4580 unsigned int *lost_packets,
4581 int *fraction_lost)
4582{
4583 unsigned int extended_seq_no;
4584 unsigned int expected_packets;
4585 unsigned int expected_interval;
4586 unsigned int received_interval;
4587 int lost_interval;
4588
4589 /* Compute statistics */
4590 extended_seq_no = rtp->cycles + rtp->lastrxseqno;
4591 expected_packets = extended_seq_no - rtp->seedrxseqno + 1;
4592 if (rtp->rxcount > expected_packets) {
4593 expected_packets += rtp->rxcount - expected_packets;
4594 }
4595 *lost_packets = expected_packets - rtp->rxcount;
4596 expected_interval = expected_packets - rtp->rtcp->expected_prior;
4597 received_interval = rtp->rxcount - rtp->rtcp->received_prior;
4598 if (received_interval > expected_interval) {
4599 /* If we receive some late packets it is possible for the packets
4600 * we received in this interval to exceed the number we expected.
4601 * We update the expected so that the packet loss calculations
4602 * show that no packets are lost.
4603 */
4604 expected_interval = received_interval;
4605 }
4606 lost_interval = expected_interval - received_interval;
4607 if (expected_interval == 0 || lost_interval <= 0) {
4608 *fraction_lost = 0;
4609 } else {
4610 *fraction_lost = (lost_interval << 8) / expected_interval;
4611 }
4612
4613 /* Update RTCP statistics */
4614 rtp->rtcp->received_prior = rtp->rxcount;
4615 rtp->rtcp->expected_prior = expected_packets;
4616
4617 /*
4618 * While rxlost represents the number of packets lost since the last report was sent, for
4619 * the calculations below it should be thought of as a single sample. Thus min/max are the
4620 * lowest/highest sample value seen, and the mean is the average number of packets lost
4621 * between each report. As such rxlost_count only needs to be incremented per report.
4622 */
4623 if (lost_interval <= 0) {
4624 rtp->rtcp->rxlost = 0;
4625 } else {
4626 rtp->rtcp->rxlost = lost_interval;
4627 }
4628 if (rtp->rtcp->rxlost_count == 0) {
4629 rtp->rtcp->minrxlost = rtp->rtcp->rxlost;
4630 }
4631 if (lost_interval && lost_interval < rtp->rtcp->minrxlost) {
4632 rtp->rtcp->minrxlost = rtp->rtcp->rxlost;
4633 }
4634 if (lost_interval > rtp->rtcp->maxrxlost) {
4635 rtp->rtcp->maxrxlost = rtp->rtcp->rxlost;
4636 }
4637
4638 calc_mean_and_standard_deviation(rtp->rtcp->rxlost, &rtp->rtcp->normdev_rxlost,
4639 &rtp->rtcp->stdev_rxlost, &rtp->rtcp->rxlost_count);
4640}
4641
4642static int ast_rtcp_generate_report(struct ast_rtp_instance *instance, unsigned char *rtcpheader,
4643 struct ast_rtp_rtcp_report *rtcp_report, int *sr)
4644{
4645 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4646 int len = 0;
4647 struct timeval now;
4648 unsigned int now_lsw;
4649 unsigned int now_msw;
4650 unsigned int lost_packets;
4651 int fraction_lost;
4652 struct timeval dlsr = { 0, };
4653 struct ast_rtp_rtcp_report_block *report_block = NULL;
4654
4655 if (!rtp || !rtp->rtcp) {
4656 return 0;
4657 }
4658
4659 if (ast_sockaddr_isnull(&rtp->rtcp->them)) { /* This'll stop rtcp for this rtp session */
4660 /* RTCP was stopped. */
4661 return 0;
4662 }
4663
4664 if (!rtcp_report) {
4665 return 1;
4666 }
4667
4668 *sr = rtp->txcount > rtp->rtcp->lastsrtxcount ? 1 : 0;
4669
4670 /* Compute statistics */
4671 calculate_lost_packet_statistics(rtp, &lost_packets, &fraction_lost);
4672 /*
4673 * update_local_mes_stats must be called AFTER
4674 * calculate_lost_packet_statistics
4675 */
4677
4678 gettimeofday(&now, NULL);
4679 rtcp_report->reception_report_count = rtp->themssrc_valid ? 1 : 0;
4680 rtcp_report->ssrc = rtp->ssrc;
4681 rtcp_report->type = *sr ? RTCP_PT_SR : RTCP_PT_RR;
4682 if (*sr) {
4683 rtcp_report->sender_information.ntp_timestamp = now;
4684 rtcp_report->sender_information.rtp_timestamp = rtp->lastts;
4685 rtcp_report->sender_information.packet_count = rtp->txcount;
4686 rtcp_report->sender_information.octet_count = rtp->txoctetcount;
4687 }
4688
4689 if (rtp->themssrc_valid) {
4690 report_block = ast_calloc(1, sizeof(*report_block));
4691 if (!report_block) {
4692 return 1;
4693 }
4694
4695 rtcp_report->report_block[0] = report_block;
4696 report_block->source_ssrc = rtp->themssrc;
4697 report_block->lost_count.fraction = (fraction_lost & 0xff);
4698 report_block->lost_count.packets = (lost_packets & 0xffffff);
4699 report_block->highest_seq_no = (rtp->cycles | (rtp->lastrxseqno & 0xffff));
4700 report_block->ia_jitter = (unsigned int)rtp->rxjitter_samples;
4701 report_block->lsr = rtp->rtcp->themrxlsr;
4702 /* If we haven't received an SR report, DLSR should be 0 */
4703 if (!ast_tvzero(rtp->rtcp->rxlsr)) {
4704 timersub(&now, &rtp->rtcp->rxlsr, &dlsr);
4705 report_block->dlsr = (((dlsr.tv_sec * 1000) + (dlsr.tv_usec / 1000)) * 65536) / 1000;
4706 }
4707 }
4708 timeval2ntp(rtcp_report->sender_information.ntp_timestamp, &now_msw, &now_lsw);
4709 put_unaligned_uint32(rtcpheader + 4, htonl(rtcp_report->ssrc)); /* Our SSRC */
4710 len += 8;
4711 if (*sr) {
4712 put_unaligned_uint32(rtcpheader + len, htonl(now_msw)); /* now, MSW. gettimeofday() + SEC_BETWEEN_1900_AND_1970 */
4713 put_unaligned_uint32(rtcpheader + len + 4, htonl(now_lsw)); /* now, LSW */
4714 put_unaligned_uint32(rtcpheader + len + 8, htonl(rtcp_report->sender_information.rtp_timestamp));
4715 put_unaligned_uint32(rtcpheader + len + 12, htonl(rtcp_report->sender_information.packet_count));
4716 put_unaligned_uint32(rtcpheader + len + 16, htonl(rtcp_report->sender_information.octet_count));
4717 len += 20;
4718 }
4719 if (report_block) {
4720 put_unaligned_uint32(rtcpheader + len, htonl(report_block->source_ssrc)); /* Their SSRC */
4721 put_unaligned_uint32(rtcpheader + len + 4, htonl((report_block->lost_count.fraction << 24) | report_block->lost_count.packets));
4722 put_unaligned_uint32(rtcpheader + len + 8, htonl(report_block->highest_seq_no));
4723 put_unaligned_uint32(rtcpheader + len + 12, htonl(report_block->ia_jitter));
4724 put_unaligned_uint32(rtcpheader + len + 16, htonl(report_block->lsr));
4725 put_unaligned_uint32(rtcpheader + len + 20, htonl(report_block->dlsr));
4726 len += 24;
4727 }
4728
4729 put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (rtcp_report->reception_report_count << 24)
4730 | ((*sr ? RTCP_PT_SR : RTCP_PT_RR) << 16) | ((len/4)-1)));
4731
4732 return len;
4733}
4734
4736 struct ast_rtp_rtcp_report *rtcp_report, struct ast_sockaddr remote_address, int ice, int sr)
4737{
4738 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4739 struct ast_rtp_rtcp_report_block *report_block = NULL;
4740 RAII_VAR(struct ast_json *, message_blob, NULL, ast_json_unref);
4741
4742 if (!rtp || !rtp->rtcp) {
4743 return 0;
4744 }
4745
4746 if (ast_sockaddr_isnull(&rtp->rtcp->them)) {
4747 return 0;
4748 }
4749
4750 if (!rtcp_report) {
4751 return -1;
4752 }
4753
4754 report_block = rtcp_report->report_block[0];
4755
4756 if (sr) {
4757 rtp->rtcp->txlsr = rtcp_report->sender_information.ntp_timestamp;
4758 rtp->rtcp->sr_count++;
4759 rtp->rtcp->lastsrtxcount = rtp->txcount;
4760 } else {
4761 rtp->rtcp->rr_count++;
4762 }
4763
4764 if (rtcp_debug_test_addr(&rtp->rtcp->them)) {
4765 ast_verbose("* Sent RTCP %s to %s%s\n", sr ? "SR" : "RR",
4766 ast_sockaddr_stringify(&remote_address), ice ? " (via ICE)" : "");
4767 ast_verbose(" Our SSRC: %u\n", rtcp_report->ssrc);
4768 if (sr) {
4769 ast_verbose(" Sent(NTP): %u.%06u\n",
4770 (unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_sec,
4771 (unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_usec);
4772 ast_verbose(" Sent(RTP): %u\n", rtcp_report->sender_information.rtp_timestamp);
4773 ast_verbose(" Sent packets: %u\n", rtcp_report->sender_information.packet_count);
4774 ast_verbose(" Sent octets: %u\n", rtcp_report->sender_information.octet_count);
4775 }
4776 if (report_block) {
4777 int rate = ast_rtp_get_rate(rtp->f.subclass.format);
4778 ast_verbose(" Report block:\n");
4779 ast_verbose(" Their SSRC: %u\n", report_block->source_ssrc);
4780 ast_verbose(" Fraction lost: %d\n", report_block->lost_count.fraction);
4781 ast_verbose(" Cumulative loss: %u\n", report_block->lost_count.packets);
4782 ast_verbose(" Highest seq no: %u\n", report_block->highest_seq_no);
4783 ast_verbose(" IA jitter (samp): %u\n", report_block->ia_jitter);
4784 ast_verbose(" IA jitter (secs): %.6f\n", ast_samp2sec(report_block->ia_jitter, rate));
4785 ast_verbose(" Their last SR: %u\n", report_block->lsr);
4786 ast_verbose(" DLSR: %4.4f (sec)\n\n", (double)(report_block->dlsr / 65536.0));
4787 }
4788 }
4789
4790 message_blob = ast_json_pack("{s: s, s: s, s: f}",
4791 "to", ast_sockaddr_stringify(&remote_address),
4792 "from", rtp->rtcp->local_addr_str,
4793 "mes", rtp->rxmes);
4794
4796 rtcp_report, message_blob);
4797
4798 return 1;
4799}
4800
4801static int ast_rtcp_generate_sdes(struct ast_rtp_instance *instance, unsigned char *rtcpheader,
4802 struct ast_rtp_rtcp_report *rtcp_report)
4803{
4804 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4805 int len = 0;
4806 uint16_t sdes_packet_len_bytes;
4807 uint16_t sdes_packet_len_rounded;
4808
4809 if (!rtp || !rtp->rtcp) {
4810 return 0;
4811 }
4812
4813 if (ast_sockaddr_isnull(&rtp->rtcp->them)) {
4814 return 0;
4815 }
4816
4817 if (!rtcp_report) {
4818 return -1;
4819 }
4820
4821 sdes_packet_len_bytes =
4822 4 + /* RTCP Header */
4823 4 + /* SSRC */
4824 1 + /* Type (CNAME) */
4825 1 + /* Text Length */
4826 AST_UUID_STR_LEN /* Text and NULL terminator */
4827 ;
4828
4829 /* Round to 32 bit boundary */
4830 sdes_packet_len_rounded = (sdes_packet_len_bytes + 3) & ~0x3;
4831
4832 put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (1 << 24) | (RTCP_PT_SDES << 16) | ((sdes_packet_len_rounded / 4) - 1)));
4833 put_unaligned_uint32(rtcpheader + 4, htonl(rtcp_report->ssrc));
4834 rtcpheader[8] = 0x01; /* CNAME */
4835 rtcpheader[9] = AST_UUID_STR_LEN - 1; /* Number of bytes of text */
4836 memcpy(rtcpheader + 10, rtp->cname, AST_UUID_STR_LEN);
4837 len += 10 + AST_UUID_STR_LEN;
4838
4839 /* Padding - Note that we don't set the padded bit on the packet. From
4840 * RFC 3550 Section 6.5:
4841 *
4842 * No length octet follows the null item type octet, but additional null
4843 * octets MUST be included if needd to pad until the next 32-bit
4844 * boundary. Note that this padding is separate from that indicated by
4845 * the P bit in the RTCP header.
4846 *
4847 * These bytes will already be zeroed out during array initialization.
4848 */
4849 len += (sdes_packet_len_rounded - sdes_packet_len_bytes);
4850
4851 return len;
4852}
4853
4854/* Lock instance before calling this if it isn't already
4855 *
4856 * If successful, the overall packet length is returned
4857 * If not, then 0 is returned
4858 */
4859static int ast_rtcp_generate_compound_prefix(struct ast_rtp_instance *instance, unsigned char *rtcpheader,
4860 struct ast_rtp_rtcp_report *report, int *sr)
4861{
4862 int packet_len = 0;
4863 int res;
4864
4865 /* Every RTCP packet needs to be sent out with a SR/RR and SDES prefixing it.
4866 * At the end of this function, rtcpheader should contain both of those packets,
4867 * and will return the length of the overall packet. This can be used to determine
4868 * where further packets can be inserted in the compound packet.
4869 */
4870 res = ast_rtcp_generate_report(instance, rtcpheader, report, sr);
4871
4872 if (res == 0 || res == 1) {
4873 ast_debug_rtcp(1, "(%p) RTCP failed to generate %s report!\n", instance, sr ? "SR" : "RR");
4874 return 0;
4875 }
4876
4877 packet_len += res;
4878
4879 res = ast_rtcp_generate_sdes(instance, rtcpheader + packet_len, report);
4880
4881 if (res == 0 || res == 1) {
4882 ast_debug_rtcp(1, "(%p) RTCP failed to generate SDES!\n", instance);
4883 return 0;
4884 }
4885
4886 return packet_len + res;
4887}
4888
4889static int ast_rtcp_generate_nack(struct ast_rtp_instance *instance, unsigned char *rtcpheader)
4890{
4891 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4892 int packet_len;
4893 int blp_index = -1;
4894 int current_seqno;
4895 unsigned int fci = 0;
4896 size_t remaining_missing_seqno;
4897
4898 if (!rtp || !rtp->rtcp) {
4899 return 0;
4900 }
4901
4902 if (ast_sockaddr_isnull(&rtp->rtcp->them)) {
4903 return 0;
4904 }
4905
4906 current_seqno = rtp->expectedrxseqno;
4907 remaining_missing_seqno = AST_VECTOR_SIZE(&rtp->missing_seqno);
4908 packet_len = 12; /* The header length is 12 (version line, packet source SSRC, media source SSRC) */
4909
4910 /* If there are no missing sequence numbers then don't bother sending a NACK needlessly */
4911 if (!remaining_missing_seqno) {
4912 return 0;
4913 }
4914
4915 /* This iterates through the possible forward sequence numbers seeing which ones we
4916 * have no packet for, adding it to the NACK until we are out of missing packets.
4917 */
4918 while (remaining_missing_seqno) {
4919 int *missing_seqno;
4920
4921 /* On the first entry to this loop blp_index will be -1, so this will become 0
4922 * and the sequence number will be placed into the packet as the PID.
4923 */
4924 blp_index++;
4925
4926 missing_seqno = AST_VECTOR_GET_CMP(&rtp->missing_seqno, current_seqno,
4928 if (missing_seqno) {
4929 /* We hit the max blp size, reset */
4930 if (blp_index >= 17) {
4931 put_unaligned_uint32(rtcpheader + packet_len, htonl(fci));
4932 fci = 0;
4933 blp_index = 0;
4934 packet_len += 4;
4935 }
4936
4937 if (blp_index == 0) {
4938 fci |= (current_seqno << 16);
4939 } else {
4940 fci |= (1 << (blp_index - 1));
4941 }
4942
4943 /* Since we've used a missing sequence number, we're down one */
4944 remaining_missing_seqno--;
4945 }
4946
4947 /* Handle cycling of the sequence number */
4948 current_seqno++;
4949 if (current_seqno == SEQNO_CYCLE_OVER) {
4950 current_seqno = 0;
4951 }
4952 }
4953
4954 put_unaligned_uint32(rtcpheader + packet_len, htonl(fci));
4955 packet_len += 4;
4956
4957 /* Length MUST be 2+n, where n is the number of NACKs. Same as length in words minus 1 */
4958 put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (AST_RTP_RTCP_FMT_NACK << 24)
4959 | (AST_RTP_RTCP_RTPFB << 16) | ((packet_len / 4) - 1)));
4960 put_unaligned_uint32(rtcpheader + 4, htonl(rtp->ssrc));
4961 put_unaligned_uint32(rtcpheader + 8, htonl(rtp->themssrc));
4962
4963 return packet_len;
4964}
4965
4966/*!
4967 * \brief Write a RTCP packet to the far end
4968 *
4969 * \note Decide if we are going to send an SR (with Reception Block) or RR
4970 * RR is sent if we have not sent any rtp packets in the previous interval
4971 *
4972 * Scheduler callback
4973 */
4974static int ast_rtcp_write(const void *data)
4975{
4976 struct ast_rtp_instance *instance = (struct ast_rtp_instance *) data;
4977 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4978 int res;
4979 int sr = 0;
4980 int packet_len = 0;
4981 int ice;
4982 struct ast_sockaddr remote_address = { { 0, } };
4983 unsigned char *rtcpheader;
4984 unsigned char bdata[AST_UUID_STR_LEN + 128] = ""; /* More than enough */
4985 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report, NULL, ao2_cleanup);
4986
4987 if (!rtp || !rtp->rtcp || rtp->rtcp->schedid == -1) {
4988 ao2_ref(instance, -1);
4989 return 0;
4990 }
4991
4992 ao2_lock(instance);
4993 rtcpheader = bdata;
4994 rtcp_report = ast_rtp_rtcp_report_alloc(rtp->themssrc_valid ? 1 : 0);
4995 res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
4996
4997 if (res == 0 || res == 1) {
4998 goto cleanup;
4999 }
5000
5001 packet_len += res;
5002
5003 if (rtp->bundled) {
5004 ast_rtp_instance_get_remote_address(instance, &remote_address);
5005 } else {
5006 ast_sockaddr_copy(&remote_address, &rtp->rtcp->them);
5007 }
5008
5009 res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len, 0, &remote_address, &ice);
5010 if (res < 0) {
5011 ast_log(LOG_ERROR, "RTCP %s transmission error to %s, rtcp halted %s\n",
5012 sr ? "SR" : "RR",
5014 strerror(errno));
5015 res = 0;
5016 } else {
5017 ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, remote_address, ice, sr);
5018 }
5019
5020cleanup:
5021 ao2_unlock(instance);
5022
5023 if (!res) {
5024 /*
5025 * Not being rescheduled.
5026 */
5027 rtp->rtcp->schedid = -1;
5028 ao2_ref(instance, -1);
5029 }
5030
5031 return res;
5032}
5033
5034static void put_unaligned_time24(void *p, uint32_t time_msw, uint32_t time_lsw)
5035{
5036 unsigned char *cp = p;
5037 uint32_t datum;
5038
5039 /* Convert the time to 6.18 format */
5040 datum = (time_msw << 18) & 0x00fc0000;
5041 datum |= (time_lsw >> 14) & 0x0003ffff;
5042
5043 cp[0] = datum >> 16;
5044 cp[1] = datum >> 8;
5045 cp[2] = datum;
5046}
5047
5048/*! \pre instance is locked */
5049static int rtp_raw_write(struct ast_rtp_instance *instance, struct ast_frame *frame, int codec)
5050{
5051 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5052 int pred, mark = 0;
5053 unsigned int ms = calc_txstamp(rtp, &frame->delivery);
5054 struct ast_sockaddr remote_address = { {0,} };
5055 int rate = ast_rtp_get_rate(frame->subclass.format) / 1000;
5056 unsigned int seqno;
5057#ifdef TEST_FRAMEWORK
5058 struct ast_rtp_engine_test *test = ast_rtp_instance_get_test(instance);
5059#endif
5060
5062 frame->samples /= 2;
5063 }
5064
5065 if (rtp->sending_digit) {
5066 return 0;
5067 }
5068
5069#ifdef TEST_FRAMEWORK
5070 if (test && test->send_report) {
5071 test->send_report = 0;
5072 ast_rtcp_write(instance);
5073 return 0;
5074 }
5075#endif
5076
5077 if (frame->frametype == AST_FRAME_VOICE) {
5078 pred = rtp->lastts + frame->samples;
5079
5080 /* Re-calculate last TS */
5081 rtp->lastts = rtp->lastts + ms * rate;
5082 if (ast_tvzero(frame->delivery)) {
5083 /* If this isn't an absolute delivery time, Check if it is close to our prediction,
5084 and if so, go with our prediction */
5085 if (abs((int)rtp->lastts - pred) < MAX_TIMESTAMP_SKEW) {
5086 rtp->lastts = pred;
5087 } else {
5088 ast_debug_rtp(3, "(%p) RTP audio difference is %d, ms is %u\n",
5089 instance, abs((int)rtp->lastts - pred), ms);
5090 mark = 1;
5091 }
5092 }
5093 } else if (frame->frametype == AST_FRAME_VIDEO) {
5094 mark = frame->subclass.frame_ending;
5095 pred = rtp->lastovidtimestamp + frame->samples;
5096 /* Re-calculate last TS */
5097 rtp->lastts = rtp->lastts + ms * 90;
5098 /* If it's close to our prediction, go for it */
5099 if (ast_tvzero(frame->delivery)) {
5100 if (abs((int)rtp->lastts - pred) < 7200) {
5101 rtp->lastts = pred;
5102 rtp->lastovidtimestamp += frame->samples;
5103 } else {
5104 ast_debug_rtp(3, "(%p) RTP video difference is %d, ms is %u (%u), pred/ts/samples %u/%d/%d\n",
5105 instance, abs((int)rtp->lastts - pred), ms, ms * 90, rtp->lastts, pred, frame->samples);
5106 rtp->lastovidtimestamp = rtp->lastts;
5107 }
5108 }
5109 } else {
5110 pred = rtp->lastotexttimestamp + frame->samples;
5111 /* Re-calculate last TS */
5112 rtp->lastts = rtp->lastts + ms;
5113 /* If it's close to our prediction, go for it */
5114 if (ast_tvzero(frame->delivery)) {
5115 if (abs((int)rtp->lastts - pred) < 7200) {
5116 rtp->lastts = pred;
5117 rtp->lastotexttimestamp += frame->samples;
5118 } else {
5119 ast_debug_rtp(3, "(%p) RTP other difference is %d, ms is %u, pred/ts/samples %u/%d/%d\n",
5120 instance, abs((int)rtp->lastts - pred), ms, rtp->lastts, pred, frame->samples);
5121 rtp->lastotexttimestamp = rtp->lastts;
5122 }
5123 }
5124 }
5125
5126 /* If we have been explicitly told to set the marker bit then do so */
5128 mark = 1;
5130 }
5131
5132 /* If the timestamp for non-digt packets has moved beyond the timestamp for digits, update the digit timestamp */
5133 if (rtp->lastts > rtp->lastdigitts) {
5134 rtp->lastdigitts = rtp->lastts;
5135 }
5136
5137 /* Assume that the sequence number we expect to use is what will be used until proven otherwise */
5138 seqno = rtp->seqno;
5139
5140 /* If the frame contains sequence number information use it to influence our sequence number */
5142 if (rtp->expectedseqno != -1) {
5143 /* Determine where the frame from the core is in relation to where we expected */
5144 int difference = frame->seqno - rtp->expectedseqno;
5145
5146 /* If there is a substantial difference then we've either got packets really out
5147 * of order, or the source is RTP and it has cycled. If this happens we resync
5148 * the sequence number adjustments to this frame. If we also have packet loss
5149 * things won't be reflected correctly but it will sort itself out after a bit.
5150 */
5151 if (abs(difference) > 100) {
5152 difference = 0;
5153 }
5154
5155 /* Adjust the sequence number being used for this packet accordingly */
5156 seqno += difference;
5157
5158 if (difference >= 0) {
5159 /* This frame is on time or in the future */
5160 rtp->expectedseqno = frame->seqno + 1;
5161 rtp->seqno += difference;
5162 }
5163 } else {
5164 /* This is the first frame with sequence number we've seen, so start keeping track */
5165 rtp->expectedseqno = frame->seqno + 1;
5166 }
5167 } else {
5168 rtp->expectedseqno = -1;
5169 }
5170
5172 rtp->lastts = frame->ts * rate;
5173 }
5174
5175 ast_rtp_instance_get_remote_address(instance, &remote_address);
5176
5177 /* If we know the remote address construct a packet and send it out */
5178 if (!ast_sockaddr_isnull(&remote_address)) {
5179 int hdrlen = 12;
5180 int res;
5181 int ice;
5182 int ext = 0;
5183 int abs_send_time_id;
5184 int packet_len;
5185 unsigned char *rtpheader;
5186
5187 /* If the abs-send-time extension has been negotiated determine how much space we need */
5189 if (abs_send_time_id != -1) {
5190 /* 4 bytes for the shared information, 1 byte for identifier, 3 bytes for abs-send-time */
5191 hdrlen += 8;
5192 ext = 1;
5193 }
5194
5195 packet_len = frame->datalen + hdrlen;
5196 rtpheader = (unsigned char *)(frame->data.ptr - hdrlen);
5197
5198 put_unaligned_uint32(rtpheader, htonl((2 << 30) | (ext << 28) | (codec << 16) | (seqno) | (mark << 23)));
5199 put_unaligned_uint32(rtpheader + 4, htonl(rtp->lastts));
5200 put_unaligned_uint32(rtpheader + 8, htonl(rtp->ssrc));
5201
5202 /* We assume right now that we will only ever have the abs-send-time extension in the packet
5203 * which simplifies things a bit.
5204 */
5205 if (abs_send_time_id != -1) {
5206 unsigned int now_msw;
5207 unsigned int now_lsw;
5208
5209 /* This happens before being placed into the retransmission buffer so that when we
5210 * retransmit we only have to update the timestamp, not everything else.
5211 */
5212 put_unaligned_uint32(rtpheader + 12, htonl((0xBEDE << 16) | 1));
5213 rtpheader[16] = (abs_send_time_id << 4) | 2;
5214
5215 timeval2ntp(ast_tvnow(), &now_msw, &now_lsw);
5216 put_unaligned_time24(rtpheader + 17, now_msw, now_lsw);
5217 }
5218
5219 /* If retransmissions are enabled, we need to store this packet for future use */
5220 if (rtp->send_buffer) {
5221 struct ast_rtp_rtcp_nack_payload *payload;
5222
5223 payload = ast_malloc(sizeof(*payload) + packet_len);
5224 if (payload) {
5225 payload->size = packet_len;
5226 memcpy(payload->buf, rtpheader, packet_len);
5227 if (ast_data_buffer_put(rtp->send_buffer, rtp->seqno, payload) == -1) {
5228 ast_free(payload);
5229 }
5230 }
5231 }
5232
5233 res = rtp_sendto(instance, (void *)rtpheader, packet_len, 0, &remote_address, &ice);
5234 if (res < 0) {
5236 ast_debug_rtp(1, "(%p) RTP transmission error of packet %d to %s: %s\n",
5237 instance, rtp->seqno,
5238 ast_sockaddr_stringify(&remote_address),
5239 strerror(errno));
5241 /* Only give this error message once if we are not RTP debugging */
5243 ast_debug(0, "(%p) RTP NAT: Can't write RTP to private address %s, waiting for other end to send audio...\n",
5244 instance, ast_sockaddr_stringify(&remote_address));
5246 }
5247 } else {
5248 if (rtp->rtcp && rtp->rtcp->schedid < 0) {
5249 ast_debug_rtcp(2, "(%s) RTCP starting transmission in %u ms\n",
5251 ao2_ref(instance, +1);
5253 if (rtp->rtcp->schedid < 0) {
5254 ao2_ref(instance, -1);
5255 ast_log(LOG_WARNING, "scheduling RTCP transmission failed.\n");
5256 }
5257 }
5258 }
5259
5260 if (rtp_debug_test_addr(&remote_address)) {
5261 ast_verbose("Sent RTP packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
5262 ast_sockaddr_stringify(&remote_address),
5263 ice ? " (via ICE)" : "",
5264 codec, rtp->seqno, rtp->lastts, res - hdrlen);
5265 }
5266 }
5267
5268 /* If the sequence number that has been used doesn't match what we expected then this is an out of
5269 * order late packet, so we don't need to increment as we haven't yet gotten the expected frame from
5270 * the core.
5271 */
5272 if (seqno == rtp->seqno) {
5273 rtp->seqno++;
5274 }
5275
5276 return 0;
5277}
5278
5279static struct ast_frame *red_t140_to_red(struct rtp_red *red)
5280{
5281 unsigned char *data = red->t140red.data.ptr;
5282 int len = 0;
5283 int i;
5284
5285 /* replace most aged generation */
5286 if (red->len[0]) {
5287 for (i = 1; i < red->num_gen+1; i++)
5288 len += red->len[i];
5289
5290 memmove(&data[red->hdrlen], &data[red->hdrlen+red->len[0]], len);
5291 }
5292
5293 /* Store length of each generation and primary data length*/
5294 for (i = 0; i < red->num_gen; i++)
5295 red->len[i] = red->len[i+1];
5296 red->len[i] = red->t140.datalen;
5297
5298 /* write each generation length in red header */
5299 len = red->hdrlen;
5300 for (i = 0; i < red->num_gen; i++) {
5301 len += data[i*4+3] = red->len[i];
5302 }
5303
5304 /* add primary data to buffer */
5305 memcpy(&data[len], red->t140.data.ptr, red->t140.datalen);
5306 red->t140red.datalen = len + red->t140.datalen;
5307
5308 /* no primary data and no generations to send */
5309 if (len == red->hdrlen && !red->t140.datalen) {
5310 return NULL;
5311 }
5312
5313 /* reset t.140 buffer */
5314 red->t140.datalen = 0;
5315
5316 return &red->t140red;
5317}
5318
5319static void rtp_write_rtcp_fir(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_sockaddr *remote_address)
5320{
5321 unsigned char *rtcpheader;
5322 unsigned char bdata[1024];
5323 int packet_len = 0;
5324 int fir_len = 20;
5325 int ice;
5326 int res;
5327 int sr;
5328 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report, NULL, ao2_cleanup);
5329
5330 if (!rtp || !rtp->rtcp) {
5331 return;
5332 }
5333
5334 if (ast_sockaddr_isnull(&rtp->rtcp->them) || rtp->rtcp->schedid < 0) {
5335 /*
5336 * RTCP was stopped.
5337 */
5338 return;
5339 }
5340
5341 if (!rtp->themssrc_valid) {
5342 /* We don't know their SSRC value so we don't know who to update. */
5343 return;
5344 }
5345
5346 /* Prepare RTCP FIR (PT=206, FMT=4) */
5347 rtp->rtcp->firseq++;
5348 if(rtp->rtcp->firseq == 256) {
5349 rtp->rtcp->firseq = 0;
5350 }
5351
5352 rtcpheader = bdata;
5353
5354 ao2_lock(instance);
5355 rtcp_report = ast_rtp_rtcp_report_alloc(rtp->themssrc_valid ? 1 : 0);
5356 res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
5357
5358 if (res == 0 || res == 1) {
5359 ao2_unlock(instance);
5360 return;
5361 }
5362
5363 packet_len += res;
5364
5365 put_unaligned_uint32(rtcpheader + packet_len + 0, htonl((2 << 30) | (4 << 24) | (RTCP_PT_PSFB << 16) | ((fir_len/4)-1)));
5366 put_unaligned_uint32(rtcpheader + packet_len + 4, htonl(rtp->ssrc));
5367 put_unaligned_uint32(rtcpheader + packet_len + 8, htonl(rtp->themssrc));
5368 put_unaligned_uint32(rtcpheader + packet_len + 12, htonl(rtp->themssrc)); /* FCI: SSRC */
5369 put_unaligned_uint32(rtcpheader + packet_len + 16, htonl(rtp->rtcp->firseq << 24)); /* FCI: Sequence number */
5370 res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len + fir_len, 0, rtp->bundled ? remote_address : &rtp->rtcp->them, &ice);
5371 if (res < 0) {
5372 ast_log(LOG_ERROR, "RTCP FIR transmission error: %s\n", strerror(errno));
5373 } else {
5374 ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, rtp->bundled ? *remote_address : rtp->rtcp->them, ice, sr);
5375 }
5376
5377 ao2_unlock(instance);
5378}
5379
5380static void rtp_write_rtcp_psfb(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_frame *frame, struct ast_sockaddr *remote_address)
5381{
5382 struct ast_rtp_rtcp_feedback *feedback = frame->data.ptr;
5383 unsigned char *rtcpheader;
5384 unsigned char bdata[1024];
5385 int remb_len = 24;
5386 int ice;
5387 int res;
5388 int sr = 0;
5389 int packet_len = 0;
5390 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report, NULL, ao2_cleanup);
5391
5392 if (feedback->fmt != AST_RTP_RTCP_FMT_REMB) {
5393 ast_debug_rtcp(1, "(%p) RTCP provided feedback frame of format %d to write, but only REMB is supported\n",
5394 instance, feedback->fmt);
5395 return;
5396 }
5397
5398 if (!rtp || !rtp->rtcp) {
5399 return;
5400 }
5401
5402 /* If REMB support is not enabled don't send this RTCP packet */
5404 ast_debug_rtcp(1, "(%p) RTCP provided feedback REMB report to write, but REMB support not enabled\n",
5405 instance);
5406 return;
5407 }
5408
5409 if (ast_sockaddr_isnull(&rtp->rtcp->them) || rtp->rtcp->schedid < 0) {
5410 /*
5411 * RTCP was stopped.
5412 */
5413 return;
5414 }
5415
5416 rtcpheader = bdata;
5417
5418 ao2_lock(instance);
5419 rtcp_report = ast_rtp_rtcp_report_alloc(rtp->themssrc_valid ? 1 : 0);
5420 res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
5421
5422 if (res == 0 || res == 1) {
5423 ao2_unlock(instance);
5424 return;
5425 }
5426
5427 packet_len += res;
5428
5429 put_unaligned_uint32(rtcpheader + packet_len + 0, htonl((2 << 30) | (AST_RTP_RTCP_FMT_REMB << 24) | (RTCP_PT_PSFB << 16) | ((remb_len/4)-1)));
5430 put_unaligned_uint32(rtcpheader + packet_len + 4, htonl(rtp->ssrc));
5431 put_unaligned_uint32(rtcpheader + packet_len + 8, htonl(0)); /* Per the draft, this should always be 0 */
5432 put_unaligned_uint32(rtcpheader + packet_len + 12, htonl(('R' << 24) | ('E' << 16) | ('M' << 8) | ('B'))); /* Unique identifier 'R' 'E' 'M' 'B' */
5433 put_unaligned_uint32(rtcpheader + packet_len + 16, htonl((1 << 24) | (feedback->remb.br_exp << 18) | (feedback->remb.br_mantissa))); /* Number of SSRCs / BR Exp / BR Mantissa */
5434 put_unaligned_uint32(rtcpheader + packet_len + 20, htonl(rtp->ssrc)); /* The SSRC this feedback message applies to */
5435 res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len + remb_len, 0, rtp->bundled ? remote_address : &rtp->rtcp->them, &ice);
5436 if (res < 0) {
5437 ast_log(LOG_ERROR, "RTCP PSFB transmission error: %s\n", strerror(errno));
5438 } else {
5439 ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, rtp->bundled ? *remote_address : rtp->rtcp->them, ice, sr);
5440 }
5441
5442 ao2_unlock(instance);
5443}
5444
5445/*! \pre instance is locked */
5446static int ast_rtp_write(struct ast_rtp_instance *instance, struct ast_frame *frame)
5447{
5448 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5449 struct ast_sockaddr remote_address = { {0,} };
5450 struct ast_format *format;
5451 int codec;
5452
5453 ast_rtp_instance_get_remote_address(instance, &remote_address);
5454
5455 /* If we don't actually know the remote address don't even bother doing anything */
5456 if (ast_sockaddr_isnull(&remote_address)) {
5457 ast_debug_rtp(1, "(%p) RTP no remote address on instance, so dropping frame\n", instance);
5458 return 0;
5459 }
5460
5461 /* VP8: is this a request to send a RTCP FIR? */
5463 rtp_write_rtcp_fir(instance, rtp, &remote_address);
5464 return 0;
5465 } else if (frame->frametype == AST_FRAME_RTCP) {
5466 if (frame->subclass.integer == AST_RTP_RTCP_PSFB) {
5467 rtp_write_rtcp_psfb(instance, rtp, frame, &remote_address);
5468 }
5469 return 0;
5470 }
5471
5472 /* If there is no data length we can't very well send the packet */
5473 if (!frame->datalen) {
5474 ast_debug_rtp(1, "(%p) RTP received frame with no data for instance, so dropping frame\n", instance);
5475 return 0;
5476 }
5477
5478 /* If the packet is not one our RTP stack supports bail out */
5479 if (frame->frametype != AST_FRAME_VOICE && frame->frametype != AST_FRAME_VIDEO && frame->frametype != AST_FRAME_TEXT) {
5480 ast_log(LOG_WARNING, "RTP can only send voice, video, and text\n");
5481 return -1;
5482 }
5483
5484 if (rtp->red) {
5485 /* return 0; */
5486 /* no primary data or generations to send */
5487 if ((frame = red_t140_to_red(rtp->red)) == NULL)
5488 return 0;
5489 }
5490
5491 /* Grab the subclass and look up the payload we are going to use */
5493 1, frame->subclass.format, 0);
5494 if (codec < 0) {
5495 ast_log(LOG_WARNING, "Don't know how to send format %s packets with RTP\n",
5497 return -1;
5498 }
5499
5500 /* Note that we do not increase the ref count here as this pointer
5501 * will not be held by any thing explicitly. The format variable is
5502 * merely a convenience reference to frame->subclass.format */
5503 format = frame->subclass.format;
5505 /* Oh dear, if the format changed we will have to set up a new smoother */
5506 ast_debug_rtp(1, "(%s) RTP ooh, format changed from %s to %s\n",
5510 ao2_replace(rtp->lasttxformat, format);
5511 if (rtp->smoother) {
5513 rtp->smoother = NULL;
5514 }
5515 }
5516
5517 /* If no smoother is present see if we have to set one up */
5518 if (!rtp->smoother && ast_format_can_be_smoothed(format)) {
5519 unsigned int smoother_flags = ast_format_get_smoother_flags(format);
5520 unsigned int framing_ms = ast_rtp_codecs_get_framing(ast_rtp_instance_get_codecs(instance));
5521
5522 if (!framing_ms && (smoother_flags & AST_SMOOTHER_FLAG_FORCED)) {
5523 framing_ms = ast_format_get_default_ms(format);
5524 }
5525
5526 if (framing_ms) {
5528 if (!rtp->smoother) {
5529 ast_log(LOG_WARNING, "Unable to create smoother: format %s ms: %u len: %u\n",
5530 ast_format_get_name(format), framing_ms, ast_format_get_minimum_bytes(format));
5531 return -1;
5532 }
5533 ast_smoother_set_flags(rtp->smoother, smoother_flags);
5534 }
5535 }
5536
5537 /* Feed audio frames into the actual function that will create a frame and send it */
5538 if (rtp->smoother) {
5539 struct ast_frame *f;
5540
5542 ast_smoother_feed_be(rtp->smoother, frame);
5543 } else {
5544 ast_smoother_feed(rtp->smoother, frame);
5545 }
5546
5547 while ((f = ast_smoother_read(rtp->smoother)) && (f->data.ptr)) {
5548 rtp_raw_write(instance, f, codec);
5549 }
5550 } else {
5551 int hdrlen = 12;
5552 struct ast_frame *f = NULL;
5553
5554 if (frame->offset < hdrlen) {
5555 f = ast_frdup(frame);
5556 } else {
5557 f = frame;
5558 }
5559 if (f->data.ptr) {
5560 rtp_raw_write(instance, f, codec);
5561 }
5562 if (f != frame) {
5563 ast_frfree(f);
5564 }
5565
5566 }
5567
5568 return 0;
5569}
5570
5571static void calc_rxstamp_and_jitter(struct timeval *tv,
5572 struct ast_rtp *rtp, unsigned int rx_rtp_ts,
5573 int mark)
5574{
5575 int rate = ast_rtp_get_rate(rtp->f.subclass.format);
5576
5577 double jitter = 0.0;
5578 double prev_jitter = 0.0;
5579 struct timeval now;
5580 struct timeval tmp;
5581 double rxnow;
5582 double arrival_sec;
5583 unsigned int arrival;
5584 int transit;
5585 int d;
5586
5587 gettimeofday(&now,NULL);
5588
5589 if (rtp->rxcount == 1 || mark) {
5590 rtp->rxstart = ast_tv2double(&now);
5591 rtp->remote_seed_rx_rtp_ts = rx_rtp_ts;
5592
5593 /*
5594 * "tv" is placed in the received frame's
5595 * "delivered" field and when this frame is
5596 * sent out again on the other side, it's
5597 * used to calculate the timestamp on the
5598 * outgoing RTP packets.
5599 *
5600 * NOTE: We need to do integer math here
5601 * because double math rounding issues can
5602 * generate incorrect timestamps.
5603 */
5604 rtp->rxcore = now;
5605 tmp = ast_samp2tv(rx_rtp_ts, rate);
5606 rtp->rxcore = ast_tvsub(rtp->rxcore, tmp);
5607 rtp->rxcore.tv_usec -= rtp->rxcore.tv_usec % 100;
5608 *tv = ast_tvadd(rtp->rxcore, tmp);
5609
5610 ast_debug_rtcp(3, "%s: "
5611 "Seed ts: %u current time: %f\n",
5613 , rx_rtp_ts
5614 , rtp->rxstart
5615 );
5616
5617 return;
5618 }
5619
5620 tmp = ast_samp2tv(rx_rtp_ts, rate);
5621 /* See the comment about "tv" above. Even if
5622 * we don't use this received packet for jitter
5623 * calculations, we still need to set tv so the
5624 * timestamp will be correct when this packet is
5625 * sent out again.
5626 */
5627 *tv = ast_tvadd(rtp->rxcore, tmp);
5628
5629 /*
5630 * The first few packets are generally unstable so let's
5631 * not use them in the calculations.
5632 */
5634 ast_debug_rtcp(3, "%s: Packet %d < %d. Ignoring\n",
5636 , rtp->rxcount
5638 );
5639
5640 return;
5641 }
5642
5643 /*
5644 * First good packet. Capture the start time and timestamp
5645 * but don't actually use this packet for calculation.
5646 */
5648 rtp->rxstart_stable = ast_tv2double(&now);
5649 rtp->remote_seed_rx_rtp_ts_stable = rx_rtp_ts;
5650 rtp->last_transit_time_samples = -rx_rtp_ts;
5651
5652 ast_debug_rtcp(3, "%s: "
5653 "pkt: %5u Stable Seed ts: %u current time: %f\n",
5655 , rtp->rxcount
5656 , rx_rtp_ts
5657 , rtp->rxstart_stable
5658 );
5659
5660 return;
5661 }
5662
5663 /*
5664 * If the current packet isn't in sequence, don't
5665 * use it in any calculations as remote_current_rx_rtp_ts
5666 * is not going to be correct.
5667 */
5668 if (rtp->lastrxseqno != rtp->prevrxseqno + 1) {
5669 ast_debug_rtcp(3, "%s: Current packet seq %d != last packet seq %d + 1. Ignoring\n",
5671 , rtp->lastrxseqno
5672 , rtp->prevrxseqno
5673 );
5674
5675 return;
5676 }
5677
5678 /*
5679 * The following calculations are taken from
5680 * https://www.rfc-editor.org/rfc/rfc3550#appendix-A.8
5681 *
5682 * The received rtp timestamp is the random "seed"
5683 * timestamp chosen by the sender when they sent the
5684 * first packet, plus the number of samples since then.
5685 *
5686 * To get our arrival time in the same units, we
5687 * calculate the time difference in seconds between
5688 * when we received the first packet and when we
5689 * received this packet and convert that to samples.
5690 */
5691 rxnow = ast_tv2double(&now);
5692 arrival_sec = rxnow - rtp->rxstart_stable;
5693 arrival = ast_sec2samp(arrival_sec, rate);
5694
5695 /*
5696 * Now we can use the exact formula in
5697 * https://www.rfc-editor.org/rfc/rfc3550#appendix-A.8 :
5698 *
5699 * int transit = arrival - r->ts;
5700 * int d = transit - s->transit;
5701 * s->transit = transit;
5702 * if (d < 0) d = -d;
5703 * s->jitter += (1./16.) * ((double)d - s->jitter);
5704 *
5705 * Our rx_rtp_ts is their r->ts.
5706 * Our rtp->last_transit_time_samples is their s->transit.
5707 * Our rtp->rxjitter is their s->jitter.
5708 */
5709 transit = arrival - rx_rtp_ts;
5710 d = transit - rtp->last_transit_time_samples;
5711
5712 if (d < 0) {
5713 d = -d;
5714 }
5715
5716 prev_jitter = rtp->rxjitter_samples;
5717 jitter = (1.0/16.0) * (((double)d) - prev_jitter);
5718 rtp->rxjitter_samples = prev_jitter + jitter;
5719
5720 /*
5721 * We need to hang on to jitter in both samples and seconds.
5722 */
5723 rtp->rxjitter = ast_samp2sec(rtp->rxjitter_samples, rate);
5724
5725 ast_debug_rtcp(3, "%s: pkt: %5u "
5726 "Arrival sec: %7.3f Arrival ts: %10u RX ts: %10u "
5727 "Transit samp: %6d Last transit samp: %6d d: %4d "
5728 "Curr jitter: %7.0f(%7.3f) Prev Jitter: %7.0f(%7.3f) New Jitter: %7.0f(%7.3f)\n",
5730 , rtp->rxcount
5731 , arrival_sec
5732 , arrival
5733 , rx_rtp_ts
5734 , transit
5736 , d
5737 , jitter
5738 , ast_samp2sec(jitter, rate)
5739 , prev_jitter
5740 , ast_samp2sec(prev_jitter, rate)
5741 , rtp->rxjitter_samples
5742 , rtp->rxjitter
5743 );
5744
5745 rtp->last_transit_time_samples = transit;
5746
5747 /*
5748 * Update all the stats.
5749 */
5750 if (rtp->rtcp) {
5751 if (rtp->rxjitter > rtp->rtcp->maxrxjitter)
5752 rtp->rtcp->maxrxjitter = rtp->rxjitter;
5753 if (rtp->rtcp->rxjitter_count == 1)
5754 rtp->rtcp->minrxjitter = rtp->rxjitter;
5755 if (rtp->rtcp && rtp->rxjitter < rtp->rtcp->minrxjitter)
5756 rtp->rtcp->minrxjitter = rtp->rxjitter;
5757
5760 &rtp->rtcp->rxjitter_count);
5761 }
5762
5763 return;
5764}
5765
5766static struct ast_frame *create_dtmf_frame(struct ast_rtp_instance *instance, enum ast_frame_type type, int compensate)
5767{
5768 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5769 struct ast_sockaddr remote_address = { {0,} };
5770
5771 ast_rtp_instance_get_remote_address(instance, &remote_address);
5772
5773 if (((compensate && type == AST_FRAME_DTMF_END) || (type == AST_FRAME_DTMF_BEGIN)) && ast_tvcmp(ast_tvnow(), rtp->dtmfmute) < 0) {
5774 ast_debug_rtp(1, "(%p) RTP ignore potential DTMF echo from '%s'\n",
5775 instance, ast_sockaddr_stringify(&remote_address));
5776 rtp->resp = 0;
5777 rtp->dtmfsamples = 0;
5778 return &ast_null_frame;
5779 } else if (type == AST_FRAME_DTMF_BEGIN && rtp->resp == 'X') {
5780 ast_debug_rtp(1, "(%p) RTP ignore flash begin from '%s'\n",
5781 instance, ast_sockaddr_stringify(&remote_address));
5782 rtp->resp = 0;
5783 rtp->dtmfsamples = 0;
5784 return &ast_null_frame;
5785 }
5786
5787 if (rtp->resp == 'X') {
5788 ast_debug_rtp(1, "(%p) RTP creating flash Frame at %s\n",
5789 instance, ast_sockaddr_stringify(&remote_address));
5792 } else {
5793 ast_debug_rtp(1, "(%p) RTP creating %s DTMF Frame: %d (%c), at %s\n",
5794 instance, type == AST_FRAME_DTMF_END ? "END" : "BEGIN",
5795 rtp->resp, rtp->resp,
5796 ast_sockaddr_stringify(&remote_address));
5797 rtp->f.frametype = type;
5798 rtp->f.subclass.integer = rtp->resp;
5799 }
5800 rtp->f.datalen = 0;
5801 rtp->f.samples = 0;
5802 rtp->f.mallocd = 0;
5803 rtp->f.src = "RTP";
5804 AST_LIST_NEXT(&rtp->f, frame_list) = NULL;
5805
5806 return &rtp->f;
5807}
5808
5809static void process_dtmf_rfc2833(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark, struct frame_list *frames)
5810{
5811 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5812 struct ast_sockaddr remote_address = { {0,} };
5813 unsigned int event, event_end, samples;
5814 char resp = 0;
5815 struct ast_frame *f = NULL;
5816
5817 ast_rtp_instance_get_remote_address(instance, &remote_address);
5818
5819 /* Figure out event, event end, and samples */
5820 event = ntohl(*((unsigned int *)(data)));
5821 event >>= 24;
5822 event_end = ntohl(*((unsigned int *)(data)));
5823 event_end <<= 8;
5824 event_end >>= 24;
5825 samples = ntohl(*((unsigned int *)(data)));
5826 samples &= 0xFFFF;
5827
5828 if (rtp_debug_test_addr(&remote_address)) {
5829 ast_verbose("Got RTP RFC2833 from %s (type %-2.2d, seq %-6.6u, ts %-6.6u, len %-6.6d, mark %d, event %08x, end %d, duration %-5.5u) \n",
5830 ast_sockaddr_stringify(&remote_address),
5831 payloadtype, seqno, timestamp, len, (mark?1:0), event, ((event_end & 0x80)?1:0), samples);
5832 }
5833
5834 /* Print out debug if turned on */
5836 ast_debug(0, "- RTP 2833 Event: %08x (len = %d)\n", event, len);
5837
5838 /* Figure out what digit was pressed */
5839 if (event < 10) {
5840 resp = '0' + event;
5841 } else if (event < 11) {
5842 resp = '*';
5843 } else if (event < 12) {
5844 resp = '#';
5845 } else if (event < 16) {
5846 resp = 'A' + (event - 12);
5847 } else if (event < 17) { /* Event 16: Hook flash */
5848 resp = 'X';
5849 } else {
5850 /* Not a supported event */
5851 ast_debug_rtp(1, "(%p) RTP ignoring RTP 2833 Event: %08x. Not a DTMF Digit.\n", instance, event);
5852 return;
5853 }
5854
5856 if (!rtp->last_end_timestamp.is_set || rtp->last_end_timestamp.ts != timestamp || (rtp->resp && rtp->resp != resp)) {
5857 rtp->resp = resp;
5858 rtp->dtmf_timeout = 0;
5860 f->len = 0;
5861 rtp->last_end_timestamp.ts = timestamp;
5862 rtp->last_end_timestamp.is_set = 1;
5864 }
5865 } else {
5866 /* The duration parameter measures the complete
5867 duration of the event (from the beginning) - RFC2833.
5868 Account for the fact that duration is only 16 bits long
5869 (about 8 seconds at 8000 Hz) and can wrap is digit
5870 is hold for too long. */
5871 unsigned int new_duration = rtp->dtmf_duration;
5872 unsigned int last_duration = new_duration & 0xFFFF;
5873
5874 if (last_duration > 64000 && samples < last_duration) {
5875 new_duration += 0xFFFF + 1;
5876 }
5877 new_duration = (new_duration & ~0xFFFF) | samples;
5878
5879 if (event_end & 0x80) {
5880 /* End event */
5881 if (rtp->last_seqno != seqno && (!rtp->last_end_timestamp.is_set || timestamp > rtp->last_end_timestamp.ts)) {
5882 rtp->last_end_timestamp.ts = timestamp;
5883 rtp->last_end_timestamp.is_set = 1;
5884 rtp->dtmf_duration = new_duration;
5885 rtp->resp = resp;
5888 rtp->resp = 0;
5889 rtp->dtmf_duration = rtp->dtmf_timeout = 0;
5892 ast_debug_rtp(1, "(%p) RTP dropping duplicate or out of order DTMF END frame (seqno: %u, ts %u, digit %c)\n",
5893 instance, seqno, timestamp, resp);
5894 }
5895 } else {
5896 /* Begin/continuation */
5897
5898 /* The second portion of the seqno check is to not mistakenly
5899 * stop accepting DTMF if the seqno rolls over beyond
5900 * 65535.
5901 */
5902 if ((rtp->last_seqno > seqno && rtp->last_seqno - seqno < 50)
5903 || (rtp->last_end_timestamp.is_set
5904 && timestamp <= rtp->last_end_timestamp.ts)) {
5905 /* Out of order frame. Processing this can cause us to
5906 * improperly duplicate incoming DTMF, so just drop
5907 * this.
5908 */
5910 ast_debug(0, "Dropping out of order DTMF frame (seqno %u, ts %u, digit %c)\n",
5911 seqno, timestamp, resp);
5912 }
5913 return;
5914 }
5915
5916 if (rtp->resp && rtp->resp != resp) {
5917 /* Another digit already began. End it */
5920 rtp->resp = 0;
5921 rtp->dtmf_duration = rtp->dtmf_timeout = 0;
5923 }
5924
5925 if (rtp->resp) {
5926 /* Digit continues */
5927 rtp->dtmf_duration = new_duration;
5928 } else {
5929 /* New digit began */
5930 rtp->resp = resp;
5932 rtp->dtmf_duration = samples;
5934 }
5935
5936 rtp->dtmf_timeout = timestamp + rtp->dtmf_duration + dtmftimeout;
5937 }
5938
5939 rtp->last_seqno = seqno;
5940 }
5941
5942 rtp->dtmfsamples = samples;
5943
5944 return;
5945}
5946
5947static struct ast_frame *process_dtmf_cisco(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
5948{
5949 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5950 unsigned int event, flags, power;
5951 char resp = 0;
5952 unsigned char seq;
5953 struct ast_frame *f = NULL;
5954
5955 if (len < 4) {
5956 return NULL;
5957 }
5958
5959 /* The format of Cisco RTP DTMF packet looks like next:
5960 +0 - sequence number of DTMF RTP packet (begins from 1,
5961 wrapped to 0)
5962 +1 - set of flags
5963 +1 (bit 0) - flaps by different DTMF digits delimited by audio
5964 or repeated digit without audio???
5965 +2 (+4,+6,...) - power level? (rises from 0 to 32 at begin of tone
5966 then falls to 0 at its end)
5967 +3 (+5,+7,...) - detected DTMF digit (0..9,*,#,A-D,...)
5968 Repeated DTMF information (bytes 4/5, 6/7) is history shifted right
5969 by each new packet and thus provides some redundancy.
5970
5971 Sample of Cisco RTP DTMF packet is (all data in hex):
5972 19 07 00 02 12 02 20 02
5973 showing end of DTMF digit '2'.
5974
5975 The packets
5976 27 07 00 02 0A 02 20 02
5977 28 06 20 02 00 02 0A 02
5978 shows begin of new digit '2' with very short pause (20 ms) after
5979 previous digit '2'. Bit +1.0 flips at begin of new digit.
5980
5981 Cisco RTP DTMF packets comes as replacement of audio RTP packets
5982 so its uses the same sequencing and timestamping rules as replaced
5983 audio packets. Repeat interval of DTMF packets is 20 ms and not rely
5984 on audio framing parameters. Marker bit isn't used within stream of
5985 DTMFs nor audio stream coming immediately after DTMF stream. Timestamps
5986 are not sequential at borders between DTMF and audio streams,
5987 */
5988
5989 seq = data[0];
5990 flags = data[1];
5991 power = data[2];
5992 event = data[3] & 0x1f;
5993
5995 ast_debug(0, "Cisco DTMF Digit: %02x (len=%d, seq=%d, flags=%02x, power=%u, history count=%d)\n", event, len, seq, flags, power, (len - 4) / 2);
5996 if (event < 10) {
5997 resp = '0' + event;
5998 } else if (event < 11) {
5999 resp = '*';
6000 } else if (event < 12) {
6001 resp = '#';
6002 } else if (event < 16) {
6003 resp = 'A' + (event - 12);
6004 } else if (event < 17) {
6005 resp = 'X';
6006 }
6007 if ((!rtp->resp && power) || (rtp->resp && (rtp->resp != resp))) {
6008 rtp->resp = resp;
6009 /* Why we should care on DTMF compensation at reception? */
6011 f = create_dtmf_frame(instance, AST_FRAME_DTMF_BEGIN, 0);
6012 rtp->dtmfsamples = 0;
6013 }
6014 } else if ((rtp->resp == resp) && !power) {
6016 f->samples = rtp->dtmfsamples * (ast_rtp_get_rate(rtp->lastrxformat) / 1000);
6017 rtp->resp = 0;
6018 } else if (rtp->resp == resp) {
6019 rtp->dtmfsamples += 20 * (ast_rtp_get_rate(rtp->lastrxformat) / 1000);
6020 }
6021
6022 rtp->dtmf_timeout = 0;
6023
6024 return f;
6025}
6026
6027static struct ast_frame *process_cn_rfc3389(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
6028{
6029 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
6030
6031 /* Convert comfort noise into audio with various codecs. Unfortunately this doesn't
6032 totally help us out because we don't have an engine to keep it going and we are not
6033 guaranteed to have it every 20ms or anything */
6035 ast_debug(0, "- RTP 3389 Comfort noise event: Format %s (len = %d)\n",
6037 }
6038
6039 if (!ast_test_flag(rtp, FLAG_3389_WARNING)) {
6040 struct ast_sockaddr remote_address = { {0,} };
6041
6042 ast_rtp_instance_get_remote_address(instance, &remote_address);
6043
6044 ast_log(LOG_NOTICE, "Comfort noise support incomplete in Asterisk (RFC 3389). Please turn off on client if possible. Client address: %s\n",
6045 ast_sockaddr_stringify(&remote_address));
6047 }
6048
6049 /* Must have at least one byte */
6050 if (!len) {
6051 return NULL;
6052 }
6053 if (len < 24) {
6054 rtp->f.data.ptr = rtp->rawdata + AST_FRIENDLY_OFFSET;
6055 rtp->f.datalen = len - 1;
6057 memcpy(rtp->f.data.ptr, data + 1, len - 1);
6058 } else {
6059 rtp->f.data.ptr = NULL;
6060 rtp->f.offset = 0;
6061 rtp->f.datalen = 0;
6062 }
6063 rtp->f.frametype = AST_FRAME_CNG;
6064 rtp->f.subclass.integer = data[0] & 0x7f;
6065 rtp->f.samples = 0;
6066 rtp->f.delivery.tv_usec = rtp->f.delivery.tv_sec = 0;
6067
6068 return &rtp->f;
6069}
6070
6071static int update_rtt_stats(struct ast_rtp *rtp, unsigned int lsr, unsigned int dlsr)
6072{
6073 struct timeval now;
6074 struct timeval rtt_tv;
6075 unsigned int msw;
6076 unsigned int lsw;
6077 unsigned int rtt_msw;
6078 unsigned int rtt_lsw;
6079 unsigned int lsr_a;
6080 unsigned int rtt;
6081
6082 gettimeofday(&now, NULL);
6083 timeval2ntp(now, &msw, &lsw);
6084
6085 lsr_a = ((msw & 0x0000ffff) << 16) | ((lsw & 0xffff0000) >> 16);
6086 rtt = lsr_a - lsr - dlsr;
6087 rtt_msw = (rtt & 0xffff0000) >> 16;
6088 rtt_lsw = (rtt & 0x0000ffff);
6089 rtt_tv.tv_sec = rtt_msw;
6090 /*
6091 * Convert 16.16 fixed point rtt_lsw to usec without
6092 * overflow.
6093 *
6094 * = rtt_lsw * 10^6 / 2^16
6095 * = rtt_lsw * (2^6 * 5^6) / 2^16
6096 * = rtt_lsw * 5^6 / 2^10
6097 *
6098 * The rtt_lsw value is in 16.16 fixed point format and 5^6
6099 * requires 14 bits to represent. We have enough space to
6100 * directly do the conversion because there is no integer
6101 * component in rtt_lsw.
6102 */
6103 rtt_tv.tv_usec = (rtt_lsw * 15625) >> 10;
6104 rtp->rtcp->rtt = (double)rtt_tv.tv_sec + ((double)rtt_tv.tv_usec / 1000000);
6105 if (lsr_a - dlsr < lsr) {
6106 return 1;
6107 }
6108
6109 rtp->rtcp->accumulated_transit += rtp->rtcp->rtt;
6110 if (rtp->rtcp->rtt_count == 0 || rtp->rtcp->minrtt > rtp->rtcp->rtt) {
6111 rtp->rtcp->minrtt = rtp->rtcp->rtt;
6112 }
6113 if (rtp->rtcp->maxrtt < rtp->rtcp->rtt) {
6114 rtp->rtcp->maxrtt = rtp->rtcp->rtt;
6115 }
6116
6118 &rtp->rtcp->stdevrtt, &rtp->rtcp->rtt_count);
6119
6120 return 0;
6121}
6122
6123/*!
6124 * \internal
6125 * \brief Update RTCP interarrival jitter stats
6126 */
6127static void update_jitter_stats(struct ast_rtp *rtp, unsigned int ia_jitter)
6128{
6129 int rate = ast_rtp_get_rate(rtp->f.subclass.format);
6130
6131 rtp->rtcp->reported_jitter = ast_samp2sec(ia_jitter, rate);
6132
6133 if (rtp->rtcp->reported_jitter_count == 0) {
6135 }
6136 if (rtp->rtcp->reported_jitter < rtp->rtcp->reported_minjitter) {
6138 }
6139 if (rtp->rtcp->reported_jitter > rtp->rtcp->reported_maxjitter) {
6141 }
6142
6146}
6147
6148/*!
6149 * \internal
6150 * \brief Update RTCP lost packet stats
6151 */
6152static void update_lost_stats(struct ast_rtp *rtp, unsigned int lost_packets)
6153{
6154 double reported_lost;
6155
6156 rtp->rtcp->reported_lost = lost_packets;
6157 reported_lost = (double)rtp->rtcp->reported_lost;
6158 if (rtp->rtcp->reported_lost_count == 0) {
6159 rtp->rtcp->reported_minlost = reported_lost;
6160 }
6161 if (reported_lost < rtp->rtcp->reported_minlost) {
6162 rtp->rtcp->reported_minlost = reported_lost;
6163 }
6164 if (reported_lost > rtp->rtcp->reported_maxlost) {
6165 rtp->rtcp->reported_maxlost = reported_lost;
6166 }
6167
6170}
6171
6172#define RESCALE(in, inmin, inmax, outmin, outmax) ((((in - inmin)/(inmax-inmin))*(outmax-outmin))+outmin)
6173/*!
6174 * \brief Calculate a "media experience score" based on given data
6175 *
6176 * Technically, a mean opinion score (MOS) cannot be calculated without the involvement
6177 * of human eyes (video) and ears (audio). Thus instead we'll approximate an opinion
6178 * using the given parameters, and call it a media experience score.
6179 *
6180 * The tallied score is based upon recommendations and formulas from ITU-T G.107,
6181 * ITU-T G.109, ITU-T G.113, and other various internet sources.
6182 *
6183 * \param instance RTP instance
6184 * \param normdevrtt The average round trip time
6185 * \param normdev_rxjitter The smoothed jitter
6186 * \param stdev_rxjitter The jitter standard deviation value
6187 * \param normdev_rxlost The average number of packets lost since last check
6188 *
6189 * \return A media experience score.
6190 *
6191 * \note The calculations in this function could probably be simplified
6192 * but calculating a MOS using the information available publicly,
6193 * then re-scaling it to 0.0 -> 100.0 makes the process clearer and
6194 * easier to troubleshoot or change.
6195 */
6196static double calc_media_experience_score(struct ast_rtp_instance *instance,
6197 double normdevrtt, double normdev_rxjitter, double stdev_rxjitter,
6198 double normdev_rxlost)
6199{
6200 double r_value;
6201 double pseudo_mos;
6202 double mes = 0;
6203
6204 /*
6205 * While the media itself might be okay, a significant enough delay could make
6206 * for an unpleasant user experience.
6207 *
6208 * Calculate the effective latency by using the given round trip time, and adding
6209 * jitter scaled according to its standard deviation. The scaling is done in order
6210 * to increase jitter's weight since a higher deviation can result in poorer overall
6211 * quality.
6212 */
6213 double effective_latency = (normdevrtt * 1000)
6214 + ((normdev_rxjitter * 2) * (stdev_rxjitter / 3))
6215 + 10;
6216
6217 /*
6218 * Using the defaults for the standard transmission rating factor ("R" value)
6219 * one arrives at 93.2 (see ITU-T G.107 for more details), so we'll use that
6220 * as the starting value and subtract deficiencies that could affect quality.
6221 *
6222 * Calculate the impact of the effective latency. Influence increases with
6223 * values over 160 as the significant "lag" can degrade user experience.
6224 */
6225 if (effective_latency < 160) {
6226 r_value = 93.2 - (effective_latency / 40);
6227 } else {
6228 r_value = 93.2 - (effective_latency - 120) / 10;
6229 }
6230
6231 /* Next evaluate the impact of lost packets */
6232 r_value = r_value - (normdev_rxlost * 2.0);
6233
6234 /*
6235 * Finally convert the "R" value into a opinion/quality score between 1 (really anything
6236 * below 3 should be considered poor) and 4.5 (the highest achievable for VOIP).
6237 */
6238 if (r_value < 0) {
6239 pseudo_mos = 1.0;
6240 } else if (r_value > 100) {
6241 pseudo_mos = 4.5;
6242 } else {
6243 pseudo_mos = 1 + (0.035 * r_value) + (r_value * (r_value - 60) * (100 - r_value) * 0.000007);
6244 }
6245
6246 /*
6247 * We're going to rescale the 0.0->5.0 pseudo_mos to the 0.0->100.0 MES.
6248 * For those ranges, we could actually just multiply the pseudo_mos
6249 * by 20 but we may want to change the scale later.
6250 */
6251 mes = RESCALE(pseudo_mos, 0.0, 5.0, 0.0, 100.0);
6252
6253 return mes;
6254}
6255
6256/*!
6257 * \internal
6258 * \brief Update MES stats based on info received in an SR or RR.
6259 * This is RTP we sent and they received.
6260 */
6261static void update_reported_mes_stats(struct ast_rtp *rtp)
6262{
6263 double mes = calc_media_experience_score(rtp->owner,
6264 rtp->rtcp->normdevrtt,
6265 rtp->rtcp->reported_jitter,
6268
6269 rtp->rtcp->reported_mes = mes;
6270 if (rtp->rtcp->reported_mes_count == 0) {
6271 rtp->rtcp->reported_minmes = mes;
6272 }
6273 if (mes < rtp->rtcp->reported_minmes) {
6274 rtp->rtcp->reported_minmes = mes;
6275 }
6276 if (mes > rtp->rtcp->reported_maxmes) {
6277 rtp->rtcp->reported_maxmes = mes;
6278 }
6279
6282
6283 ast_debug_rtcp(2, "%s: rtt: %.9f j: %.9f sjh: %.9f lost: %.9f mes: %4.1f\n",
6285 rtp->rtcp->normdevrtt,
6286 rtp->rtcp->reported_jitter,
6288 rtp->rtcp->reported_normdev_lost, mes);
6289}
6290
6291/*!
6292 * \internal
6293 * \brief Update MES stats based on info we will send in an SR or RR.
6294 * This is RTP they sent and we received.
6295 */
6296static void update_local_mes_stats(struct ast_rtp *rtp)
6297{
6299 rtp->rtcp->normdevrtt,
6300 rtp->rxjitter,
6301 rtp->rtcp->stdev_rxjitter,
6302 rtp->rtcp->normdev_rxlost);
6303
6304 if (rtp->rtcp->rxmes_count == 0) {
6305 rtp->rtcp->minrxmes = rtp->rxmes;
6306 }
6307 if (rtp->rxmes < rtp->rtcp->minrxmes) {
6308 rtp->rtcp->minrxmes = rtp->rxmes;
6309 }
6310 if (rtp->rxmes > rtp->rtcp->maxrxmes) {
6311 rtp->rtcp->maxrxmes = rtp->rxmes;
6312 }
6313
6315 &rtp->rtcp->stdev_rxmes, &rtp->rtcp->rxmes_count);
6316
6317 ast_debug_rtcp(2, " %s: rtt: %.9f j: %.9f sjh: %.9f lost: %.9f mes: %4.1f\n",
6319 rtp->rtcp->normdevrtt,
6320 rtp->rxjitter,
6321 rtp->rtcp->stdev_rxjitter,
6322 rtp->rtcp->normdev_rxlost, rtp->rxmes);
6323}
6324
6325/*! \pre instance is locked */
6327 struct ast_rtp *rtp, unsigned int ssrc, int source)
6328{
6329 int index;
6330
6331 if (!AST_VECTOR_SIZE(&rtp->ssrc_mapping)) {
6332 /* This instance is not bundled */
6333 return instance;
6334 }
6335
6336 /* Find the bundled child instance */
6337 for (index = 0; index < AST_VECTOR_SIZE(&rtp->ssrc_mapping); ++index) {
6338 struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&rtp->ssrc_mapping, index);
6339 unsigned int mapping_ssrc = source ? ast_rtp_get_ssrc(mapping->instance) : mapping->ssrc;
6340
6341 if (mapping->ssrc_valid && mapping_ssrc == ssrc) {
6342 return mapping->instance;
6343 }
6344 }
6345
6346 /* Does the SSRC match the bundled parent? */
6347 if (rtp->themssrc_valid && rtp->themssrc == ssrc) {
6348 return instance;
6349 }
6350 return NULL;
6351}
6352
6353/*! \pre instance is locked */
6355 struct ast_rtp *rtp, unsigned int ssrc)
6356{
6357 return __rtp_find_instance_by_ssrc(instance, rtp, ssrc, 0);
6358}
6359
6360/*! \pre instance is locked */
6362 struct ast_rtp *rtp, unsigned int ssrc)
6363{
6364 return __rtp_find_instance_by_ssrc(instance, rtp, ssrc, 1);
6365}
6366
6367static const char *rtcp_payload_type2str(unsigned int pt)
6368{
6369 const char *str;
6370
6371 switch (pt) {
6372 case RTCP_PT_SR:
6373 str = "Sender Report";
6374 break;
6375 case RTCP_PT_RR:
6376 str = "Receiver Report";
6377 break;
6378 case RTCP_PT_FUR:
6379 /* Full INTRA-frame Request / Fast Update Request */
6380 str = "H.261 FUR";
6381 break;
6382 case RTCP_PT_PSFB:
6383 /* Payload Specific Feed Back */
6384 str = "PSFB";
6385 break;
6386 case RTCP_PT_SDES:
6387 str = "Source Description";
6388 break;
6389 case RTCP_PT_BYE:
6390 str = "BYE";
6391 break;
6392 default:
6393 str = "Unknown";
6394 break;
6395 }
6396 return str;
6397}
6398
6399static const char *rtcp_payload_subtype2str(unsigned int pt, unsigned int subtype)
6400{
6401 switch (pt) {
6402 case AST_RTP_RTCP_RTPFB:
6403 if (subtype == AST_RTP_RTCP_FMT_NACK) {
6404 return "NACK";
6405 }
6406 break;
6407 case RTCP_PT_PSFB:
6408 if (subtype == AST_RTP_RTCP_FMT_REMB) {
6409 return "REMB";
6410 }
6411 break;
6412 default:
6413 break;
6414 }
6415
6416 return NULL;
6417}
6418
6419/*! \pre instance is locked */
6420static int ast_rtp_rtcp_handle_nack(struct ast_rtp_instance *instance, unsigned int *nackdata, unsigned int position,
6421 unsigned int length)
6422{
6423 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
6424 int res = 0;
6425 int blp_index;
6426 int packet_index;
6427 int ice;
6428 struct ast_rtp_rtcp_nack_payload *payload;
6429 unsigned int current_word;
6430 unsigned int pid; /* Packet ID which refers to seqno of lost packet */
6431 unsigned int blp; /* Bitmask of following lost packets */
6432 struct ast_sockaddr remote_address = { {0,} };
6433 int abs_send_time_id;
6434 unsigned int now_msw = 0;
6435 unsigned int now_lsw = 0;
6436 unsigned int packets_not_found = 0;
6437
6438 if (!rtp->send_buffer) {
6439 ast_debug_rtcp(1, "(%p) RTCP tried to handle NACK request, "
6440 "but we don't have a RTP packet storage!\n", instance);
6441 return res;
6442 }
6443
6445 if (abs_send_time_id != -1) {
6446 timeval2ntp(ast_tvnow(), &now_msw, &now_lsw);
6447 }
6448
6449 ast_rtp_instance_get_remote_address(instance, &remote_address);
6450
6451 /*
6452 * We use index 3 because with feedback messages, the FCI (Feedback Control Information)
6453 * does not begin until after the version, packet SSRC, and media SSRC words.
6454 */
6455 for (packet_index = 3; packet_index < length; packet_index++) {
6456 current_word = ntohl(nackdata[position + packet_index]);
6457 pid = current_word >> 16;
6458 /* We know the remote end is missing this packet. Go ahead and send it if we still have it. */
6459 payload = (struct ast_rtp_rtcp_nack_payload *)ast_data_buffer_get(rtp->send_buffer, pid);
6460 if (payload) {
6461 if (abs_send_time_id != -1) {
6462 /* On retransmission we need to update the timestamp within the packet, as it
6463 * is supposed to contain when the packet was actually sent.
6464 */
6465 put_unaligned_time24(payload->buf + 17, now_msw, now_lsw);
6466 }
6467 res += rtp_sendto(instance, payload->buf, payload->size, 0, &remote_address, &ice);
6468 } else {
6469 ast_debug_rtcp(1, "(%p) RTCP received NACK request for RTP packet with seqno %d, "
6470 "but we don't have it\n", instance, pid);
6471 packets_not_found++;
6472 }
6473 /*
6474 * The bitmask. Denoting the least significant bit as 1 and its most significant bit
6475 * as 16, then bit i of the bitmask is set to 1 if the receiver has not received RTP
6476 * packet (pid+i)(modulo 2^16). Otherwise, it is set to 0. We cannot assume bits set
6477 * to 0 after a bit set to 1 have actually been received.
6478 */
6479 blp = current_word & 0xffff;
6480 blp_index = 1;
6481 while (blp) {
6482 if (blp & 1) {
6483 /* Packet (pid + i)(modulo 2^16) is missing too. */
6484 unsigned int seqno = (pid + blp_index) % 65536;
6485 payload = (struct ast_rtp_rtcp_nack_payload *)ast_data_buffer_get(rtp->send_buffer, seqno);
6486 if (payload) {
6487 if (abs_send_time_id != -1) {
6488 put_unaligned_time24(payload->buf + 17, now_msw, now_lsw);
6489 }
6490 res += rtp_sendto(instance, payload->buf, payload->size, 0, &remote_address, &ice);
6491 } else {
6492 ast_debug_rtcp(1, "(%p) RTCP remote end also requested RTP packet with seqno %d, "
6493 "but we don't have it\n", instance, seqno);
6494 packets_not_found++;
6495 }
6496 }
6497 blp >>= 1;
6498 blp_index++;
6499 }
6500 }
6501
6502 if (packets_not_found) {
6503 /* Grow the send buffer based on how many packets were not found in the buffer, but
6504 * enforce a maximum.
6505 */
6507 ast_data_buffer_max(rtp->send_buffer) + packets_not_found));
6508 ast_debug_rtcp(2, "(%p) RTCP send buffer on RTP instance is now at maximum of %zu\n",
6509 instance, ast_data_buffer_max(rtp->send_buffer));
6510 }
6511
6512 return res;
6513}
6514
6515/*
6516 * Unshifted RTCP header bit field masks
6517 */
6518#define RTCP_LENGTH_MASK 0xFFFF
6519#define RTCP_PAYLOAD_TYPE_MASK 0xFF
6520#define RTCP_REPORT_COUNT_MASK 0x1F
6521#define RTCP_PADDING_MASK 0x01
6522#define RTCP_VERSION_MASK 0x03
6523
6524/*
6525 * RTCP header bit field shift offsets
6526 */
6527#define RTCP_LENGTH_SHIFT 0
6528#define RTCP_PAYLOAD_TYPE_SHIFT 16
6529#define RTCP_REPORT_COUNT_SHIFT 24
6530#define RTCP_PADDING_SHIFT 29
6531#define RTCP_VERSION_SHIFT 30
6532
6533#define RTCP_VERSION 2U
6534#define RTCP_VERSION_SHIFTED (RTCP_VERSION << RTCP_VERSION_SHIFT)
6535#define RTCP_VERSION_MASK_SHIFTED (RTCP_VERSION_MASK << RTCP_VERSION_SHIFT)
6536
6537/*
6538 * RTCP first packet record validity header mask and value.
6539 *
6540 * RFC3550 intentionally defines the encoding of RTCP_PT_SR and RTCP_PT_RR
6541 * such that they differ in the least significant bit. Either of these two
6542 * payload types MUST be the first RTCP packet record in a compound packet.
6543 *
6544 * RFC3550 checks the padding bit in the algorithm they use to check the
6545 * RTCP packet for validity. However, we aren't masking the padding bit
6546 * to check since we don't know if it is a compound RTCP packet or not.
6547 */
6548#define RTCP_VALID_MASK (RTCP_VERSION_MASK_SHIFTED | (((RTCP_PAYLOAD_TYPE_MASK & ~0x1)) << RTCP_PAYLOAD_TYPE_SHIFT))
6549#define RTCP_VALID_VALUE (RTCP_VERSION_SHIFTED | (RTCP_PT_SR << RTCP_PAYLOAD_TYPE_SHIFT))
6550
6551#define RTCP_SR_BLOCK_WORD_LENGTH 5
6552#define RTCP_RR_BLOCK_WORD_LENGTH 6
6553#define RTCP_HEADER_SSRC_LENGTH 2
6554#define RTCP_FB_REMB_BLOCK_WORD_LENGTH 4
6555#define RTCP_FB_NACK_BLOCK_WORD_LENGTH 2
6556
6557static struct ast_frame *ast_rtcp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp,
6558 const unsigned char *rtcpdata, size_t size, struct ast_sockaddr *addr)
6559{
6560 struct ast_rtp_instance *transport = instance;
6561 struct ast_rtp *transport_rtp = ast_rtp_instance_get_data(instance);
6562 int len = size;
6563 unsigned int *rtcpheader = (unsigned int *)(rtcpdata);
6564 unsigned int packetwords;
6565 unsigned int position;
6566 unsigned int first_word;
6567 /*! True if we have seen an acceptable SSRC to learn the remote RTCP address */
6568 unsigned int ssrc_seen;
6569 struct ast_rtp_rtcp_report_block *report_block;
6570 struct ast_frame *f = &ast_null_frame;
6571#ifdef TEST_FRAMEWORK
6572 struct ast_rtp_engine_test *test_engine;
6573#endif
6574
6575 /* If this is encrypted then decrypt the payload */
6576 if ((*rtcpheader & 0xC0) && res_srtp && srtp && res_srtp->unprotect(
6577 srtp, rtcpheader, &len, 1 | (srtp_replay_protection << 1)) < 0) {
6578 return &ast_null_frame;
6579 }
6580
6581 packetwords = len / 4;
6582
6583 ast_debug_rtcp(2, "(%s) RTCP got report of %d bytes from %s\n",
6586
6587 /*
6588 * Validate the RTCP packet according to an adapted and slightly
6589 * modified RFC3550 validation algorithm.
6590 */
6591 if (packetwords < RTCP_HEADER_SSRC_LENGTH) {
6592 ast_debug_rtcp(2, "(%s) RTCP %p -- from %s: Frame size (%u words) is too short\n",
6594 transport_rtp, ast_sockaddr_stringify(addr), packetwords);
6595 return &ast_null_frame;
6596 }
6597 position = 0;
6598 first_word = ntohl(rtcpheader[position]);
6599 if ((first_word & RTCP_VALID_MASK) != RTCP_VALID_VALUE) {
6600 ast_debug_rtcp(2, "(%s) RTCP %p -- from %s: Failed first packet validity check\n",
6602 transport_rtp, ast_sockaddr_stringify(addr));
6603 return &ast_null_frame;
6604 }
6605 do {
6606 position += ((first_word >> RTCP_LENGTH_SHIFT) & RTCP_LENGTH_MASK) + 1;
6607 if (packetwords <= position) {
6608 break;
6609 }
6610 first_word = ntohl(rtcpheader[position]);
6611 } while ((first_word & RTCP_VERSION_MASK_SHIFTED) == RTCP_VERSION_SHIFTED);
6612 if (position != packetwords) {
6613 ast_debug_rtcp(2, "(%s) RTCP %p -- from %s: Failed packet version or length check\n",
6615 transport_rtp, ast_sockaddr_stringify(addr));
6616 return &ast_null_frame;
6617 }
6618
6619 /*
6620 * Note: RFC3605 points out that true NAT (vs NAPT) can cause RTCP
6621 * to have a different IP address and port than RTP. Otherwise, when
6622 * strictrtp is enabled we could reject RTCP packets not coming from
6623 * the learned RTP IP address if it is available.
6624 */
6625
6626 /*
6627 * strictrtp safety needs SSRC to match before we use the
6628 * sender's address for symmetrical RTP to send our RTCP
6629 * reports.
6630 *
6631 * If strictrtp is not enabled then claim to have already seen
6632 * a matching SSRC so we'll accept this packet's address for
6633 * symmetrical RTP.
6634 */
6635 ssrc_seen = transport_rtp->strict_rtp_state == STRICT_RTP_OPEN;
6636
6637 position = 0;
6638 while (position < packetwords) {
6639 unsigned int i;
6640 unsigned int pt;
6641 unsigned int rc;
6642 unsigned int ssrc;
6643 /*! True if the ssrc value we have is valid and not garbage because it doesn't exist. */
6644 unsigned int ssrc_valid;
6645 unsigned int length;
6646 unsigned int min_length;
6647 /*! Always use packet source SSRC to find the rtp instance unless explicitly told not to. */
6648 unsigned int use_packet_source = 1;
6649
6650 struct ast_json *message_blob;
6651 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report, NULL, ao2_cleanup);
6652 struct ast_rtp_instance *child;
6653 struct ast_rtp *rtp;
6654 struct ast_rtp_rtcp_feedback *feedback;
6655
6656 i = position;
6657 first_word = ntohl(rtcpheader[i]);
6658 pt = (first_word >> RTCP_PAYLOAD_TYPE_SHIFT) & RTCP_PAYLOAD_TYPE_MASK;
6659 rc = (first_word >> RTCP_REPORT_COUNT_SHIFT) & RTCP_REPORT_COUNT_MASK;
6660 /* RFC3550 says 'length' is the number of words in the packet - 1 */
6661 length = ((first_word >> RTCP_LENGTH_SHIFT) & RTCP_LENGTH_MASK) + 1;
6662
6663 /* Check expected RTCP packet record length */
6664 min_length = RTCP_HEADER_SSRC_LENGTH;
6665 switch (pt) {
6666 case RTCP_PT_SR:
6667 min_length += RTCP_SR_BLOCK_WORD_LENGTH;
6668 /* fall through */
6669 case RTCP_PT_RR:
6670 min_length += (rc * RTCP_RR_BLOCK_WORD_LENGTH);
6671 use_packet_source = 0;
6672 break;
6673 case RTCP_PT_FUR:
6674 break;
6675 case AST_RTP_RTCP_RTPFB:
6676 switch (rc) {
6678 min_length += RTCP_FB_NACK_BLOCK_WORD_LENGTH;
6679 break;
6680 default:
6681 break;
6682 }
6683 use_packet_source = 0;
6684 break;
6685 case RTCP_PT_PSFB:
6686 switch (rc) {
6688 min_length += RTCP_FB_REMB_BLOCK_WORD_LENGTH;
6689 break;
6690 default:
6691 break;
6692 }
6693 break;
6694 case RTCP_PT_SDES:
6695 case RTCP_PT_BYE:
6696 /*
6697 * There may not be a SSRC/CSRC present. The packet is
6698 * useless but still valid if it isn't present.
6699 *
6700 * We don't know what min_length should be so disable the check
6701 */
6702 min_length = length;
6703 break;
6704 default:
6705 ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: %u(%s) skipping record\n",
6706 instance, transport_rtp, ast_sockaddr_stringify(addr), pt, rtcp_payload_type2str(pt));
6707 if (rtcp_debug_test_addr(addr)) {
6708 ast_verbose("\n");
6709 ast_verbose("RTCP from %s: %u(%s) skipping record\n",
6711 }
6712 position += length;
6713 continue;
6714 }
6715 if (length < min_length) {
6716 ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: %u(%s) length field less than expected minimum. Min:%u Got:%u\n",
6717 instance, transport_rtp, ast_sockaddr_stringify(addr), pt, rtcp_payload_type2str(pt),
6718 min_length - 1, length - 1);
6719 return &ast_null_frame;
6720 }
6721
6722 /* Get the RTCP record SSRC if defined for the record */
6723 ssrc_valid = 1;
6724 switch (pt) {
6725 case RTCP_PT_SR:
6726 case RTCP_PT_RR:
6727 rtcp_report = ast_rtp_rtcp_report_alloc(rc);
6728 if (!rtcp_report) {
6729 return &ast_null_frame;
6730 }
6731 rtcp_report->reception_report_count = rc;
6732
6733 ssrc = ntohl(rtcpheader[i + 2]);
6734 rtcp_report->ssrc = ssrc;
6735 break;
6736 case RTCP_PT_FUR:
6737 case RTCP_PT_PSFB:
6738 ssrc = ntohl(rtcpheader[i + 1]);
6739 break;
6740 case AST_RTP_RTCP_RTPFB:
6741 ssrc = ntohl(rtcpheader[i + 2]);
6742 break;
6743 case RTCP_PT_SDES:
6744 case RTCP_PT_BYE:
6745 default:
6746 ssrc = 0;
6747 ssrc_valid = 0;
6748 break;
6749 }
6750
6751 if (rtcp_debug_test_addr(addr)) {
6752 const char *subtype = rtcp_payload_subtype2str(pt, rc);
6753
6754 ast_verbose("\n");
6755 ast_verbose("RTCP from %s\n", ast_sockaddr_stringify(addr));
6756 ast_verbose("PT: %u (%s)\n", pt, rtcp_payload_type2str(pt));
6757 if (subtype) {
6758 ast_verbose("Packet Subtype: %u (%s)\n", rc, subtype);
6759 } else {
6760 ast_verbose("Reception reports: %u\n", rc);
6761 }
6762 ast_verbose("SSRC of sender: %u\n", ssrc);
6763 }
6764
6765 /* Determine the appropriate instance for this */
6766 if (ssrc_valid) {
6767 /*
6768 * Depending on the payload type, either the packet source or media source
6769 * SSRC is used.
6770 */
6771 if (use_packet_source) {
6772 child = rtp_find_instance_by_packet_source_ssrc(transport, transport_rtp, ssrc);
6773 } else {
6774 child = rtp_find_instance_by_media_source_ssrc(transport, transport_rtp, ssrc);
6775 }
6776 if (child && child != transport) {
6777 /*
6778 * It is safe to hold the child lock while holding the parent lock.
6779 * We guarantee that the locking order is always parent->child or
6780 * that the child lock is not held when acquiring the parent lock.
6781 */
6782 ao2_lock(child);
6783 instance = child;
6784 rtp = ast_rtp_instance_get_data(instance);
6785 } else {
6786 /* The child is the parent! We don't need to unlock it. */
6787 child = NULL;
6788 rtp = transport_rtp;
6789 }
6790 } else {
6791 child = NULL;
6792 rtp = transport_rtp;
6793 }
6794
6795 if (ssrc_valid && rtp->themssrc_valid) {
6796 /*
6797 * If the SSRC is 1, we still need to handle RTCP since this could be a
6798 * special case. For example, if we have a unidirectional video stream, the
6799 * SSRC may be set to 1 by the browser (in the case of chromium), and requests
6800 * will still need to be processed so that video can flow as expected. This
6801 * should only be done for PLI and FUR, since there is not a way to get the
6802 * appropriate rtp instance when the SSRC is 1.
6803 */
6804 int exception = (ssrc == 1 && !((pt == RTCP_PT_PSFB && rc == AST_RTP_RTCP_FMT_PLI) || pt == RTCP_PT_FUR));
6805 if ((ssrc != rtp->themssrc && use_packet_source && ssrc != 1)
6806 || exception) {
6807 /*
6808 * Skip over this RTCP record as it does not contain the
6809 * correct SSRC. We should not act upon RTCP records
6810 * for a different stream.
6811 */
6812 position += length;
6813 ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: Skipping record, received SSRC '%u' != expected '%u'\n",
6814 instance, rtp, ast_sockaddr_stringify(addr), ssrc, rtp->themssrc);
6815 if (child) {
6816 ao2_unlock(child);
6817 }
6818 continue;
6819 }
6820 ssrc_seen = 1;
6821 }
6822
6823 if (ssrc_seen && ast_rtp_instance_get_prop(instance, AST_RTP_PROPERTY_NAT)) {
6824 /* Send to whoever sent to us */
6825 if (ast_sockaddr_cmp(&rtp->rtcp->them, addr)) {
6826 ast_sockaddr_copy(&rtp->rtcp->them, addr);
6828 ast_debug(0, "(%p) RTCP NAT: Got RTCP from other end. Now sending to address %s\n",
6829 instance, ast_sockaddr_stringify(addr));
6830 }
6831 }
6832 }
6833
6834 i += RTCP_HEADER_SSRC_LENGTH; /* Advance past header and ssrc */
6835 switch (pt) {
6836 case RTCP_PT_SR:
6837 gettimeofday(&rtp->rtcp->rxlsr, NULL);
6838 rtp->rtcp->themrxlsr = ((ntohl(rtcpheader[i]) & 0x0000ffff) << 16) | ((ntohl(rtcpheader[i + 1]) & 0xffff0000) >> 16);
6839 rtp->rtcp->spc = ntohl(rtcpheader[i + 3]);
6840 rtp->rtcp->soc = ntohl(rtcpheader[i + 4]);
6841
6842 rtcp_report->type = RTCP_PT_SR;
6843 rtcp_report->sender_information.packet_count = rtp->rtcp->spc;
6844 rtcp_report->sender_information.octet_count = rtp->rtcp->soc;
6845 ntp2timeval((unsigned int)ntohl(rtcpheader[i]),
6846 (unsigned int)ntohl(rtcpheader[i + 1]),
6847 &rtcp_report->sender_information.ntp_timestamp);
6848 rtcp_report->sender_information.rtp_timestamp = ntohl(rtcpheader[i + 2]);
6849 if (rtcp_debug_test_addr(addr)) {
6850 ast_verbose("NTP timestamp: %u.%06u\n",
6851 (unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_sec,
6852 (unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_usec);
6853 ast_verbose("RTP timestamp: %u\n", rtcp_report->sender_information.rtp_timestamp);
6854 ast_verbose("SPC: %u\tSOC: %u\n",
6855 rtcp_report->sender_information.packet_count,
6856 rtcp_report->sender_information.octet_count);
6857 }
6859 /* Intentional fall through */
6860 case RTCP_PT_RR:
6861 if (rtcp_report->type != RTCP_PT_SR) {
6862 rtcp_report->type = RTCP_PT_RR;
6863 }
6864
6865 if (rc > 0) {
6866 /* Don't handle multiple reception reports (rc > 1) yet */
6867 report_block = ast_calloc(1, sizeof(*report_block));
6868 if (!report_block) {
6869 if (child) {
6870 ao2_unlock(child);
6871 }
6872 return &ast_null_frame;
6873 }
6874 rtcp_report->report_block[0] = report_block;
6875 report_block->source_ssrc = ntohl(rtcpheader[i]);
6876 report_block->lost_count.packets = ntohl(rtcpheader[i + 1]) & 0x00ffffff;
6877 report_block->lost_count.fraction = ((ntohl(rtcpheader[i + 1]) & 0xff000000) >> 24);
6878 report_block->highest_seq_no = ntohl(rtcpheader[i + 2]);
6879 report_block->ia_jitter = ntohl(rtcpheader[i + 3]);
6880 report_block->lsr = ntohl(rtcpheader[i + 4]);
6881 report_block->dlsr = ntohl(rtcpheader[i + 5]);
6882 if (report_block->lsr) {
6883 int skewed = update_rtt_stats(rtp, report_block->lsr, report_block->dlsr);
6884 if (skewed && rtcp_debug_test_addr(addr)) {
6885 struct timeval now;
6886 unsigned int lsr_now, lsw, msw;
6887 gettimeofday(&now, NULL);
6888 timeval2ntp(now, &msw, &lsw);
6889 lsr_now = (((msw & 0xffff) << 16) | ((lsw & 0xffff0000) >> 16));
6890 ast_verbose("Internal RTCP NTP clock skew detected: "
6891 "lsr=%u, now=%u, dlsr=%u (%u:%03ums), "
6892 "diff=%u\n",
6893 report_block->lsr, lsr_now, report_block->dlsr, report_block->dlsr / 65536,
6894 (report_block->dlsr % 65536) * 1000 / 65536,
6895 report_block->dlsr - (lsr_now - report_block->lsr));
6896 }
6897 }
6898 update_jitter_stats(rtp, report_block->ia_jitter);
6899 update_lost_stats(rtp, report_block->lost_count.packets);
6900 /*
6901 * update_reported_mes_stats must be called AFTER
6902 * update_rtt_stats, update_jitter_stats and
6903 * update_lost_stats.
6904 */
6906
6907 if (rtcp_debug_test_addr(addr)) {
6908 int rate = ast_rtp_get_rate(rtp->f.subclass.format);
6909
6910 ast_verbose(" Fraction lost: %d\n", report_block->lost_count.fraction);
6911 ast_verbose(" Packets lost so far: %u\n", report_block->lost_count.packets);
6912 ast_verbose(" Highest sequence number: %u\n", report_block->highest_seq_no & 0x0000ffff);
6913 ast_verbose(" Sequence number cycles: %u\n", report_block->highest_seq_no >> 16);
6914 ast_verbose(" Interarrival jitter (samp): %u\n", report_block->ia_jitter);
6915 ast_verbose(" Interarrival jitter (secs): %.6f\n", ast_samp2sec(report_block->ia_jitter, rate));
6916 ast_verbose(" Last SR(our NTP): %lu.%010lu\n",(unsigned long)(report_block->lsr) >> 16,((unsigned long)(report_block->lsr) << 16) * 4096);
6917 ast_verbose(" DLSR: %4.4f (sec)\n",(double)report_block->dlsr / 65536.0);
6918 ast_verbose(" RTT: %4.4f(sec)\n", rtp->rtcp->rtt);
6919 ast_verbose(" MES: %4.1f\n", rtp->rtcp->reported_mes);
6920 }
6921 }
6922 /* If and when we handle more than one report block, this should occur outside
6923 * this loop.
6924 */
6925
6926 message_blob = ast_json_pack("{s: s, s: s, s: f, s: f}",
6927 "from", ast_sockaddr_stringify(addr),
6928 "to", transport_rtp->rtcp->local_addr_str,
6929 "rtt", rtp->rtcp->rtt,
6930 "mes", rtp->rtcp->reported_mes);
6932 rtcp_report,
6933 message_blob);
6934 ast_json_unref(message_blob);
6935
6936 /* Return an AST_FRAME_RTCP frame with the ast_rtp_rtcp_report
6937 * object as a its data */
6938 transport_rtp->f.frametype = AST_FRAME_RTCP;
6939 transport_rtp->f.subclass.integer = pt;
6940 transport_rtp->f.data.ptr = rtp->rtcp->frame_buf + AST_FRIENDLY_OFFSET;
6941 memcpy(transport_rtp->f.data.ptr, rtcp_report, sizeof(struct ast_rtp_rtcp_report));
6942 transport_rtp->f.datalen = sizeof(struct ast_rtp_rtcp_report);
6943 if (rc > 0) {
6944 /* There's always a single report block stored, here */
6945 struct ast_rtp_rtcp_report *rtcp_report2;
6946 report_block = transport_rtp->f.data.ptr + transport_rtp->f.datalen + sizeof(struct ast_rtp_rtcp_report_block *);
6947 memcpy(report_block, rtcp_report->report_block[0], sizeof(struct ast_rtp_rtcp_report_block));
6948 rtcp_report2 = (struct ast_rtp_rtcp_report *)transport_rtp->f.data.ptr;
6949 rtcp_report2->report_block[0] = report_block;
6950 transport_rtp->f.datalen += sizeof(struct ast_rtp_rtcp_report_block);
6951 }
6952 transport_rtp->f.offset = AST_FRIENDLY_OFFSET;
6953 transport_rtp->f.samples = 0;
6954 transport_rtp->f.mallocd = 0;
6955 transport_rtp->f.delivery.tv_sec = 0;
6956 transport_rtp->f.delivery.tv_usec = 0;
6957 transport_rtp->f.src = "RTP";
6958 transport_rtp->f.stream_num = rtp->stream_num;
6959 f = &transport_rtp->f;
6960 break;
6961 case AST_RTP_RTCP_RTPFB:
6962 switch (rc) {
6964 /* If retransmissions are not enabled ignore this message */
6965 if (!rtp->send_buffer) {
6966 break;
6967 }
6968
6969 if (rtcp_debug_test_addr(addr)) {
6970 ast_verbose("Received generic RTCP NACK message\n");
6971 }
6972
6973 ast_rtp_rtcp_handle_nack(instance, rtcpheader, position, length);
6974 break;
6975 default:
6976 break;
6977 }
6978 break;
6979 case RTCP_PT_FUR:
6980 /* Handle RTCP FUR as FIR by setting the format to 4 */
6982 case RTCP_PT_PSFB:
6983 switch (rc) {
6986 if (rtcp_debug_test_addr(addr)) {
6987 ast_verbose("Received an RTCP Fast Update Request\n");
6988 }
6989 transport_rtp->f.frametype = AST_FRAME_CONTROL;
6990 transport_rtp->f.subclass.integer = AST_CONTROL_VIDUPDATE;
6991 transport_rtp->f.datalen = 0;
6992 transport_rtp->f.samples = 0;
6993 transport_rtp->f.mallocd = 0;
6994 transport_rtp->f.src = "RTP";
6995 f = &transport_rtp->f;
6996 break;
6998 /* If REMB support is not enabled ignore this message */
7000 break;
7001 }
7002
7003 if (rtcp_debug_test_addr(addr)) {
7004 ast_verbose("Received REMB report\n");
7005 }
7006 transport_rtp->f.frametype = AST_FRAME_RTCP;
7007 transport_rtp->f.subclass.integer = pt;
7008 transport_rtp->f.stream_num = rtp->stream_num;
7009 transport_rtp->f.data.ptr = rtp->rtcp->frame_buf + AST_FRIENDLY_OFFSET;
7010 feedback = transport_rtp->f.data.ptr;
7011 feedback->fmt = rc;
7012
7013 /* We don't actually care about the SSRC information in the feedback message */
7014 first_word = ntohl(rtcpheader[i + 2]);
7015 feedback->remb.br_exp = (first_word >> 18) & ((1 << 6) - 1);
7016 feedback->remb.br_mantissa = first_word & ((1 << 18) - 1);
7017
7018 transport_rtp->f.datalen = sizeof(struct ast_rtp_rtcp_feedback);
7019 transport_rtp->f.offset = AST_FRIENDLY_OFFSET;
7020 transport_rtp->f.samples = 0;
7021 transport_rtp->f.mallocd = 0;
7022 transport_rtp->f.delivery.tv_sec = 0;
7023 transport_rtp->f.delivery.tv_usec = 0;
7024 transport_rtp->f.src = "RTP";
7025 f = &transport_rtp->f;
7026 break;
7027 default:
7028 break;
7029 }
7030 break;
7031 case RTCP_PT_SDES:
7032 if (rtcp_debug_test_addr(addr)) {
7033 ast_verbose("Received an SDES from %s\n",
7035 }
7036#ifdef TEST_FRAMEWORK
7037 if ((test_engine = ast_rtp_instance_get_test(instance))) {
7038 test_engine->sdes_received = 1;
7039 }
7040#endif
7041 break;
7042 case RTCP_PT_BYE:
7043 if (rtcp_debug_test_addr(addr)) {
7044 ast_verbose("Received a BYE from %s\n",
7046 }
7047 break;
7048 default:
7049 break;
7050 }
7051 position += length;
7052 rtp->rtcp->rtcp_info = 1;
7053
7054 if (child) {
7055 ao2_unlock(child);
7056 }
7057 }
7058
7059 return f;
7060}
7061
7062/*! \pre instance is locked */
7063static struct ast_frame *ast_rtcp_read(struct ast_rtp_instance *instance)
7064{
7065 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
7066 struct ast_srtp *srtp = ast_rtp_instance_get_srtp(instance, 1);
7067 struct ast_sockaddr addr;
7068 unsigned char rtcpdata[8192 + AST_FRIENDLY_OFFSET];
7069 unsigned char *read_area = rtcpdata + AST_FRIENDLY_OFFSET;
7070 size_t read_area_size = sizeof(rtcpdata) - AST_FRIENDLY_OFFSET;
7071 int res;
7072
7073 /* Read in RTCP data from the socket */
7074 if ((res = rtcp_recvfrom(instance, read_area, read_area_size,
7075 0, &addr)) < 0) {
7076 if (res == RTP_DTLS_ESTABLISHED) {
7079 return &rtp->f;
7080 }
7081
7082 ast_assert(errno != EBADF);
7083 if (errno != EAGAIN) {
7084 ast_log(LOG_WARNING, "RTCP Read error: %s. Hanging up.\n",
7085 (errno) ? strerror(errno) : "Unspecified");
7086 return NULL;
7087 }
7088 return &ast_null_frame;
7089 }
7090
7091 /* If this was handled by the ICE session don't do anything further */
7092 if (!res) {
7093 return &ast_null_frame;
7094 }
7095
7096 if (!*read_area) {
7097 struct sockaddr_in addr_tmp;
7098 struct ast_sockaddr addr_v4;
7099
7100 if (ast_sockaddr_is_ipv4(&addr)) {
7101 ast_sockaddr_to_sin(&addr, &addr_tmp);
7102 } else if (ast_sockaddr_ipv4_mapped(&addr, &addr_v4)) {
7103 ast_debug_stun(2, "(%p) STUN using IPv6 mapped address %s\n",
7104 instance, ast_sockaddr_stringify(&addr));
7105 ast_sockaddr_to_sin(&addr_v4, &addr_tmp);
7106 } else {
7107 ast_debug_stun(2, "(%p) STUN cannot do for non IPv4 address %s\n",
7108 instance, ast_sockaddr_stringify(&addr));
7109 return &ast_null_frame;
7110 }
7111 if ((ast_stun_handle_packet(rtp->rtcp->s, &addr_tmp, read_area, res, NULL, NULL) == AST_STUN_ACCEPT)) {
7112 ast_sockaddr_from_sin(&addr, &addr_tmp);
7113 ast_sockaddr_copy(&rtp->rtcp->them, &addr);
7114 }
7115 return &ast_null_frame;
7116 }
7117
7118 return ast_rtcp_interpret(instance, srtp, read_area, res, &addr);
7119}
7120
7121/*! \pre instance is locked */
7122static int bridge_p2p_rtp_write(struct ast_rtp_instance *instance,
7123 struct ast_rtp_instance *instance1, unsigned int *rtpheader, int len, int hdrlen)
7124{
7125 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
7126 struct ast_rtp *bridged;
7127 int res = 0, payload = 0, bridged_payload = 0, mark;
7128 RAII_VAR(struct ast_rtp_payload_type *, payload_type, NULL, ao2_cleanup);
7129 int reconstruct = ntohl(rtpheader[0]);
7130 struct ast_sockaddr remote_address = { {0,} };
7131 int ice;
7132 unsigned int timestamp = ntohl(rtpheader[1]);
7133
7134 /* Get fields from packet */
7135 payload = (reconstruct & 0x7f0000) >> 16;
7136 mark = (reconstruct & 0x800000) >> 23;
7137
7138 /* Check what the payload value should be */
7139 payload_type = ast_rtp_codecs_get_payload(ast_rtp_instance_get_codecs(instance), payload);
7140 if (!payload_type) {
7141 return -1;
7142 }
7143
7144 /* Otherwise adjust bridged payload to match */
7146 payload_type->asterisk_format, payload_type->format, payload_type->rtp_code);
7147
7148 /* If no codec could be matched between instance and instance1, then somehow things were made incompatible while we were still bridged. Bail. */
7149 if (bridged_payload < 0) {
7150 return -1;
7151 }
7152
7153 /* If the payload coming in is not one of the negotiated ones then send it to the core, this will cause formats to change and the bridge to break */
7154 if (ast_rtp_codecs_find_payload_code(ast_rtp_instance_get_codecs(instance1), bridged_payload) == -1) {
7155 ast_debug_rtp(1, "(%p, %p) RTP unsupported payload type received\n", instance, instance1);
7156 return -1;
7157 }
7158
7159 /*
7160 * Even if we are no longer in dtmf, we could still be receiving
7161 * re-transmissions of the last dtmf end still. Feed those to the
7162 * core so they can be filtered accordingly.
7163 */
7164 if (rtp->last_end_timestamp.is_set && rtp->last_end_timestamp.ts == timestamp) {
7165 ast_debug_rtp(1, "(%p, %p) RTP feeding packet with duplicate timestamp to core\n", instance, instance1);
7166 return -1;
7167 }
7168
7169 if (payload_type->asterisk_format) {
7170 ao2_replace(rtp->lastrxformat, payload_type->format);
7171 }
7172
7173 /*
7174 * We have now determined that we need to send the RTP packet
7175 * out the bridged instance to do local bridging so we must unlock
7176 * the receiving instance to prevent deadlock with the bridged
7177 * instance.
7178 *
7179 * Technically we should grab a ref to instance1 so it won't go
7180 * away on us. However, we should be safe because the bridged
7181 * instance won't change without both channels involved being
7182 * locked and we currently have the channel lock for the receiving
7183 * instance.
7184 */
7185 ao2_unlock(instance);
7186 ao2_lock(instance1);
7187
7188 /*
7189 * Get the peer rtp pointer now to emphasize that using it
7190 * must happen while instance1 is locked.
7191 */
7192 bridged = ast_rtp_instance_get_data(instance1);
7193
7194
7195 /* If bridged peer is in dtmf, feed all packets to core until it finishes to avoid infinite dtmf */
7196 if (bridged->sending_digit) {
7197 ast_debug_rtp(1, "(%p, %p) RTP Feeding packet to core until DTMF finishes\n", instance, instance1);
7198 ao2_unlock(instance1);
7199 ao2_lock(instance);
7200 return -1;
7201 }
7202
7203 if (payload_type->asterisk_format) {
7204 /*
7205 * If bridged peer has already received rtp, perform the asymmetric codec check
7206 * if that feature has been activated
7207 */
7208 if (!bridged->asymmetric_codec
7209 && bridged->lastrxformat != ast_format_none
7210 && ast_format_cmp(payload_type->format, bridged->lastrxformat) == AST_FORMAT_CMP_NOT_EQUAL) {
7211 ast_debug_rtp(1, "(%p, %p) RTP asymmetric RTP codecs detected (TX: %s, RX: %s) sending frame to core\n",
7212 instance, instance1, ast_format_get_name(payload_type->format),
7214 ao2_unlock(instance1);
7215 ao2_lock(instance);
7216 return -1;
7217 }
7218
7219 ao2_replace(bridged->lasttxformat, payload_type->format);
7220 }
7221
7222 ast_rtp_instance_get_remote_address(instance1, &remote_address);
7223
7224 if (ast_sockaddr_isnull(&remote_address)) {
7225 ast_debug_rtp(5, "(%p, %p) RTP remote address is null, most likely RTP has been stopped\n",
7226 instance, instance1);
7227 ao2_unlock(instance1);
7228 ao2_lock(instance);
7229 return 0;
7230 }
7231
7232 /* If the marker bit has been explicitly set turn it on */
7233 if (ast_test_flag(bridged, FLAG_NEED_MARKER_BIT)) {
7234 mark = 1;
7236 }
7237
7238 /* Set the marker bit for the first local bridged packet which has the first bridged peer's SSRC. */
7240 mark = 1;
7242 }
7243
7244 /* Reconstruct part of the packet */
7245 reconstruct &= 0xFF80FFFF;
7246 reconstruct |= (bridged_payload << 16);
7247 reconstruct |= (mark << 23);
7248 rtpheader[0] = htonl(reconstruct);
7249
7250 if (mark) {
7251 /* make this rtp instance aware of the new ssrc it is sending */
7252 bridged->ssrc = ntohl(rtpheader[2]);
7253 }
7254
7255 /* Send the packet back out */
7256 res = rtp_sendto(instance1, (void *)rtpheader, len, 0, &remote_address, &ice);
7257 if (res < 0) {
7260 "RTP Transmission error of packet to %s: %s\n",
7261 ast_sockaddr_stringify(&remote_address),
7262 strerror(errno));
7266 "RTP NAT: Can't write RTP to private "
7267 "address %s, waiting for other end to "
7268 "send audio...\n",
7269 ast_sockaddr_stringify(&remote_address));
7270 }
7272 }
7273 ao2_unlock(instance1);
7274 ao2_lock(instance);
7275 return 0;
7276 }
7277
7278 if (rtp_debug_test_addr(&remote_address)) {
7279 ast_verbose("Sent RTP P2P packet to %s%s (type %-2.2d, len %-6.6d)\n",
7280 ast_sockaddr_stringify(&remote_address),
7281 ice ? " (via ICE)" : "",
7282 bridged_payload, len - hdrlen);
7283 }
7284
7285 ao2_unlock(instance1);
7286 ao2_lock(instance);
7287 return 0;
7288}
7289
7290static void rtp_instance_unlock(struct ast_rtp_instance *instance)
7291{
7292 if (instance) {
7293 ao2_unlock(instance);
7294 }
7295}
7296
7299{
7300 return a.seqno - b.seqno;
7301}
7302
7303static void rtp_transport_wide_cc_feedback_status_vector_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits,
7304 uint16_t *status_vector_chunk, int status)
7305{
7306 /* Appending this status will use up 2 bits */
7307 *status_vector_chunk_bits -= 2;
7308
7309 /* We calculate which bits we want to update the status of. Since a status vector
7310 * is 16 bits we take away 2 (for the header), and then we take away any that have
7311 * already been used.
7312 */
7313 *status_vector_chunk |= (status << (16 - 2 - (14 - *status_vector_chunk_bits)));
7314
7315 /* If there are still bits available we can return early */
7316 if (*status_vector_chunk_bits) {
7317 return;
7318 }
7319
7320 /* Otherwise we have to place this chunk into the packet */
7321 put_unaligned_uint16(rtcpheader + *packet_len, htons(*status_vector_chunk));
7322 *status_vector_chunk_bits = 14;
7323
7324 /* The first bit being 1 indicates that this is a status vector chunk and the second
7325 * bit being 1 indicates that we are using 2 bits to represent each status for a
7326 * packet.
7327 */
7328 *status_vector_chunk = (1 << 15) | (1 << 14);
7329 *packet_len += 2;
7330}
7331
7332static void rtp_transport_wide_cc_feedback_status_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits,
7333 uint16_t *status_vector_chunk, int *run_length_chunk_count, int *run_length_chunk_status, int status)
7334{
7335 if (*run_length_chunk_status != status) {
7336 while (*run_length_chunk_count > 0 && *run_length_chunk_count < 8) {
7337 /* Realistically it only makes sense to use a run length chunk if there were 8 or more
7338 * consecutive packets of the same type, otherwise we could end up making the packet larger
7339 * if we have lots of small blocks of the same type. To help with this we backfill the status
7340 * vector (since it always represents 7 packets). Best case we end up with only that single
7341 * status vector and the rest are run length chunks.
7342 */
7343 rtp_transport_wide_cc_feedback_status_vector_append(rtcpheader, packet_len, status_vector_chunk_bits,
7344 status_vector_chunk, *run_length_chunk_status);
7345 *run_length_chunk_count -= 1;
7346 }
7347
7348 if (*run_length_chunk_count) {
7349 /* There is a run length chunk which needs to be written out */
7350 put_unaligned_uint16(rtcpheader + *packet_len, htons((0 << 15) | (*run_length_chunk_status << 13) | *run_length_chunk_count));
7351 *packet_len += 2;
7352 }
7353
7354 /* In all cases the run length chunk has to be reset */
7355 *run_length_chunk_count = 0;
7356 *run_length_chunk_status = -1;
7357
7358 if (*status_vector_chunk_bits == 14) {
7359 /* We aren't in the middle of a status vector so we can try for a run length chunk */
7360 *run_length_chunk_status = status;
7361 *run_length_chunk_count = 1;
7362 } else {
7363 /* We're doing a status vector so populate it accordingly */
7364 rtp_transport_wide_cc_feedback_status_vector_append(rtcpheader, packet_len, status_vector_chunk_bits,
7365 status_vector_chunk, status);
7366 }
7367 } else {
7368 /* This is easy, the run length chunk count can just get bumped up */
7369 *run_length_chunk_count += 1;
7370 }
7371}
7372
7373static int rtp_transport_wide_cc_feedback_produce(const void *data)
7374{
7375 struct ast_rtp_instance *instance = (struct ast_rtp_instance *) data;
7376 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
7377 unsigned char *rtcpheader;
7378 char bdata[1024];
7379 struct rtp_transport_wide_cc_packet_statistics *first_packet;
7380 struct rtp_transport_wide_cc_packet_statistics *previous_packet;
7381 int i;
7382 int status_vector_chunk_bits = 14;
7383 uint16_t status_vector_chunk = (1 << 15) | (1 << 14);
7384 int run_length_chunk_count = 0;
7385 int run_length_chunk_status = -1;
7386 int packet_len = 20;
7387 int delta_len = 0;
7388 int packet_count = 0;
7389 unsigned int received_msw;
7390 unsigned int received_lsw;
7391 struct ast_sockaddr remote_address = { { 0, } };
7392 int res;
7393 int ice;
7394 unsigned int large_delta_count = 0;
7395 unsigned int small_delta_count = 0;
7396 unsigned int lost_count = 0;
7397
7398 if (!rtp || !rtp->rtcp || rtp->transport_wide_cc.schedid == -1) {
7399 ao2_ref(instance, -1);
7400 return 0;
7401 }
7402
7403 ao2_lock(instance);
7404
7405 /* If no packets have been received then do nothing */
7407 ao2_unlock(instance);
7408 return 1000;
7409 }
7410
7411 rtcpheader = (unsigned char *)bdata;
7412
7413 /* The first packet in the vector acts as our base sequence number and reference time */
7415 previous_packet = first_packet;
7416
7417 /* We go through each packet that we have statistics for, adding it either to a status
7418 * vector chunk or a run length chunk. The code tries to be as efficient as possible to
7419 * reduce packet size and will favor run length chunks when it makes sense.
7420 */
7421 for (i = 0; i < AST_VECTOR_SIZE(&rtp->transport_wide_cc.packet_statistics); ++i) {
7423 int lost = 0;
7424 int res = 0;
7425
7427
7428 packet_count++;
7429
7430 if (first_packet != statistics) {
7431 /* The vector stores statistics in a sorted fashion based on the sequence
7432 * number. This ensures we can detect any packets that have been lost/not
7433 * received by comparing the sequence numbers.
7434 */
7435 lost = statistics->seqno - (previous_packet->seqno + 1);
7436 lost_count += lost;
7437 }
7438
7439 while (lost) {
7440 /* We append a not received status until all the lost packets have been accounted for */
7441 rtp_transport_wide_cc_feedback_status_append(rtcpheader, &packet_len, &status_vector_chunk_bits,
7442 &status_vector_chunk, &run_length_chunk_count, &run_length_chunk_status, 0);
7443 packet_count++;
7444
7445 /* If there is no more room left for storing packets stop now, we leave 20
7446 * extra bits at the end just in case.
7447 */
7448 if (packet_len + delta_len + 20 > sizeof(bdata)) {
7449 res = -1;
7450 break;
7451 }
7452
7453 lost--;
7454 }
7455
7456 /* If the lost packet appending bailed out because we have no more space, then exit here too */
7457 if (res) {
7458 break;
7459 }
7460
7461 /* Per the spec the delta is in increments of 250 */
7462 statistics->delta = ast_tvdiff_us(statistics->received, previous_packet->received) / 250;
7463
7464 /* Based on the delta determine the status of this packet */
7465 if (statistics->delta < 0 || statistics->delta > 127) {
7466 /* Large or negative delta */
7467 rtp_transport_wide_cc_feedback_status_append(rtcpheader, &packet_len, &status_vector_chunk_bits,
7468 &status_vector_chunk, &run_length_chunk_count, &run_length_chunk_status, 2);
7469 delta_len += 2;
7470 large_delta_count++;
7471 } else {
7472 /* Small delta */
7473 rtp_transport_wide_cc_feedback_status_append(rtcpheader, &packet_len, &status_vector_chunk_bits,
7474 &status_vector_chunk, &run_length_chunk_count, &run_length_chunk_status, 1);
7475 delta_len += 1;
7476 small_delta_count++;
7477 }
7478
7479 previous_packet = statistics;
7480
7481 /* If there is no more room left in the packet stop handling of any subsequent packets */
7482 if (packet_len + delta_len + 20 > sizeof(bdata)) {
7483 break;
7484 }
7485 }
7486
7487 if (status_vector_chunk_bits != 14) {
7488 /* If the status vector chunk has packets in it then place it in the RTCP packet */
7489 put_unaligned_uint16(rtcpheader + packet_len, htons(status_vector_chunk));
7490 packet_len += 2;
7491 } else if (run_length_chunk_count) {
7492 /* If there is a run length chunk in progress then place it in the RTCP packet */
7493 put_unaligned_uint16(rtcpheader + packet_len, htons((0 << 15) | (run_length_chunk_status << 13) | run_length_chunk_count));
7494 packet_len += 2;
7495 }
7496
7497 /* We iterate again to build delta chunks */
7498 for (i = 0; i < AST_VECTOR_SIZE(&rtp->transport_wide_cc.packet_statistics); ++i) {
7500
7502
7503 if (statistics->delta < 0 || statistics->delta > 127) {
7504 /* We need 2 bytes to store this delta */
7505 put_unaligned_uint16(rtcpheader + packet_len, htons(statistics->delta));
7506 packet_len += 2;
7507 } else {
7508 /* We can store this delta in 1 byte */
7509 rtcpheader[packet_len] = statistics->delta;
7510 packet_len += 1;
7511 }
7512
7513 /* If this is the last packet handled by the run length chunk or status vector chunk code
7514 * then we can go no further.
7515 */
7516 if (statistics == previous_packet) {
7517 break;
7518 }
7519 }
7520
7521 /* Zero pad the end of the packet */
7522 while (packet_len % 4) {
7523 rtcpheader[packet_len++] = 0;
7524 }
7525
7526 /* Add the general RTCP header information */
7527 put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (AST_RTP_RTCP_FMT_TRANSPORT_WIDE_CC << 24)
7528 | (AST_RTP_RTCP_RTPFB << 16) | ((packet_len / 4) - 1)));
7529 put_unaligned_uint32(rtcpheader + 4, htonl(rtp->ssrc));
7530 put_unaligned_uint32(rtcpheader + 8, htonl(rtp->themssrc));
7531
7532 /* Add the transport-cc specific header information */
7533 put_unaligned_uint32(rtcpheader + 12, htonl((first_packet->seqno << 16) | packet_count));
7534
7535 timeval2ntp(first_packet->received, &received_msw, &received_lsw);
7536 put_unaligned_time24(rtcpheader + 16, received_msw, received_lsw);
7537 rtcpheader[19] = rtp->transport_wide_cc.feedback_count;
7538
7539 /* The packet is now fully constructed so send it out */
7540 ast_sockaddr_copy(&remote_address, &rtp->rtcp->them);
7541
7542 ast_debug_rtcp(2, "(%p) RTCP sending transport-cc feedback packet of size '%d' on '%s' with packet count of %d (small = %d, large = %d, lost = %d)\n",
7543 instance, packet_len, ast_rtp_instance_get_channel_id(instance), packet_count, small_delta_count, large_delta_count, lost_count);
7544
7545 res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len, 0, &remote_address, &ice);
7546 if (res < 0) {
7547 ast_log(LOG_ERROR, "RTCP transport-cc feedback error to %s due to %s\n",
7548 ast_sockaddr_stringify(&remote_address), strerror(errno));
7549 }
7550
7552
7554
7555 ao2_unlock(instance);
7556
7557 return 1000;
7558}
7559
7560static void rtp_instance_parse_transport_wide_cc(struct ast_rtp_instance *instance, struct ast_rtp *rtp,
7561 unsigned char *data, int len)
7562{
7563 uint16_t *seqno = (uint16_t *)data;
7565 struct ast_rtp_instance *transport = rtp->bundled ? rtp->bundled : instance;
7566 struct ast_rtp *transport_rtp = ast_rtp_instance_get_data(transport);
7567
7568 /* If the sequence number has cycled over then record it as such */
7569 if (((int)transport_rtp->transport_wide_cc.last_seqno - (int)ntohs(*seqno)) > 100) {
7570 transport_rtp->transport_wide_cc.cycles += RTP_SEQ_MOD;
7571 }
7572
7573 /* Populate the statistics information for this packet */
7574 statistics.seqno = transport_rtp->transport_wide_cc.cycles + ntohs(*seqno);
7575 statistics.received = ast_tvnow();
7576
7577 /* We allow at a maximum 1000 packet statistics in play at a time, if we hit the
7578 * limit we give up and start fresh.
7579 */
7580 if (AST_VECTOR_SIZE(&transport_rtp->transport_wide_cc.packet_statistics) > 1000) {
7582 }
7583
7584 if (!AST_VECTOR_SIZE(&transport_rtp->transport_wide_cc.packet_statistics) ||
7585 statistics.seqno > transport_rtp->transport_wide_cc.last_extended_seqno) {
7586 /* This is the expected path */
7588 return;
7589 }
7590
7591 transport_rtp->transport_wide_cc.last_extended_seqno = statistics.seqno;
7592 transport_rtp->transport_wide_cc.last_seqno = ntohs(*seqno);
7593 } else {
7594 /* This packet was out of order, so reorder it within the vector accordingly */
7597 return;
7598 }
7599 }
7600
7601 /* If we have not yet scheduled the periodic sending of feedback for this transport then do so */
7602 if (transport_rtp->transport_wide_cc.schedid < 0 && transport_rtp->rtcp) {
7603 ast_debug_rtcp(1, "(%p) RTCP starting transport-cc feedback transmission on RTP instance '%p'\n", instance, transport);
7604 ao2_ref(transport, +1);
7605 transport_rtp->transport_wide_cc.schedid = ast_sched_add(rtp->sched, 1000,
7607 if (transport_rtp->transport_wide_cc.schedid < 0) {
7608 ao2_ref(transport, -1);
7609 ast_log(LOG_WARNING, "Scheduling RTCP transport-cc feedback transmission failed on RTP instance '%p'\n",
7610 transport);
7611 }
7612 }
7613}
7614
7615static void rtp_instance_parse_extmap_extensions(struct ast_rtp_instance *instance, struct ast_rtp *rtp,
7616 unsigned char *extension, int len)
7617{
7618 int transport_wide_cc_id = ast_rtp_instance_extmap_get_id(instance, AST_RTP_EXTENSION_TRANSPORT_WIDE_CC);
7619 int pos = 0;
7620
7621 /* We currently only care about the transport-cc extension, so if that's not negotiated then do nothing */
7622 if (transport_wide_cc_id == -1) {
7623 return;
7624 }
7625
7626 /* Only while we do not exceed available extension data do we continue */
7627 while (pos < len) {
7628 int id = extension[pos] >> 4;
7629 int extension_len = (extension[pos] & 0xF) + 1;
7630
7631 /* We've handled the first byte as it contains the extension id and length, so always
7632 * skip ahead now
7633 */
7634 pos += 1;
7635
7636 if (id == 0) {
7637 /* From the RFC:
7638 * In both forms, padding bytes have the value of 0 (zero). They may be
7639 * placed between extension elements, if desired for alignment, or after
7640 * the last extension element, if needed for padding. A padding byte
7641 * does not supply the ID of an element, nor the length field. When a
7642 * padding byte is found, it is ignored and the parser moves on to
7643 * interpreting the next byte.
7644 */
7645 continue;
7646 } else if (id == 15) {
7647 /* From the RFC:
7648 * The local identifier value 15 is reserved for future extension and
7649 * MUST NOT be used as an identifier. If the ID value 15 is
7650 * encountered, its length field should be ignored, processing of the
7651 * entire extension should terminate at that point, and only the
7652 * extension elements present prior to the element with ID 15
7653 * considered.
7654 */
7655 break;
7656 } else if ((pos + extension_len) > len) {
7657 /* The extension is corrupted and is stating that it contains more data than is
7658 * available in the extensions data.
7659 */
7660 break;
7661 }
7662
7663 /* If this is transport-cc then we need to parse it further */
7664 if (id == transport_wide_cc_id) {
7665 rtp_instance_parse_transport_wide_cc(instance, rtp, extension + pos, extension_len);
7666 }
7667
7668 /* Skip ahead to the next extension */
7669 pos += extension_len;
7670 }
7671}
7672
7673static struct ast_frame *ast_rtp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp,
7674 const struct ast_sockaddr *remote_address, unsigned char *read_area, int length, int prev_seqno,
7675 unsigned int bundled)
7676{
7677 unsigned int *rtpheader = (unsigned int*)(read_area);
7678 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
7679 struct ast_rtp_instance *instance1;
7680 int res = length, hdrlen = 12, ssrc, seqno, payloadtype, padding, mark, ext, cc;
7681 unsigned int timestamp;
7682 RAII_VAR(struct ast_rtp_payload_type *, payload, NULL, ao2_cleanup);
7683 struct frame_list frames;
7684
7685 /* If this payload is encrypted then decrypt it using the given SRTP instance */
7686 if ((*read_area & 0xC0) && res_srtp && srtp && res_srtp->unprotect(
7687 srtp, read_area, &res, 0 | (srtp_replay_protection << 1)) < 0) {
7688 return &ast_null_frame;
7689 }
7690
7691 /* If we are currently sending DTMF to the remote party send a continuation packet */
7692 if (rtp->sending_digit) {
7693 ast_rtp_dtmf_continuation(instance);
7694 }
7695
7696 /* Pull out the various other fields we will need */
7697 ssrc = ntohl(rtpheader[2]);
7698 seqno = ntohl(rtpheader[0]);
7699 payloadtype = (seqno & 0x7f0000) >> 16;
7700 padding = seqno & (1 << 29);
7701 mark = seqno & (1 << 23);
7702 ext = seqno & (1 << 28);
7703 cc = (seqno & 0xF000000) >> 24;
7704 seqno &= 0xffff;
7705 timestamp = ntohl(rtpheader[1]);
7706
7708
7709 /* Remove any padding bytes that may be present */
7710 if (padding) {
7711 res -= read_area[res - 1];
7712 }
7713
7714 /* Skip over any CSRC fields */
7715 if (cc) {
7716 hdrlen += cc * 4;
7717 }
7718
7719 /* Look for any RTP extensions, currently we do not support any */
7720 if (ext) {
7721 int extensions_size = (ntohl(rtpheader[hdrlen/4]) & 0xffff) << 2;
7722 unsigned int profile;
7723 profile = (ntohl(rtpheader[3]) & 0xffff0000) >> 16;
7724
7725 if (profile == 0xbede) {
7726 /* We skip over the first 4 bytes as they are just for the one byte extension header */
7727 rtp_instance_parse_extmap_extensions(instance, rtp, read_area + hdrlen + 4, extensions_size);
7728 } else if (DEBUG_ATLEAST(1)) {
7729 if (profile == 0x505a) {
7730 ast_log(LOG_DEBUG, "Found Zfone extension in RTP stream - zrtp - not supported.\n");
7731 } else {
7732 /* SDP negotiated RTP extensions can not currently be output in logging */
7733 ast_log(LOG_DEBUG, "Found unknown RTP Extensions %x\n", profile);
7734 }
7735 }
7736
7737 hdrlen += extensions_size;
7738 hdrlen += 4;
7739 }
7740
7741 /* Make sure after we potentially mucked with the header length that it is once again valid */
7742 if (res < hdrlen) {
7743 ast_log(LOG_WARNING, "RTP Read too short (%d, expecting %d\n", res, hdrlen);
7745 }
7746
7747 /* Only non-bundled instances can change/learn the remote's SSRC implicitly. */
7748 if (!bundled) {
7749 /* Force a marker bit and change SSRC if the SSRC changes */
7750 if (rtp->themssrc_valid && rtp->themssrc != ssrc) {
7751 struct ast_frame *f, srcupdate = {
7753 .subclass.integer = AST_CONTROL_SRCCHANGE,
7754 };
7755
7756 if (!mark) {
7758 ast_debug(0, "(%p) RTP forcing Marker bit, because SSRC has changed\n", instance);
7759 }
7760 mark = 1;
7761 }
7762
7763 f = ast_frisolate(&srcupdate);
7765
7766 rtp->seedrxseqno = 0;
7767 rtp->rxcount = 0;
7768 rtp->rxoctetcount = 0;
7769 rtp->cycles = 0;
7770 prev_seqno = 0;
7771 rtp->last_seqno = 0;
7772 rtp->last_end_timestamp.ts = 0;
7773 rtp->last_end_timestamp.is_set = 0;
7774 if (rtp->rtcp) {
7775 rtp->rtcp->expected_prior = 0;
7776 rtp->rtcp->received_prior = 0;
7777 }
7778 }
7779
7780 rtp->themssrc = ssrc; /* Record their SSRC to put in future RR */
7781 rtp->themssrc_valid = 1;
7782 }
7783
7784 rtp->rxcount++;
7785 rtp->rxoctetcount += (res - hdrlen);
7786 if (rtp->rxcount == 1) {
7787 rtp->seedrxseqno = seqno;
7788 }
7789
7790 /* Do not schedule RR if RTCP isn't run */
7791 if (rtp->rtcp && !ast_sockaddr_isnull(&rtp->rtcp->them) && rtp->rtcp->schedid < 0) {
7792 /* Schedule transmission of Receiver Report */
7793 ao2_ref(instance, +1);
7795 if (rtp->rtcp->schedid < 0) {
7796 ao2_ref(instance, -1);
7797 ast_log(LOG_WARNING, "scheduling RTCP transmission failed.\n");
7798 }
7799 }
7800 if ((int)prev_seqno - (int)seqno > 100) /* if so it would indicate that the sender cycled; allow for misordering */
7801 rtp->cycles += RTP_SEQ_MOD;
7802
7803 /* If we are directly bridged to another instance send the audio directly out,
7804 * but only after updating core information about the received traffic so that
7805 * outgoing RTCP reflects it.
7806 */
7807 instance1 = ast_rtp_instance_get_bridged(instance);
7808 if (instance1
7809 && !bridge_p2p_rtp_write(instance, instance1, rtpheader, res, hdrlen)) {
7810 struct timeval rxtime;
7811 struct ast_frame *f;
7812
7813 /* Update statistics for jitter so they are correct in RTCP */
7814 calc_rxstamp_and_jitter(&rxtime, rtp, timestamp, mark);
7815
7816
7817 /* When doing P2P we don't need to raise any frames about SSRC change to the core */
7818 while ((f = AST_LIST_REMOVE_HEAD(&frames, frame_list)) != NULL) {
7819 ast_frfree(f);
7820 }
7821
7822 return &ast_null_frame;
7823 }
7824
7825 payload = ast_rtp_codecs_get_payload(ast_rtp_instance_get_codecs(instance), payloadtype);
7826 if (!payload) {
7827 /* Unknown payload type. */
7829 }
7830
7831 /* If the payload is not actually an Asterisk one but a special one pass it off to the respective handler */
7832 if (!payload->asterisk_format) {
7833 struct ast_frame *f = NULL;
7834 if (payload->rtp_code == AST_RTP_DTMF) {
7835 /* process_dtmf_rfc2833 may need to return multiple frames. We do this
7836 * by passing the pointer to the frame list to it so that the method
7837 * can append frames to the list as needed.
7838 */
7839 process_dtmf_rfc2833(instance, read_area + hdrlen, res - hdrlen, seqno, timestamp, payloadtype, mark, &frames);
7840 } else if (payload->rtp_code == AST_RTP_CISCO_DTMF) {
7841 f = process_dtmf_cisco(instance, read_area + hdrlen, res - hdrlen, seqno, timestamp, payloadtype, mark);
7842 } else if (payload->rtp_code == AST_RTP_CN) {
7843 f = process_cn_rfc3389(instance, read_area + hdrlen, res - hdrlen, seqno, timestamp, payloadtype, mark);
7844 } else {
7845 ast_log(LOG_NOTICE, "Unknown RTP codec %d received from '%s'\n",
7846 payloadtype,
7847 ast_sockaddr_stringify(remote_address));
7848 }
7849
7850 if (f) {
7852 }
7853 /* Even if no frame was returned by one of the above methods,
7854 * we may have a frame to return in our frame list
7855 */
7857 }
7858
7859 ao2_replace(rtp->lastrxformat, payload->format);
7860 ao2_replace(rtp->f.subclass.format, payload->format);
7861 switch (ast_format_get_type(rtp->f.subclass.format)) {
7864 break;
7867 break;
7869 rtp->f.frametype = AST_FRAME_TEXT;
7870 break;
7872 /* Fall through */
7873 default:
7874 ast_log(LOG_WARNING, "Unknown or unsupported media type: %s\n",
7876 return &ast_null_frame;
7877 }
7878
7879 if (rtp->dtmf_timeout && rtp->dtmf_timeout < timestamp) {
7880 rtp->dtmf_timeout = 0;
7881
7882 if (rtp->resp) {
7883 struct ast_frame *f;
7884 f = create_dtmf_frame(instance, AST_FRAME_DTMF_END, 0);
7886 rtp->resp = 0;
7887 rtp->dtmf_timeout = rtp->dtmf_duration = 0;
7889 return AST_LIST_FIRST(&frames);
7890 }
7891 }
7892
7893 rtp->f.src = "RTP";
7894 rtp->f.mallocd = 0;
7895 rtp->f.datalen = res - hdrlen;
7896 rtp->f.data.ptr = read_area + hdrlen;
7897 rtp->f.offset = hdrlen + AST_FRIENDLY_OFFSET;
7899 rtp->f.seqno = seqno;
7900 rtp->f.stream_num = rtp->stream_num;
7901
7903 && ((int)seqno - (prev_seqno + 1) > 0)
7904 && ((int)seqno - (prev_seqno + 1) < 10)) {
7905 unsigned char *data = rtp->f.data.ptr;
7906
7907 memmove(rtp->f.data.ptr+3, rtp->f.data.ptr, rtp->f.datalen);
7908 rtp->f.datalen +=3;
7909 *data++ = 0xEF;
7910 *data++ = 0xBF;
7911 *data = 0xBD;
7912 }
7913
7915 unsigned char *data = rtp->f.data.ptr;
7916 unsigned char *header_end;
7917 int num_generations;
7918 int header_length;
7919 int len;
7920 int diff =(int)seqno - (prev_seqno+1); /* if diff = 0, no drop*/
7921 int x;
7922
7924 header_end = memchr(data, ((*data) & 0x7f), rtp->f.datalen);
7925 if (header_end == NULL) {
7927 }
7928 header_end++;
7929
7930 header_length = header_end - data;
7931 num_generations = header_length / 4;
7932 len = header_length;
7933
7934 if (!diff) {
7935 for (x = 0; x < num_generations; x++)
7936 len += data[x * 4 + 3];
7937
7938 if (!(rtp->f.datalen - len))
7940
7941 rtp->f.data.ptr += len;
7942 rtp->f.datalen -= len;
7943 } else if (diff > num_generations && diff < 10) {
7944 len -= 3;
7945 rtp->f.data.ptr += len;
7946 rtp->f.datalen -= len;
7947
7948 data = rtp->f.data.ptr;
7949 *data++ = 0xEF;
7950 *data++ = 0xBF;
7951 *data = 0xBD;
7952 } else {
7953 for ( x = 0; x < num_generations - diff; x++)
7954 len += data[x * 4 + 3];
7955
7956 rtp->f.data.ptr += len;
7957 rtp->f.datalen -= len;
7958 }
7959 }
7960
7962 rtp->f.samples = ast_codec_samples_count(&rtp->f);
7964 ast_frame_byteswap_be(&rtp->f);
7965 }
7966 calc_rxstamp_and_jitter(&rtp->f.delivery, rtp, timestamp, mark);
7967 /* Add timing data to let ast_generic_bridge() put the frame into a jitterbuf */
7969 rtp->f.ts = timestamp / (ast_rtp_get_rate(rtp->f.subclass.format) / 1000);
7970 rtp->f.len = rtp->f.samples / ((ast_format_get_sample_rate(rtp->f.subclass.format) / 1000));
7972 /* Video -- samples is # of samples vs. 90000 */
7973 if (!rtp->lastividtimestamp)
7974 rtp->lastividtimestamp = timestamp;
7975 calc_rxstamp_and_jitter(&rtp->f.delivery, rtp, timestamp, mark);
7977 rtp->f.ts = timestamp / (ast_rtp_get_rate(rtp->f.subclass.format) / 1000);
7978 rtp->f.samples = timestamp - rtp->lastividtimestamp;
7979 rtp->lastividtimestamp = timestamp;
7980 rtp->f.delivery.tv_sec = 0;
7981 rtp->f.delivery.tv_usec = 0;
7982 /* Pass the RTP marker bit as bit */
7983 rtp->f.subclass.frame_ending = mark ? 1 : 0;
7985 /* TEXT -- samples is # of samples vs. 1000 */
7986 if (!rtp->lastitexttimestamp)
7987 rtp->lastitexttimestamp = timestamp;
7988 rtp->f.samples = timestamp - rtp->lastitexttimestamp;
7989 rtp->lastitexttimestamp = timestamp;
7990 rtp->f.delivery.tv_sec = 0;
7991 rtp->f.delivery.tv_usec = 0;
7992 } else {
7993 ast_log(LOG_WARNING, "Unknown or unsupported media type: %s\n",
7995 return &ast_null_frame;
7996 }
7997
7999 return AST_LIST_FIRST(&frames);
8000}
8001
8002#ifdef AST_DEVMODE
8003
8004struct rtp_drop_packets_data {
8005 /* Whether or not to randomize the number of packets to drop. */
8006 unsigned int use_random_num;
8007 /* Whether or not to randomize the time interval between packets drops. */
8008 unsigned int use_random_interval;
8009 /* The total number of packets to drop. If 'use_random_num' is true then this
8010 * value becomes the upper bound for a number of random packets to drop. */
8011 unsigned int num_to_drop;
8012 /* The current number of packets that have been dropped during an interval. */
8013 unsigned int num_dropped;
8014 /* The optional interval to use between packet drops. If 'use_random_interval'
8015 * is true then this values becomes the upper bound for a random interval used. */
8016 struct timeval interval;
8017 /* The next time a packet drop should be triggered. */
8018 struct timeval next;
8019 /* An optional IP address from which to drop packets from. */
8020 struct ast_sockaddr addr;
8021 /* The optional port from which to drop packets from. */
8022 unsigned int port;
8023};
8024
8025static struct rtp_drop_packets_data drop_packets_data;
8026
8027static void drop_packets_data_update(struct timeval tv)
8028{
8029 /*
8030 * num_dropped keeps up with the number of packets that have been dropped for a
8031 * given interval. Once the specified number of packets have been dropped and
8032 * the next time interval is ready to trigger then set this number to zero (drop
8033 * the next 'n' packets up to 'num_to_drop'), or if 'use_random_num' is set to
8034 * true then set to a random number between zero and 'num_to_drop'.
8035 */
8036 drop_packets_data.num_dropped = drop_packets_data.use_random_num ?
8037 ast_random() % drop_packets_data.num_to_drop : 0;
8038
8039 /*
8040 * A specified number of packets can be dropped at a given interval (e.g every
8041 * 30 seconds). If 'use_random_interval' is false simply add the interval to
8042 * the given time to get the next trigger point. If set to true, then get a
8043 * random time between the given time and up to the specified interval.
8044 */
8045 if (drop_packets_data.use_random_interval) {
8046 /* Calculate as a percentage of the specified drop packets interval */
8047 struct timeval interval = ast_time_create_by_unit(ast_time_tv_to_usec(
8048 &drop_packets_data.interval) * ((double)(ast_random() % 100 + 1) / 100),
8050
8051 drop_packets_data.next = ast_tvadd(tv, interval);
8052 } else {
8053 drop_packets_data.next = ast_tvadd(tv, drop_packets_data.interval);
8054 }
8055}
8056
8057static int should_drop_packets(struct ast_sockaddr *addr)
8058{
8059 struct timeval tv;
8060
8061 if (!drop_packets_data.num_to_drop) {
8062 return 0;
8063 }
8064
8065 /*
8066 * If an address has been specified then filter on it, and also the port if
8067 * it too was included.
8068 */
8069 if (!ast_sockaddr_isnull(&drop_packets_data.addr) &&
8070 (drop_packets_data.port ?
8071 ast_sockaddr_cmp(&drop_packets_data.addr, addr) :
8072 ast_sockaddr_cmp_addr(&drop_packets_data.addr, addr)) != 0) {
8073 /* Address and/or port does not match */
8074 return 0;
8075 }
8076
8077 /* Keep dropping packets until we've reached the total to drop */
8078 if (drop_packets_data.num_dropped < drop_packets_data.num_to_drop) {
8079 ++drop_packets_data.num_dropped;
8080 return 1;
8081 }
8082
8083 /*
8084 * Once the set number of packets has been dropped check to see if it's
8085 * time to drop more.
8086 */
8087
8088 if (ast_tvzero(drop_packets_data.interval)) {
8089 /* If no interval then drop specified number of packets and be done */
8090 drop_packets_data.num_to_drop = 0;
8091 return 0;
8092 }
8093
8094 tv = ast_tvnow();
8095 if (ast_tvcmp(tv, drop_packets_data.next) == -1) {
8096 /* Still waiting for the next time interval to elapse */
8097 return 0;
8098 }
8099
8100 /*
8101 * The next time interval has elapsed so update the tracking structure
8102 * in order to start dropping more packets, and figure out when the next
8103 * time interval is.
8104 */
8105 drop_packets_data_update(tv);
8106 return 1;
8107}
8108
8109#endif
8110
8111/*! \pre instance is locked */
8112static struct ast_frame *ast_rtp_read(struct ast_rtp_instance *instance, int rtcp)
8113{
8114 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
8115 struct ast_srtp *srtp;
8117 struct ast_sockaddr addr;
8118 int res, hdrlen = 12, version, payloadtype;
8119 unsigned char *read_area = rtp->rawdata + AST_FRIENDLY_OFFSET;
8120 size_t read_area_size = sizeof(rtp->rawdata) - AST_FRIENDLY_OFFSET;
8121 unsigned int *rtpheader = (unsigned int*)(read_area), seqno, ssrc, timestamp, prev_seqno;
8122 struct ast_sockaddr remote_address = { {0,} };
8123 struct frame_list frames;
8124 struct ast_frame *frame;
8125 unsigned int bundled;
8126
8127 /* If this is actually RTCP let's hop on over and handle it */
8128 if (rtcp) {
8129 if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
8130 return ast_rtcp_read(instance);
8131 }
8132 return &ast_null_frame;
8133 }
8134
8135 /* Actually read in the data from the socket */
8136 if ((res = rtp_recvfrom(instance, read_area, read_area_size, 0,
8137 &addr)) < 0) {
8138 if (res == RTP_DTLS_ESTABLISHED) {
8141 return &rtp->f;
8142 }
8143
8144 ast_assert(errno != EBADF);
8145 if (errno != EAGAIN) {
8146 ast_log(LOG_WARNING, "RTP Read error: %s. Hanging up.\n",
8147 (errno) ? strerror(errno) : "Unspecified");
8148 return NULL;
8149 }
8150 return &ast_null_frame;
8151 }
8152
8153 /* If this was handled by the ICE session don't do anything */
8154 if (!res) {
8155 return &ast_null_frame;
8156 }
8157
8158 /* This could be a multiplexed RTCP packet. If so, be sure to interpret it correctly */
8159 if (rtcp_mux(rtp, read_area)) {
8160 return ast_rtcp_interpret(instance, ast_rtp_instance_get_srtp(instance, 1), read_area, res, &addr);
8161 }
8162
8163 /* Make sure the data that was read in is actually enough to make up an RTP packet */
8164 if (res < hdrlen) {
8165 /* If this is a keepalive containing only nulls, don't bother with a warning */
8166 int i;
8167 for (i = 0; i < res; ++i) {
8168 if (read_area[i] != '\0') {
8169 ast_log(LOG_WARNING, "RTP Read too short\n");
8170 return &ast_null_frame;
8171 }
8172 }
8173 return &ast_null_frame;
8174 }
8175
8176 /* Get fields and verify this is an RTP packet */
8177 seqno = ntohl(rtpheader[0]);
8178
8179 ast_rtp_instance_get_remote_address(instance, &remote_address);
8180
8181 if (!(version = (seqno & 0xC0000000) >> 30)) {
8182 struct sockaddr_in addr_tmp;
8183 struct ast_sockaddr addr_v4;
8184 if (ast_sockaddr_is_ipv4(&addr)) {
8185 ast_sockaddr_to_sin(&addr, &addr_tmp);
8186 } else if (ast_sockaddr_ipv4_mapped(&addr, &addr_v4)) {
8187 ast_debug_stun(1, "(%p) STUN using IPv6 mapped address %s\n",
8188 instance, ast_sockaddr_stringify(&addr));
8189 ast_sockaddr_to_sin(&addr_v4, &addr_tmp);
8190 } else {
8191 ast_debug_stun(1, "(%p) STUN cannot do for non IPv4 address %s\n",
8192 instance, ast_sockaddr_stringify(&addr));
8193 return &ast_null_frame;
8194 }
8195 if ((ast_stun_handle_packet(rtp->s, &addr_tmp, read_area, res, NULL, NULL) == AST_STUN_ACCEPT) &&
8196 ast_sockaddr_isnull(&remote_address)) {
8197 ast_sockaddr_from_sin(&addr, &addr_tmp);
8198 ast_rtp_instance_set_remote_address(instance, &addr);
8199 }
8200 return &ast_null_frame;
8201 }
8202
8203 /* If the version is not what we expected by this point then just drop the packet */
8204 if (version != 2) {
8205 return &ast_null_frame;
8206 }
8207
8208 /* We use the SSRC to determine what RTP instance this packet is actually for */
8209 ssrc = ntohl(rtpheader[2]);
8210
8211 /* We use the SRTP data from the provided instance that it came in on, not the child */
8212 srtp = ast_rtp_instance_get_srtp(instance, 0);
8213
8214 /* Determine the appropriate instance for this */
8215 child = rtp_find_instance_by_packet_source_ssrc(instance, rtp, ssrc);
8216 if (!child) {
8217 /* Neither the bundled parent nor any child has this SSRC */
8218 return &ast_null_frame;
8219 }
8220 if (child != instance) {
8221 /* It is safe to hold the child lock while holding the parent lock, we guarantee that the locking order
8222 * is always parent->child or that the child lock is not held when acquiring the parent lock.
8223 */
8224 ao2_lock(child);
8225 instance = child;
8226 rtp = ast_rtp_instance_get_data(instance);
8227 } else {
8228 /* The child is the parent! We don't need to unlock it. */
8229 child = NULL;
8230 }
8231
8232 /* If strict RTP protection is enabled see if we need to learn the remote address or if we need to drop the packet */
8233 switch (rtp->strict_rtp_state) {
8234 case STRICT_RTP_LEARN:
8235 /*
8236 * Scenario setup:
8237 * PartyA -- Ast1 -- Ast2 -- PartyB
8238 *
8239 * The learning timeout is necessary for Ast1 to handle the above
8240 * setup where PartyA calls PartyB and Ast2 initiates direct media
8241 * between Ast1 and PartyB. Ast1 may lock onto the Ast2 stream and
8242 * never learn the PartyB stream when it starts. The timeout makes
8243 * Ast1 stay in the learning state long enough to see and learn the
8244 * RTP stream from PartyB.
8245 *
8246 * To mitigate against attack, the learning state cannot switch
8247 * streams while there are competing streams. The competing streams
8248 * interfere with each other's qualification. Once we accept a
8249 * stream and reach the timeout, an attacker cannot interfere
8250 * anymore.
8251 *
8252 * Here are a few scenarios and each one assumes that the streams
8253 * are continuous:
8254 *
8255 * 1) We already have a known stream source address and the known
8256 * stream wants to change to a new source address. An attacking
8257 * stream will block learning the new stream source. After the
8258 * timeout we re-lock onto the original stream source address which
8259 * likely went away. The result is one way audio.
8260 *
8261 * 2) We already have a known stream source address and the known
8262 * stream doesn't want to change source addresses. An attacking
8263 * stream will not be able to replace the known stream. After the
8264 * timeout we re-lock onto the known stream. The call is not
8265 * affected.
8266 *
8267 * 3) We don't have a known stream source address. This presumably
8268 * is the start of a call. Competing streams will result in staying
8269 * in learning mode until a stream becomes the victor and we reach
8270 * the timeout. We cannot exit learning if we have no known stream
8271 * to lock onto. The result is one way audio until there is a victor.
8272 *
8273 * If we learn a stream source address before the timeout we will be
8274 * in scenario 1) or 2) when a competing stream starts.
8275 */
8278 ast_verb(4, "%p -- Strict RTP learning complete - Locking on source address %s\n",
8280 ast_test_suite_event_notify("STRICT_RTP_LEARN", "Source: %s",
8283 } else {
8284 struct ast_sockaddr target_address;
8285
8286 if (!ast_sockaddr_cmp(&rtp->strict_rtp_address, &addr)) {
8287 /*
8288 * We are open to learning a new address but have received
8289 * traffic from the current address, accept it and reset
8290 * the learning counts for a new source. When no more
8291 * current source packets arrive a new source can take over
8292 * once sufficient traffic is received.
8293 */
8295 break;
8296 }
8297
8298 /*
8299 * We give preferential treatment to the requested target address
8300 * (negotiated SDP address) where we are to send our RTP. However,
8301 * the other end has no obligation to send from that address even
8302 * though it is practically a requirement when NAT is involved.
8303 */
8304 ast_rtp_instance_get_requested_target_address(instance, &target_address);
8305 if (!ast_sockaddr_cmp(&target_address, &addr)) {
8306 /* Accept the negotiated target RTP stream as the source */
8307 ast_verb(4, "%p -- Strict RTP switching to RTP target address %s as source\n",
8308 rtp, ast_sockaddr_stringify(&addr));
8311 break;
8312 }
8313
8314 /*
8315 * Trying to learn a new address. If we pass a probationary period
8316 * with it, that means we've stopped getting RTP from the original
8317 * source and we should switch to it.
8318 */
8321 struct ast_rtp_codecs *codecs;
8322
8326 ast_verb(4, "%p -- Strict RTP qualifying stream type: %s\n",
8328 }
8329 if (!rtp_learning_rtp_seq_update(&rtp->rtp_source_learn, seqno)) {
8330 /* Accept the new RTP stream */
8331 ast_verb(4, "%p -- Strict RTP switching source address to %s\n",
8332 rtp, ast_sockaddr_stringify(&addr));
8335 break;
8336 }
8337 /* Not ready to accept the RTP stream candidate */
8338 ast_debug_rtp(1, "(%p) RTP %p -- Received packet from %s, dropping due to strict RTP protection. Will switch to it in %d packets.\n",
8339 instance, rtp, ast_sockaddr_stringify(&addr), rtp->rtp_source_learn.packets);
8340 } else {
8341 /*
8342 * This is either an attacking stream or
8343 * the start of the expected new stream.
8344 */
8347 ast_debug_rtp(1, "(%p) RTP %p -- Received packet from %s, dropping due to strict RTP protection. Qualifying new stream.\n",
8348 instance, rtp, ast_sockaddr_stringify(&addr));
8349 }
8350 return &ast_null_frame;
8351 }
8352 /* Fall through */
8353 case STRICT_RTP_CLOSED:
8354 /*
8355 * We should not allow a stream address change if the SSRC matches
8356 * once strictrtp learning is closed. Any kind of address change
8357 * like this should have happened while we were in the learning
8358 * state. We do not want to allow the possibility of an attacker
8359 * interfering with the RTP stream after the learning period.
8360 * An attacker could manage to get an RTCP packet redirected to
8361 * them which can contain the SSRC value.
8362 */
8363 if (!ast_sockaddr_cmp(&rtp->strict_rtp_address, &addr)) {
8364 break;
8365 }
8366 ast_debug_rtp(1, "(%p) RTP %p -- Received packet from %s, dropping due to strict RTP protection.\n",
8367 instance, rtp, ast_sockaddr_stringify(&addr));
8368#ifdef TEST_FRAMEWORK
8369 {
8370 static int strict_rtp_test_event = 1;
8371 if (strict_rtp_test_event) {
8372 ast_test_suite_event_notify("STRICT_RTP_CLOSED", "Source: %s",
8373 ast_sockaddr_stringify(&addr));
8374 strict_rtp_test_event = 0; /* Only run this event once to prevent possible spam */
8375 }
8376 }
8377#endif
8378 return &ast_null_frame;
8379 case STRICT_RTP_OPEN:
8380 break;
8381 }
8382
8383 /* If symmetric RTP is enabled see if the remote side is not what we expected and change where we are sending audio */
8385 if (ast_sockaddr_cmp(&remote_address, &addr)) {
8386 /* do not update the originally given address, but only the remote */
8388 ast_sockaddr_copy(&remote_address, &addr);
8389 if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
8390 ast_sockaddr_copy(&rtp->rtcp->them, &addr);
8392 }
8395 ast_debug(0, "(%p) RTP NAT: Got audio from other end. Now sending to address %s\n",
8396 instance, ast_sockaddr_stringify(&remote_address));
8397 }
8398 }
8399
8400 /* Pull out the various other fields we will need */
8401 payloadtype = (seqno & 0x7f0000) >> 16;
8402 seqno &= 0xffff;
8403 timestamp = ntohl(rtpheader[1]);
8404
8405#ifdef AST_DEVMODE
8406 if (should_drop_packets(&addr)) {
8407 ast_debug(0, "(%p) RTP: drop received packet from %s (type %-2.2d, seq %-6.6u, ts %-6.6u, len %-6.6d)\n",
8408 instance, ast_sockaddr_stringify(&addr), payloadtype, seqno, timestamp, res - hdrlen);
8409 return &ast_null_frame;
8410 }
8411#endif
8412
8413 if (rtp_debug_test_addr(&addr)) {
8414 ast_verbose("Got RTP packet from %s (type %-2.2d, seq %-6.6u, ts %-6.6u, len %-6.6d)\n",
8416 payloadtype, seqno, timestamp, res - hdrlen);
8417 }
8418
8420
8421 bundled = (child || AST_VECTOR_SIZE(&rtp->ssrc_mapping)) ? 1 : 0;
8422
8423 prev_seqno = rtp->lastrxseqno;
8424 /* We need to save lastrxseqno for use by jitter before resetting it. */
8425 rtp->prevrxseqno = rtp->lastrxseqno;
8426 rtp->lastrxseqno = seqno;
8427
8428 if (!rtp->recv_buffer) {
8429 /* If there is no receive buffer then we can pass back the frame directly */
8430 frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
8432 return AST_LIST_FIRST(&frames);
8433 } else if (rtp->expectedrxseqno == -1 || seqno == rtp->expectedrxseqno) {
8434 rtp->expectedrxseqno = seqno + 1;
8435
8436 /* We've cycled over, so go back to 0 */
8437 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8438 rtp->expectedrxseqno = 0;
8439 }
8440
8441 /* If there are no buffered packets that will be placed after this frame then we can
8442 * return it directly without duplicating it.
8443 */
8445 frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
8447 return AST_LIST_FIRST(&frames);
8448 }
8449
8452 ast_debug_rtp(2, "(%p) RTP Packet with sequence number '%d' on instance is no longer missing\n",
8453 instance, seqno);
8454 }
8455
8456 /* If we don't have the next packet after this we can directly return the frame, as there is no
8457 * chance it will be overwritten.
8458 */
8460 frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
8462 return AST_LIST_FIRST(&frames);
8463 }
8464
8465 /* Otherwise we need to dupe the frame so that the potential processing of frames placed after
8466 * it do not overwrite the data. You may be thinking that we could just add the current packet
8467 * to the head of the frames list and avoid having to duplicate it but this would result in out
8468 * of order packet processing by libsrtp which we are trying to avoid.
8469 */
8470 frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled));
8471 if (frame) {
8473 prev_seqno = seqno;
8474 }
8475
8476 /* Add any additional packets that we have buffered and that are available */
8477 while (ast_data_buffer_count(rtp->recv_buffer)) {
8478 struct ast_rtp_rtcp_nack_payload *payload;
8479
8481 if (!payload) {
8482 break;
8483 }
8484
8485 frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, payload->buf, payload->size, prev_seqno, bundled));
8486 ast_free(payload);
8487
8488 if (!frame) {
8489 /* If this packet can't be interpreted due to being out of memory we return what we have and assume
8490 * that we will determine it is a missing packet later and NACK for it.
8491 */
8492 return AST_LIST_FIRST(&frames);
8493 }
8494
8495 ast_debug_rtp(2, "(%p) RTP pulled buffered packet with sequence number '%d' to additionally return\n",
8496 instance, frame->seqno);
8498 prev_seqno = rtp->expectedrxseqno;
8499 rtp->expectedrxseqno++;
8500 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8501 rtp->expectedrxseqno = 0;
8502 }
8503 }
8504
8505 return AST_LIST_FIRST(&frames);
8506 } else if ((((seqno - rtp->expectedrxseqno) > 100) && timestamp > rtp->lastividtimestamp) ||
8508 int inserted = 0;
8509
8510 /* We have a large number of outstanding buffered packets or we've jumped far ahead in time.
8511 * To compensate we dump what we have in the buffer and place the current packet in a logical
8512 * spot. In the case of video we also require a full frame to give the decoding side a fighting
8513 * chance.
8514 */
8515
8517 ast_debug_rtp(2, "(%p) RTP source has wild gap or packet loss, sending FIR\n",
8518 instance);
8519 rtp_write_rtcp_fir(instance, rtp, &remote_address);
8520 }
8521
8522 /* This works by going through the progression of the sequence number retrieving buffered packets
8523 * or inserting the current received packet until we've run out of packets. This ensures that the
8524 * packets are in the correct sequence number order.
8525 */
8526 while (ast_data_buffer_count(rtp->recv_buffer)) {
8527 struct ast_rtp_rtcp_nack_payload *payload;
8528
8529 /* If the packet we received is the one we are expecting at this point then add it in */
8530 if (rtp->expectedrxseqno == seqno) {
8531 frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled));
8532 if (frame) {
8534 prev_seqno = seqno;
8535 ast_debug_rtp(2, "(%p) RTP inserted just received packet with sequence number '%d' in correct order\n",
8536 instance, seqno);
8537 }
8538 /* It is possible due to packet retransmission for this packet to also exist in the receive
8539 * buffer so we explicitly remove it in case this occurs, otherwise the receive buffer will
8540 * never be empty.
8541 */
8542 payload = (struct ast_rtp_rtcp_nack_payload *)ast_data_buffer_remove(rtp->recv_buffer, seqno);
8543 if (payload) {
8544 ast_free(payload);
8545 }
8546 rtp->expectedrxseqno++;
8547 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8548 rtp->expectedrxseqno = 0;
8549 }
8550 inserted = 1;
8551 continue;
8552 }
8553
8555 if (payload) {
8556 frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, payload->buf, payload->size, prev_seqno, bundled));
8557 if (frame) {
8559 prev_seqno = rtp->expectedrxseqno;
8560 ast_debug_rtp(2, "(%p) RTP emptying queue and returning packet with sequence number '%d'\n",
8561 instance, frame->seqno);
8562 }
8563 ast_free(payload);
8564 }
8565
8566 rtp->expectedrxseqno++;
8567 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8568 rtp->expectedrxseqno = 0;
8569 }
8570 }
8571
8572 if (!inserted) {
8573 /* This current packet goes after them, and we assume that packets going forward will follow
8574 * that new sequence number increment. It is okay for this to not be duplicated as it is guaranteed
8575 * to be the last packet processed right now and it is also guaranteed that it will always return
8576 * non-NULL.
8577 */
8578 frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
8580 rtp->expectedrxseqno = seqno + 1;
8581 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8582 rtp->expectedrxseqno = 0;
8583 }
8584
8585 ast_debug_rtp(2, "(%p) RTP adding just received packet with sequence number '%d' to end of dumped queue\n",
8586 instance, seqno);
8587 }
8588
8589 /* When we flush increase our chance for next time by growing the receive buffer when possible
8590 * by how many packets we missed, to give ourselves a bit more breathing room.
8591 */
8594 ast_debug_rtp(2, "(%p) RTP receive buffer is now at maximum of %zu\n", instance, ast_data_buffer_max(rtp->recv_buffer));
8595
8596 /* As there is such a large gap we don't want to flood the order side with missing packets, so we
8597 * give up and start anew.
8598 */
8600
8601 return AST_LIST_FIRST(&frames);
8602 }
8603
8604 /* We're finished with the frames list */
8606
8607 /* Determine if the received packet is from the last OLD_PACKET_COUNT (1000 by default) packets or not.
8608 * For the case where the received sequence number exceeds that of the expected sequence number we calculate
8609 * the past sequence number that would be 1000 sequence numbers ago. If the received sequence number
8610 * exceeds or meets that then it is within OLD_PACKET_COUNT packets ago. For example if the expected
8611 * sequence number is 100 and we receive 65530, then it would be considered old. This is because
8612 * 65535 - 1000 + 100 = 64635 which gives us the sequence number at which we would consider the packets
8613 * old. Since 65530 is above that, it would be considered old.
8614 * For the case where the received sequence number is less than the expected sequence number we can do
8615 * a simple subtraction to see if it is 1000 packets ago or not.
8616 */
8617 if ((seqno < rtp->expectedrxseqno && ((rtp->expectedrxseqno - seqno) <= OLD_PACKET_COUNT)) ||
8618 (seqno > rtp->expectedrxseqno && (seqno >= (65535 - OLD_PACKET_COUNT + rtp->expectedrxseqno)))) {
8619 /* If this is a packet from the past then we have received a duplicate packet, so just drop it */
8620 ast_debug_rtp(2, "(%p) RTP received an old packet with sequence number '%d', dropping it\n",
8621 instance, seqno);
8622 return &ast_null_frame;
8623 } else if (ast_data_buffer_get(rtp->recv_buffer, seqno)) {
8624 /* If this is a packet we already have buffered then it is a duplicate, so just drop it */
8625 ast_debug_rtp(2, "(%p) RTP received a duplicate transmission of packet with sequence number '%d', dropping it\n",
8626 instance, seqno);
8627 return &ast_null_frame;
8628 } else {
8629 /* This is an out of order packet from the future */
8630 struct ast_rtp_rtcp_nack_payload *payload;
8631 int missing_seqno;
8632 int remove_failed;
8633 unsigned int missing_seqnos_added = 0;
8634
8635 ast_debug_rtp(2, "(%p) RTP received an out of order packet with sequence number '%d' while expecting '%d' from the future\n",
8636 instance, seqno, rtp->expectedrxseqno);
8637
8638 payload = ast_malloc(sizeof(*payload) + res);
8639 if (!payload) {
8640 /* If the payload can't be allocated then we can't defer this packet right now.
8641 * Instead of dumping what we have we pretend we lost this packet. It will then
8642 * get NACKed later or the existing buffer will be returned entirely. Well, we may
8643 * try since we're seemingly out of memory. It's a bad situation all around and
8644 * packets are likely to get lost anyway.
8645 */
8646 return &ast_null_frame;
8647 }
8648
8649 payload->size = res;
8650 memcpy(payload->buf, rtpheader, res);
8651 if (ast_data_buffer_put(rtp->recv_buffer, seqno, payload) == -1) {
8652 ast_free(payload);
8653 }
8654
8655 /* If this sequence number is removed that means we had a gap and this packet has filled it in
8656 * some. Since it was part of the gap we will have already added any other missing sequence numbers
8657 * before it (and possibly after it) to the vector so we don't need to do that again. Note that
8658 * remove_failed will be set to -1 if the sequence number isn't removed, and 0 if it is.
8659 */
8660 remove_failed = AST_VECTOR_REMOVE_CMP_ORDERED(&rtp->missing_seqno, seqno, find_by_value,
8662 if (!remove_failed) {
8663 ast_debug_rtp(2, "(%p) RTP packet with sequence number '%d' is no longer missing\n",
8664 instance, seqno);
8665 }
8666
8667 /* The missing sequence number code works by taking the sequence number of the
8668 * packet we've just received and going backwards until we hit the sequence number
8669 * of the last packet we've received. While doing so we check to make sure that the
8670 * sequence number is not already missing and that it is not already buffered.
8671 */
8672 missing_seqno = seqno;
8673 while (remove_failed) {
8674 missing_seqno -= 1;
8675
8676 /* If we've cycled backwards then start back at the top */
8677 if (missing_seqno < 0) {
8678 missing_seqno = 65535;
8679 }
8680
8681 /* We've gone backwards enough such that we've hit the previous sequence number */
8682 if (missing_seqno == prev_seqno) {
8683 break;
8684 }
8685
8686 /* We don't want missing sequence number duplicates. If, for some reason,
8687 * packets are really out of order, we could end up in this scenario:
8688 *
8689 * We are expecting sequence number 100
8690 * We receive sequence number 105
8691 * Sequence numbers 100 through 104 get added to the vector
8692 * We receive sequence number 101 (this section is skipped)
8693 * We receive sequence number 103
8694 * Sequence number 102 is added to the vector
8695 *
8696 * This will prevent the duplicate from being added.
8697 */
8698 if (AST_VECTOR_GET_CMP(&rtp->missing_seqno, missing_seqno,
8699 find_by_value)) {
8700 continue;
8701 }
8702
8703 /* If this packet has been buffered already then don't count it amongst the
8704 * missing.
8705 */
8706 if (ast_data_buffer_get(rtp->recv_buffer, missing_seqno)) {
8707 continue;
8708 }
8709
8710 ast_debug_rtp(2, "(%p) RTP added missing sequence number '%d'\n",
8711 instance, missing_seqno);
8712 AST_VECTOR_ADD_SORTED(&rtp->missing_seqno, missing_seqno,
8714 missing_seqnos_added++;
8715 }
8716
8717 /* When we add a large number of missing sequence numbers we assume there was a substantial
8718 * gap in reception so we trigger an immediate NACK. When our data buffer is 1/4 full we
8719 * assume that the packets aren't just out of order but have actually been lost. At 1/2
8720 * full we get more aggressive and ask for retransmission when we get a new packet.
8721 * To get them back we construct and send a NACK causing the sender to retransmit them.
8722 */
8723 if (missing_seqnos_added >= MISSING_SEQNOS_ADDED_TRIGGER ||
8726 int packet_len = 0;
8727 int res = 0;
8728 int ice;
8729 int sr;
8730 size_t data_size = AST_UUID_STR_LEN + 128 + (AST_VECTOR_SIZE(&rtp->missing_seqno) * 4);
8731 RAII_VAR(unsigned char *, rtcpheader, NULL, ast_free_ptr);
8732 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report,
8734 ao2_cleanup);
8735
8736 /* Sufficient space for RTCP headers and report, SDES with CNAME, NACK header,
8737 * and worst case 4 bytes per missing sequence number.
8738 */
8739 rtcpheader = ast_malloc(sizeof(*rtcpheader) + data_size);
8740 if (!rtcpheader) {
8741 ast_debug_rtcp(1, "(%p) RTCP failed to allocate memory for NACK\n", instance);
8742 return &ast_null_frame;
8743 }
8744
8745 memset(rtcpheader, 0, data_size);
8746
8747 res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
8748
8749 if (res == 0 || res == 1) {
8750 return &ast_null_frame;
8751 }
8752
8753 packet_len += res;
8754
8755 res = ast_rtcp_generate_nack(instance, rtcpheader + packet_len);
8756
8757 if (res == 0) {
8758 ast_debug_rtcp(1, "(%p) RTCP failed to construct NACK, stopping here\n", instance);
8759 return &ast_null_frame;
8760 }
8761
8762 packet_len += res;
8763
8764 res = rtcp_sendto(instance, rtcpheader, packet_len, 0, &remote_address, &ice);
8765 if (res < 0) {
8766 ast_debug_rtcp(1, "(%p) RTCP failed to send NACK request out\n", instance);
8767 } else {
8768 ast_debug_rtcp(2, "(%p) RTCP sending a NACK request to get missing packets\n", instance);
8769 /* Update RTCP SR/RR statistics */
8770 ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, remote_address, ice, sr);
8771 }
8772 }
8773 }
8774
8775 return &ast_null_frame;
8776}
8777
8778/*! \pre instance is locked */
8779static void ast_rtp_prop_set(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value)
8780{
8781 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
8782
8783 if (property == AST_RTP_PROPERTY_RTCP) {
8784 if (value) {
8785 struct ast_sockaddr local_addr;
8786
8787 if (rtp->rtcp && rtp->rtcp->type == value) {
8788 ast_debug_rtcp(1, "(%p) RTCP ignoring duplicate property\n", instance);
8789 return;
8790 }
8791
8792 if (!rtp->rtcp) {
8793 rtp->rtcp = ast_calloc(1, sizeof(*rtp->rtcp));
8794 if (!rtp->rtcp) {
8795 return;
8796 }
8797 rtp->rtcp->s = -1;
8798#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
8799 rtp->rtcp->dtls.timeout_timer = -1;
8800#endif
8801 rtp->rtcp->schedid = -1;
8802 }
8803
8804 rtp->rtcp->type = value;
8805
8806 /* Grab the IP address and port we are going to use */
8807 ast_rtp_instance_get_local_address(instance, &rtp->rtcp->us);
8810 ast_sockaddr_port(&rtp->rtcp->us) + 1);
8811 }
8812
8813 ast_sockaddr_copy(&local_addr, &rtp->rtcp->us);
8814 if (!ast_find_ourip(&local_addr, &rtp->rtcp->us, 0)) {
8815 ast_sockaddr_set_port(&local_addr, ast_sockaddr_port(&rtp->rtcp->us));
8816 } else {
8817 /* Failed to get local address reset to use default. */
8818 ast_sockaddr_copy(&local_addr, &rtp->rtcp->us);
8819 }
8820
8823 if (!rtp->rtcp->local_addr_str) {
8824 ast_free(rtp->rtcp);
8825 rtp->rtcp = NULL;
8826 return;
8827 }
8828
8830 /* We're either setting up RTCP from scratch or
8831 * switching from MUX. Either way, we won't have
8832 * a socket set up, and we need to set it up
8833 */
8834 if ((rtp->rtcp->s =
8835 create_new_socket("RTCP",
8836 ast_sockaddr_is_ipv4(&rtp->rtcp->us) ?
8837 AF_INET :
8838 ast_sockaddr_is_ipv6(&rtp->rtcp->us) ?
8839 AF_INET6 : -1)) < 0) {
8840 ast_debug_rtcp(1, "(%p) RTCP failed to create a new socket\n", instance);
8842 ast_free(rtp->rtcp);
8843 rtp->rtcp = NULL;
8844 return;
8845 }
8846
8847 /* Try to actually bind to the IP address and port we are going to use for RTCP, if this fails we have to bail out */
8848 if (ast_bind(rtp->rtcp->s, &rtp->rtcp->us)) {
8849 ast_debug_rtcp(1, "(%p) RTCP failed to setup RTP instance\n", instance);
8850 close(rtp->rtcp->s);
8852 ast_free(rtp->rtcp);
8853 rtp->rtcp = NULL;
8854 return;
8855 }
8856#ifdef HAVE_PJPROJECT
8857 if (rtp->ice) {
8858 rtp_add_candidates_to_ice(instance, rtp, &rtp->rtcp->us, ast_sockaddr_port(&rtp->rtcp->us), AST_RTP_ICE_COMPONENT_RTCP, TRANSPORT_SOCKET_RTCP);
8859 }
8860#endif
8861#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
8862 dtls_setup_rtcp(instance);
8863#endif
8864 } else {
8865 struct ast_sockaddr addr;
8866 /* RTCPMUX uses the same socket as RTP. If we were previously using standard RTCP
8867 * then close the socket we previously created.
8868 *
8869 * It may seem as though there is a possible race condition here where we might try
8870 * to close the RTCP socket while it is being used to send data. However, this is not
8871 * a problem in practice since setting and adjusting of RTCP properties happens prior
8872 * to activating RTP. It is not until RTP is activated that timers start for RTCP
8873 * transmission
8874 */
8875 if (rtp->rtcp->s > -1 && rtp->rtcp->s != rtp->s) {
8876 close(rtp->rtcp->s);
8877 }
8878 rtp->rtcp->s = rtp->s;
8879 ast_rtp_instance_get_remote_address(instance, &addr);
8880 ast_sockaddr_copy(&rtp->rtcp->them, &addr);
8881#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
8882 if (rtp->rtcp->dtls.ssl && rtp->rtcp->dtls.ssl != rtp->dtls.ssl) {
8883 SSL_free(rtp->rtcp->dtls.ssl);
8884 }
8885 rtp->rtcp->dtls.ssl = rtp->dtls.ssl;
8886#endif
8887 }
8888
8889 ast_debug_rtcp(1, "(%s) RTCP setup on RTP instance\n",
8891 } else {
8892 if (rtp->rtcp) {
8893 if (rtp->rtcp->schedid > -1) {
8894 ao2_unlock(instance);
8895 if (!ast_sched_del(rtp->sched, rtp->rtcp->schedid)) {
8896 /* Successfully cancelled scheduler entry. */
8897 ao2_ref(instance, -1);
8898 } else {
8899 /* Unable to cancel scheduler entry */
8900 ast_debug_rtcp(1, "(%p) RTCP failed to tear down RTCP\n", instance);
8901 ao2_lock(instance);
8902 return;
8903 }
8904 ao2_lock(instance);
8905 rtp->rtcp->schedid = -1;
8906 }
8907 if (rtp->transport_wide_cc.schedid > -1) {
8908 ao2_unlock(instance);
8909 if (!ast_sched_del(rtp->sched, rtp->transport_wide_cc.schedid)) {
8910 ao2_ref(instance, -1);
8911 } else {
8912 ast_debug_rtcp(1, "(%p) RTCP failed to tear down transport-cc feedback\n", instance);
8913 ao2_lock(instance);
8914 return;
8915 }
8916 ao2_lock(instance);
8917 rtp->transport_wide_cc.schedid = -1;
8918 }
8919 if (rtp->rtcp->s > -1 && rtp->rtcp->s != rtp->s) {
8920 close(rtp->rtcp->s);
8921 }
8922#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
8923 ao2_unlock(instance);
8924 dtls_srtp_stop_timeout_timer(instance, rtp, 1);
8925 ao2_lock(instance);
8926
8927 if (rtp->rtcp->dtls.ssl && rtp->rtcp->dtls.ssl != rtp->dtls.ssl) {
8928 SSL_free(rtp->rtcp->dtls.ssl);
8929 }
8930#endif
8932 ast_free(rtp->rtcp);
8933 rtp->rtcp = NULL;
8934 ast_debug_rtcp(1, "(%s) RTCP torn down on RTP instance\n",
8936 }
8937 }
8938 } else if (property == AST_RTP_PROPERTY_ASYMMETRIC_CODEC) {
8939 rtp->asymmetric_codec = value;
8940 } else if (property == AST_RTP_PROPERTY_RETRANS_SEND) {
8941 if (value) {
8942 if (!rtp->send_buffer) {
8944 }
8945 } else {
8946 if (rtp->send_buffer) {
8948 rtp->send_buffer = NULL;
8949 }
8950 }
8951 } else if (property == AST_RTP_PROPERTY_RETRANS_RECV) {
8952 if (value) {
8953 if (!rtp->recv_buffer) {
8956 }
8957 } else {
8958 if (rtp->recv_buffer) {
8960 rtp->recv_buffer = NULL;
8962 }
8963 }
8964 }
8965}
8966
8967/*! \pre instance is locked */
8968static int ast_rtp_fd(struct ast_rtp_instance *instance, int rtcp)
8969{
8970 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
8971
8972 return rtcp ? (rtp->rtcp ? rtp->rtcp->s : -1) : rtp->s;
8973}
8974
8975/*! \pre instance is locked */
8976static void ast_rtp_remote_address_set(struct ast_rtp_instance *instance, struct ast_sockaddr *addr)
8977{
8978 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
8979 struct ast_sockaddr local;
8980 int index;
8981
8982 ast_rtp_instance_get_local_address(instance, &local);
8983 if (!ast_sockaddr_isnull(addr)) {
8984 /* Update the local RTP address with what is being used */
8985 if (ast_ouraddrfor(addr, &local)) {
8986 /* Failed to update our address so reuse old local address */
8987 ast_rtp_instance_get_local_address(instance, &local);
8988 } else {
8989 ast_rtp_instance_set_local_address(instance, &local);
8990 }
8991 }
8992
8993 if (rtp->rtcp && !ast_sockaddr_isnull(addr)) {
8994 ast_debug_rtcp(1, "(%p) RTCP setting address on RTP instance\n", instance);
8995 ast_sockaddr_copy(&rtp->rtcp->them, addr);
8996
8999
9000 /* Update the local RTCP address with what is being used */
9001 ast_sockaddr_set_port(&local, ast_sockaddr_port(&local) + 1);
9002 }
9003 ast_sockaddr_copy(&rtp->rtcp->us, &local);
9004
9007 }
9008
9009 /* Update any bundled RTP instances */
9010 for (index = 0; index < AST_VECTOR_SIZE(&rtp->ssrc_mapping); ++index) {
9011 struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&rtp->ssrc_mapping, index);
9012
9014 }
9015
9016 /* Need to reset the DTMF last sequence number and the timestamp of the last END packet */
9017 rtp->last_seqno = 0;
9018 rtp->last_end_timestamp.ts = 0;
9019 rtp->last_end_timestamp.is_set = 0;
9020
9022 && !ast_sockaddr_isnull(addr) && ast_sockaddr_cmp(addr, &rtp->strict_rtp_address)) {
9023 /* We only need to learn a new strict source address if we've been told the source is
9024 * changing to something different.
9025 */
9026 ast_verb(4, "%p -- Strict RTP learning after remote address set to: %s\n",
9027 rtp, ast_sockaddr_stringify(addr));
9028 rtp_learning_start(rtp);
9029 }
9030}
9031
9032/*!
9033 * \brief Write t140 redundancy frame
9034 *
9035 * \param data primary data to be buffered
9036 *
9037 * Scheduler callback
9038 */
9039static int red_write(const void *data)
9040{
9041 struct ast_rtp_instance *instance = (struct ast_rtp_instance*) data;
9042 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9043
9044 ao2_lock(instance);
9045 if (rtp->red->t140.datalen > 0) {
9046 ast_rtp_write(instance, &rtp->red->t140);
9047 }
9048 ao2_unlock(instance);
9049
9050 return 1;
9051}
9052
9053/*! \pre instance is locked */
9054static int rtp_red_init(struct ast_rtp_instance *instance, int buffer_time, int *payloads, int generations)
9055{
9056 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9057 int x;
9058
9059 rtp->red = ast_calloc(1, sizeof(*rtp->red));
9060 if (!rtp->red) {
9061 return -1;
9062 }
9063
9066 rtp->red->t140.data.ptr = &rtp->red->buf_data;
9067
9068 rtp->red->t140red = rtp->red->t140;
9069 rtp->red->t140red.data.ptr = &rtp->red->t140red_data;
9070
9071 rtp->red->ti = buffer_time;
9072 rtp->red->num_gen = generations;
9073 rtp->red->hdrlen = generations * 4 + 1;
9074
9075 for (x = 0; x < generations; x++) {
9076 rtp->red->pt[x] = payloads[x];
9077 rtp->red->pt[x] |= 1 << 7; /* mark redundant generations pt */
9078 rtp->red->t140red_data[x*4] = rtp->red->pt[x];
9079 }
9080 rtp->red->t140red_data[x*4] = rtp->red->pt[x] = payloads[x]; /* primary pt */
9081 rtp->red->schedid = ast_sched_add(rtp->sched, generations, red_write, instance);
9082
9083 return 0;
9084}
9085
9086/*! \pre instance is locked */
9087static int rtp_red_buffer(struct ast_rtp_instance *instance, struct ast_frame *frame)
9088{
9089 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9090 struct rtp_red *red = rtp->red;
9091
9092 if (!red) {
9093 return 0;
9094 }
9095
9096 if (frame->datalen > 0) {
9097 if (red->t140.datalen > 0) {
9098 const unsigned char *primary = red->buf_data;
9099
9100 /* There is something already in the T.140 buffer */
9101 if (primary[0] == 0x08 || primary[0] == 0x0a || primary[0] == 0x0d) {
9102 /* Flush the previous T.140 packet if it is a command */
9103 ast_rtp_write(instance, &rtp->red->t140);
9104 } else {
9105 primary = frame->data.ptr;
9106 if (primary[0] == 0x08 || primary[0] == 0x0a || primary[0] == 0x0d) {
9107 /* Flush the previous T.140 packet if we are buffering a command now */
9108 ast_rtp_write(instance, &rtp->red->t140);
9109 }
9110 }
9111 }
9112
9113 memcpy(&red->buf_data[red->t140.datalen], frame->data.ptr, frame->datalen);
9114 red->t140.datalen += frame->datalen;
9115 red->t140.ts = frame->ts;
9116 }
9117
9118 return 0;
9119}
9120
9121/*! \pre Neither instance0 nor instance1 are locked */
9122static int ast_rtp_local_bridge(struct ast_rtp_instance *instance0, struct ast_rtp_instance *instance1)
9123{
9124 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance0);
9125
9126 ao2_lock(instance0);
9128 if (rtp->smoother) {
9130 rtp->smoother = NULL;
9131 }
9132
9133 /* We must use a new SSRC when local bridge ends */
9134 if (!instance1) {
9135 rtp->ssrc = rtp->ssrc_orig;
9136 rtp->ssrc_orig = 0;
9137 rtp->ssrc_saved = 0;
9138 } else if (!rtp->ssrc_saved) {
9139 /* In case ast_rtp_local_bridge is called multiple times, only save the ssrc from before local bridge began */
9140 rtp->ssrc_orig = rtp->ssrc;
9141 rtp->ssrc_saved = 1;
9142 }
9143
9144 ao2_unlock(instance0);
9145
9146 return 0;
9147}
9148
9149/*! \pre instance is locked */
9150static int ast_rtp_get_stat(struct ast_rtp_instance *instance, struct ast_rtp_instance_stats *stats, enum ast_rtp_instance_stat stat)
9151{
9152 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9153
9154 if (!rtp->rtcp) {
9155 return -1;
9156 }
9157
9162
9174
9186
9193
9205
9206
9210
9211 return 0;
9212}
9213
9214/*! \pre Neither instance0 nor instance1 are locked */
9215static int ast_rtp_dtmf_compatible(struct ast_channel *chan0, struct ast_rtp_instance *instance0, struct ast_channel *chan1, struct ast_rtp_instance *instance1)
9216{
9217 /* If both sides are not using the same method of DTMF transmission
9218 * (ie: one is RFC2833, other is INFO... then we can not do direct media.
9219 * --------------------------------------------------
9220 * | DTMF Mode | HAS_DTMF | Accepts Begin Frames |
9221 * |-----------|------------|-----------------------|
9222 * | Inband | False | True |
9223 * | RFC2833 | True | True |
9224 * | SIP INFO | False | False |
9225 * --------------------------------------------------
9226 */
9228 (!ast_channel_tech(chan0)->send_digit_begin != !ast_channel_tech(chan1)->send_digit_begin)) ? 0 : 1);
9229}
9230
9231/*! \pre instance is NOT locked */
9232static void ast_rtp_stun_request(struct ast_rtp_instance *instance, struct ast_sockaddr *suggestion, const char *username)
9233{
9234 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9235 struct sockaddr_in suggestion_tmp;
9236
9237 /*
9238 * The instance should not be locked because we can block
9239 * waiting for a STUN respone.
9240 */
9241 ast_sockaddr_to_sin(suggestion, &suggestion_tmp);
9242 ast_stun_request(rtp->s, &suggestion_tmp, username, NULL);
9243 ast_sockaddr_from_sin(suggestion, &suggestion_tmp);
9244}
9245
9246/*! \pre instance is locked */
9247static void ast_rtp_stop(struct ast_rtp_instance *instance)
9248{
9249 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9250 struct ast_sockaddr addr = { {0,} };
9251
9252#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
9253 ao2_unlock(instance);
9254 AST_SCHED_DEL_UNREF(rtp->sched, rtp->rekeyid, ao2_ref(instance, -1));
9255
9256 dtls_srtp_stop_timeout_timer(instance, rtp, 0);
9257 if (rtp->rtcp) {
9258 dtls_srtp_stop_timeout_timer(instance, rtp, 1);
9259 }
9260 ao2_lock(instance);
9261#endif
9262 ast_debug_rtp(1, "(%s) RTP Stop\n",
9264
9265 if (rtp->rtcp && rtp->rtcp->schedid > -1) {
9266 ao2_unlock(instance);
9267 if (!ast_sched_del(rtp->sched, rtp->rtcp->schedid)) {
9268 /* successfully cancelled scheduler entry. */
9269 ao2_ref(instance, -1);
9270 }
9271 ao2_lock(instance);
9272 rtp->rtcp->schedid = -1;
9273 }
9274
9275 if (rtp->transport_wide_cc.schedid > -1) {
9276 ao2_unlock(instance);
9277 if (!ast_sched_del(rtp->sched, rtp->transport_wide_cc.schedid)) {
9278 ao2_ref(instance, -1);
9279 }
9280 ao2_lock(instance);
9281 rtp->transport_wide_cc.schedid = -1;
9282 }
9283
9284 if (rtp->red) {
9285 ao2_unlock(instance);
9286 AST_SCHED_DEL(rtp->sched, rtp->red->schedid);
9287 ao2_lock(instance);
9288 ast_free(rtp->red);
9289 rtp->red = NULL;
9290 }
9291
9292 ast_rtp_instance_set_remote_address(instance, &addr);
9293
9295}
9296
9297/*! \pre instance is locked */
9298static int ast_rtp_qos_set(struct ast_rtp_instance *instance, int tos, int cos, const char *desc)
9299{
9300 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9301
9302 return ast_set_qos(rtp->s, tos, cos, desc);
9303}
9304
9305/*!
9306 * \brief generate comfort noice (CNG)
9307 *
9308 * \pre instance is locked
9309 */
9310static int ast_rtp_sendcng(struct ast_rtp_instance *instance, int level)
9311{
9312 unsigned int *rtpheader;
9313 int hdrlen = 12;
9314 int res, payload = 0;
9315 char data[256];
9316 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9317 struct ast_sockaddr remote_address = { {0,} };
9318 int ice;
9319
9320 ast_rtp_instance_get_remote_address(instance, &remote_address);
9321
9322 if (ast_sockaddr_isnull(&remote_address)) {
9323 return -1;
9324 }
9325
9327
9328 level = 127 - (level & 0x7f);
9329
9330 rtp->dtmfmute = ast_tvadd(ast_tvnow(), ast_tv(0, 500000));
9331
9332 /* Get a pointer to the header */
9333 rtpheader = (unsigned int *)data;
9334 rtpheader[0] = htonl((2 << 30) | (payload << 16) | (rtp->seqno));
9335 rtpheader[1] = htonl(rtp->lastts);
9336 rtpheader[2] = htonl(rtp->ssrc);
9337 data[12] = level;
9338
9339 res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 1, 0, &remote_address, &ice);
9340
9341 if (res < 0) {
9342 ast_log(LOG_ERROR, "RTP Comfort Noise Transmission error to %s: %s\n", ast_sockaddr_stringify(&remote_address), strerror(errno));
9343 return res;
9344 }
9345
9346 if (rtp_debug_test_addr(&remote_address)) {
9347 ast_verbose("Sent Comfort Noise RTP packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
9348 ast_sockaddr_stringify(&remote_address),
9349 ice ? " (via ICE)" : "",
9350 AST_RTP_CN, rtp->seqno, rtp->lastdigitts, res - hdrlen);
9351 }
9352
9353 rtp->seqno++;
9354
9355 return res;
9356}
9357
9358/*! \pre instance is locked */
9359static unsigned int ast_rtp_get_ssrc(struct ast_rtp_instance *instance)
9360{
9361 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9362
9363 return rtp->ssrc;
9364}
9365
9366/*! \pre instance is locked */
9367static const char *ast_rtp_get_cname(struct ast_rtp_instance *instance)
9368{
9369 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9370
9371 return rtp->cname;
9372}
9373
9374/*! \pre instance is locked */
9375static void ast_rtp_set_remote_ssrc(struct ast_rtp_instance *instance, unsigned int ssrc)
9376{
9377 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9378
9379 if (rtp->themssrc_valid && rtp->themssrc == ssrc) {
9380 return;
9381 }
9382
9383 rtp->themssrc = ssrc;
9384 rtp->themssrc_valid = 1;
9385
9386 /* If this is bundled we need to update the SSRC mapping */
9387 if (rtp->bundled) {
9388 struct ast_rtp *bundled_rtp;
9389 int index;
9390
9391 ao2_unlock(instance);
9392
9393 /* The child lock can't be held while accessing the parent */
9394 ao2_lock(rtp->bundled);
9395 bundled_rtp = ast_rtp_instance_get_data(rtp->bundled);
9396
9397 for (index = 0; index < AST_VECTOR_SIZE(&bundled_rtp->ssrc_mapping); ++index) {
9398 struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&bundled_rtp->ssrc_mapping, index);
9399
9400 if (mapping->instance == instance) {
9401 mapping->ssrc = ssrc;
9402 mapping->ssrc_valid = 1;
9403 break;
9404 }
9405 }
9406
9407 ao2_unlock(rtp->bundled);
9408
9410 }
9411}
9412
9413static void ast_rtp_set_stream_num(struct ast_rtp_instance *instance, int stream_num)
9414{
9415 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9416
9417 rtp->stream_num = stream_num;
9418}
9419
9421{
9422 switch (extension) {
9425 return 1;
9426 default:
9427 return 0;
9428 }
9429}
9430
9431/*! \pre child is locked */
9432static int ast_rtp_bundle(struct ast_rtp_instance *child, struct ast_rtp_instance *parent)
9433{
9434 struct ast_rtp *child_rtp = ast_rtp_instance_get_data(child);
9435 struct ast_rtp *parent_rtp;
9436 struct rtp_ssrc_mapping mapping;
9437 struct ast_sockaddr them = { { 0, } };
9438
9439 if (child_rtp->bundled == parent) {
9440 return 0;
9441 }
9442
9443 /* If this instance was already bundled then remove the SSRC mapping */
9444 if (child_rtp->bundled) {
9445 struct ast_rtp *bundled_rtp;
9446
9447 ao2_unlock(child);
9448
9449 /* The child lock can't be held while accessing the parent */
9450 ao2_lock(child_rtp->bundled);
9451 bundled_rtp = ast_rtp_instance_get_data(child_rtp->bundled);
9453 ao2_unlock(child_rtp->bundled);
9454
9455 ao2_lock(child);
9456 ao2_ref(child_rtp->bundled, -1);
9457 child_rtp->bundled = NULL;
9458 }
9459
9460 if (!parent) {
9461 /* We transitioned away from bundle so we need our own transport resources once again */
9462 rtp_allocate_transport(child, child_rtp);
9463 return 0;
9464 }
9465
9466 parent_rtp = ast_rtp_instance_get_data(parent);
9467
9468 /* We no longer need any transport related resources as we will use our parent RTP instance instead */
9469 rtp_deallocate_transport(child, child_rtp);
9470
9471 /* Children maintain a reference to the parent to guarantee that the transport doesn't go away on them */
9472 child_rtp->bundled = ao2_bump(parent);
9473
9474 mapping.ssrc = child_rtp->themssrc;
9475 mapping.ssrc_valid = child_rtp->themssrc_valid;
9476 mapping.instance = child;
9477
9478 ao2_unlock(child);
9479
9480 ao2_lock(parent);
9481
9482 AST_VECTOR_APPEND(&parent_rtp->ssrc_mapping, mapping);
9483
9484#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
9485 /* If DTLS-SRTP is already in use then add the local SSRC to it, otherwise it will get added once DTLS
9486 * negotiation has been completed.
9487 */
9488 if (parent_rtp->dtls.connection == AST_RTP_DTLS_CONNECTION_EXISTING) {
9489 dtls_srtp_add_local_ssrc(parent_rtp, parent, 0, child_rtp->ssrc, 0);
9490 }
9491#endif
9492
9493 /* Bundle requires that RTCP-MUX be in use so only the main remote address needs to match */
9495
9496 ao2_unlock(parent);
9497
9498 ao2_lock(child);
9499
9501
9502 return 0;
9503}
9504
9505#ifdef HAVE_PJPROJECT
9506static void stunaddr_resolve_callback(const struct ast_dns_query *query)
9507{
9508 const int lowest_ttl = ast_dns_result_get_lowest_ttl(ast_dns_query_get_result(query));
9509 const char *stunaddr_name = ast_dns_query_get_name(query);
9510 const char *stunaddr_resolved_str;
9511
9512 if (!store_stunaddr_resolved(query)) {
9513 ast_log(LOG_WARNING, "Failed to resolve stunaddr '%s'. Cancelling recurring resolution.\n", stunaddr_name);
9514 return;
9515 }
9516
9517 if (DEBUG_ATLEAST(2)) {
9518 ast_rwlock_rdlock(&stunaddr_lock);
9519 stunaddr_resolved_str = ast_inet_ntoa(stunaddr.sin_addr);
9520 ast_rwlock_unlock(&stunaddr_lock);
9521
9522 ast_debug_stun(2, "Resolved stunaddr '%s' to '%s'. Lowest TTL = %d.\n",
9523 stunaddr_name,
9524 stunaddr_resolved_str,
9525 lowest_ttl);
9526 }
9527
9528 if (!lowest_ttl) {
9529 ast_log(LOG_WARNING, "Resolution for stunaddr '%s' returned TTL = 0. Recurring resolution was cancelled.\n", ast_dns_query_get_name(query));
9530 }
9531}
9532
9533static int store_stunaddr_resolved(const struct ast_dns_query *query)
9534{
9535 const struct ast_dns_result *result = ast_dns_query_get_result(query);
9536 const struct ast_dns_record *record;
9537
9538 for (record = ast_dns_result_get_records(result); record; record = ast_dns_record_get_next(record)) {
9539 const size_t data_size = ast_dns_record_get_data_size(record);
9540 const unsigned char *data = (unsigned char *)ast_dns_record_get_data(record);
9541 const int rr_type = ast_dns_record_get_rr_type(record);
9542
9543 if (rr_type == ns_t_a && data_size == 4) {
9544 ast_rwlock_wrlock(&stunaddr_lock);
9545 memcpy(&stunaddr.sin_addr, data, data_size);
9546 stunaddr.sin_family = AF_INET;
9547 ast_rwlock_unlock(&stunaddr_lock);
9548
9549 return 1;
9550 } else {
9551 ast_debug_stun(3, "Unrecognized rr_type '%u' or data_size '%zu' from DNS query for stunaddr '%s'\n",
9552 rr_type, data_size, ast_dns_query_get_name(query));
9553 continue;
9554 }
9555 }
9556 return 0;
9557}
9558
9559static void clean_stunaddr(void) {
9560 if (stunaddr_resolver) {
9561 if (ast_dns_resolve_recurring_cancel(stunaddr_resolver)) {
9562 ast_log(LOG_ERROR, "Failed to cancel recurring DNS resolution of previous stunaddr.\n");
9563 }
9564 ao2_ref(stunaddr_resolver, -1);
9565 stunaddr_resolver = NULL;
9566 }
9567 ast_rwlock_wrlock(&stunaddr_lock);
9568 memset(&stunaddr, 0, sizeof(stunaddr));
9569 ast_rwlock_unlock(&stunaddr_lock);
9570}
9571#endif
9572
9573#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
9574/*! \pre instance is locked */
9575static int ast_rtp_activate(struct ast_rtp_instance *instance)
9576{
9577 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9578
9579 /* If ICE negotiation is enabled the DTLS Handshake will be performed upon completion of it */
9580#ifdef HAVE_PJPROJECT
9581 if (rtp->ice) {
9582 return 0;
9583 }
9584#endif
9585
9586 ast_debug_dtls(3, "(%p) DTLS - ast_rtp_activate rtp=%p - setup and perform DTLS'\n", instance, rtp);
9587
9588 dtls_perform_setup(&rtp->dtls);
9589 dtls_perform_handshake(instance, &rtp->dtls, 0);
9590
9591 if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
9592 dtls_perform_setup(&rtp->rtcp->dtls);
9593 dtls_perform_handshake(instance, &rtp->rtcp->dtls, 1);
9594 }
9595
9596 return 0;
9597}
9598#endif
9599
9600static char *rtp_do_debug_ip(struct ast_cli_args *a)
9601{
9602 char *arg = ast_strdupa(a->argv[4]);
9603 char *debughost = NULL;
9604 char *debugport = NULL;
9605
9606 if (!ast_sockaddr_parse(&rtpdebugaddr, arg, 0) || !ast_sockaddr_split_hostport(arg, &debughost, &debugport, 0)) {
9607 ast_cli(a->fd, "Lookup failed for '%s'\n", arg);
9608 return CLI_FAILURE;
9609 }
9610 rtpdebugport = (!ast_strlen_zero(debugport) && debugport[0] != '0');
9611 ast_cli(a->fd, "RTP Packet Debugging Enabled for address: %s\n",
9614 return CLI_SUCCESS;
9615}
9616
9617static char *rtcp_do_debug_ip(struct ast_cli_args *a)
9618{
9619 char *arg = ast_strdupa(a->argv[4]);
9620 char *debughost = NULL;
9621 char *debugport = NULL;
9622
9623 if (!ast_sockaddr_parse(&rtcpdebugaddr, arg, 0) || !ast_sockaddr_split_hostport(arg, &debughost, &debugport, 0)) {
9624 ast_cli(a->fd, "Lookup failed for '%s'\n", arg);
9625 return CLI_FAILURE;
9626 }
9627 rtcpdebugport = (!ast_strlen_zero(debugport) && debugport[0] != '0');
9628 ast_cli(a->fd, "RTCP Packet Debugging Enabled for address: %s\n",
9631 return CLI_SUCCESS;
9632}
9633
9634static char *handle_cli_rtp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9635{
9636 switch (cmd) {
9637 case CLI_INIT:
9638 e->command = "rtp set debug {on|off|ip}";
9639 e->usage =
9640 "Usage: rtp set debug {on|off|ip host[:port]}\n"
9641 " Enable/Disable dumping of all RTP packets. If 'ip' is\n"
9642 " specified, limit the dumped packets to those to and from\n"
9643 " the specified 'host' with optional port.\n";
9644 return NULL;
9645 case CLI_GENERATE:
9646 return NULL;
9647 }
9648
9649 if (a->argc == e->args) { /* set on or off */
9650 if (!strncasecmp(a->argv[e->args-1], "on", 2)) {
9652 memset(&rtpdebugaddr, 0, sizeof(rtpdebugaddr));
9653 ast_cli(a->fd, "RTP Packet Debugging Enabled\n");
9654 return CLI_SUCCESS;
9655 } else if (!strncasecmp(a->argv[e->args-1], "off", 3)) {
9657 ast_cli(a->fd, "RTP Packet Debugging Disabled\n");
9658 return CLI_SUCCESS;
9659 }
9660 } else if (a->argc == e->args +1) { /* ip */
9661 return rtp_do_debug_ip(a);
9662 }
9663
9664 return CLI_SHOWUSAGE; /* default, failure */
9665}
9666
9667
9668static char *handle_cli_rtp_settings(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9669{
9670#ifdef HAVE_PJPROJECT
9671 struct sockaddr_in stunaddr_copy;
9672#endif
9673 switch (cmd) {
9674 case CLI_INIT:
9675 e->command = "rtp show settings";
9676 e->usage =
9677 "Usage: rtp show settings\n"
9678 " Display RTP configuration settings\n";
9679 return NULL;
9680 case CLI_GENERATE:
9681 return NULL;
9682 }
9683
9684 if (a->argc != 3) {
9685 return CLI_SHOWUSAGE;
9686 }
9687
9688 ast_cli(a->fd, "\n\nGeneral Settings:\n");
9689 ast_cli(a->fd, "----------------\n");
9690 ast_cli(a->fd, " Port start: %d\n", rtpstart);
9691 ast_cli(a->fd, " Port end: %d\n", rtpend);
9692#ifdef SO_NO_CHECK
9693 ast_cli(a->fd, " Checksums: %s\n", AST_CLI_YESNO(nochecksums == 0));
9694#endif
9695 ast_cli(a->fd, " DTMF Timeout: %d\n", dtmftimeout);
9696 ast_cli(a->fd, " Strict RTP: %s\n", AST_CLI_YESNO(strictrtp));
9697
9698 if (strictrtp) {
9699 ast_cli(a->fd, " Probation: %d frames\n", learning_min_sequential);
9700 }
9701
9702 ast_cli(a->fd, " Replay Protect: %s\n", AST_CLI_YESNO(srtp_replay_protection));
9703#ifdef HAVE_PJPROJECT
9704 ast_cli(a->fd, " ICE support: %s\n", AST_CLI_YESNO(icesupport));
9705
9706 ast_rwlock_rdlock(&stunaddr_lock);
9707 memcpy(&stunaddr_copy, &stunaddr, sizeof(stunaddr));
9708 ast_rwlock_unlock(&stunaddr_lock);
9709 ast_cli(a->fd, " STUN address: %s:%d\n", ast_inet_ntoa(stunaddr_copy.sin_addr), htons(stunaddr_copy.sin_port));
9710#endif
9711 return CLI_SUCCESS;
9712}
9713
9714
9715static char *handle_cli_rtcp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9716{
9717 switch (cmd) {
9718 case CLI_INIT:
9719 e->command = "rtcp set debug {on|off|ip}";
9720 e->usage =
9721 "Usage: rtcp set debug {on|off|ip host[:port]}\n"
9722 " Enable/Disable dumping of all RTCP packets. If 'ip' is\n"
9723 " specified, limit the dumped packets to those to and from\n"
9724 " the specified 'host' with optional port.\n";
9725 return NULL;
9726 case CLI_GENERATE:
9727 return NULL;
9728 }
9729
9730 if (a->argc == e->args) { /* set on or off */
9731 if (!strncasecmp(a->argv[e->args-1], "on", 2)) {
9733 memset(&rtcpdebugaddr, 0, sizeof(rtcpdebugaddr));
9734 ast_cli(a->fd, "RTCP Packet Debugging Enabled\n");
9735 return CLI_SUCCESS;
9736 } else if (!strncasecmp(a->argv[e->args-1], "off", 3)) {
9738 ast_cli(a->fd, "RTCP Packet Debugging Disabled\n");
9739 return CLI_SUCCESS;
9740 }
9741 } else if (a->argc == e->args +1) { /* ip */
9742 return rtcp_do_debug_ip(a);
9743 }
9744
9745 return CLI_SHOWUSAGE; /* default, failure */
9746}
9747
9748static char *handle_cli_rtcp_set_stats(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9749{
9750 switch (cmd) {
9751 case CLI_INIT:
9752 e->command = "rtcp set stats {on|off}";
9753 e->usage =
9754 "Usage: rtcp set stats {on|off}\n"
9755 " Enable/Disable dumping of RTCP stats.\n";
9756 return NULL;
9757 case CLI_GENERATE:
9758 return NULL;
9759 }
9760
9761 if (a->argc != e->args)
9762 return CLI_SHOWUSAGE;
9763
9764 if (!strncasecmp(a->argv[e->args-1], "on", 2))
9765 rtcpstats = 1;
9766 else if (!strncasecmp(a->argv[e->args-1], "off", 3))
9767 rtcpstats = 0;
9768 else
9769 return CLI_SHOWUSAGE;
9770
9771 ast_cli(a->fd, "RTCP Stats %s\n", rtcpstats ? "Enabled" : "Disabled");
9772 return CLI_SUCCESS;
9773}
9774
9775#ifdef AST_DEVMODE
9776
9777static unsigned int use_random(struct ast_cli_args *a, int pos, unsigned int index)
9778{
9779 return pos >= index && !ast_strlen_zero(a->argv[index - 1]) &&
9780 !strcasecmp(a->argv[index - 1], "random");
9781}
9782
9783static char *handle_cli_rtp_drop_incoming_packets(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9784{
9785 static const char * const completions_2[] = { "stop", "<N>", NULL };
9786 static const char * const completions_3[] = { "random", "incoming packets", NULL };
9787 static const char * const completions_5[] = { "on", "every", NULL };
9788 static const char * const completions_units[] = { "random", "usec", "msec", "sec", "min", NULL };
9789
9790 unsigned int use_random_num = 0;
9791 unsigned int use_random_interval = 0;
9792 unsigned int num_to_drop = 0;
9793 unsigned int interval = 0;
9794 const char *interval_s = NULL;
9795 const char *unit_s = NULL;
9796 struct ast_sockaddr addr;
9797 const char *addr_s = NULL;
9798
9799 switch (cmd) {
9800 case CLI_INIT:
9801 e->command = "rtp drop";
9802 e->usage =
9803 "Usage: rtp drop [stop|[<N> [random] incoming packets[ every <N> [random] {usec|msec|sec|min}][ on <ip[:port]>]]\n"
9804 " Drop RTP incoming packets.\n";
9805 return NULL;
9806 case CLI_GENERATE:
9807 use_random_num = use_random(a, a->pos, 4);
9808 use_random_interval = use_random(a, a->pos, 8 + use_random_num) ||
9809 use_random(a, a->pos, 10 + use_random_num);
9810
9811 switch (a->pos - use_random_num - use_random_interval) {
9812 case 2:
9813 return ast_cli_complete(a->word, completions_2, a->n);
9814 case 3:
9815 return ast_cli_complete(a->word, completions_3 + use_random_num, a->n);
9816 case 5:
9817 return ast_cli_complete(a->word, completions_5, a->n);
9818 case 7:
9819 if (!strcasecmp(a->argv[a->pos - 2], "on")) {
9821 break;
9822 }
9823 /* Fall through */
9824 case 9:
9825 if (!strcasecmp(a->argv[a->pos - 2 - use_random_interval], "every")) {
9826 return ast_cli_complete(a->word, completions_units + use_random_interval, a->n);
9827 }
9828 break;
9829 case 8:
9830 if (!strcasecmp(a->argv[a->pos - 3 - use_random_interval], "every")) {
9832 }
9833 break;
9834 }
9835
9836 return NULL;
9837 }
9838
9839 if (a->argc < 3) {
9840 return CLI_SHOWUSAGE;
9841 }
9842
9843 use_random_num = use_random(a, a->argc, 4);
9844 use_random_interval = use_random(a, a->argc, 8 + use_random_num) ||
9845 use_random(a, a->argc, 10 + use_random_num);
9846
9847 if (!strcasecmp(a->argv[2], "stop")) {
9848 /* rtp drop stop */
9849 } else if (a->argc < 5) {
9850 return CLI_SHOWUSAGE;
9851 } else if (ast_str_to_uint(a->argv[2], &num_to_drop)) {
9852 ast_cli(a->fd, "%s is not a valid number of packets to drop\n", a->argv[2]);
9853 return CLI_FAILURE;
9854 } else if (a->argc - use_random_num == 5) {
9855 /* rtp drop <N> [random] incoming packets */
9856 } else if (a->argc - use_random_num >= 7 && !strcasecmp(a->argv[5 + use_random_num], "on")) {
9857 /* rtp drop <N> [random] incoming packets on <ip[:port]> */
9858 addr_s = a->argv[6 + use_random_num];
9859 if (a->argc - use_random_num - use_random_interval == 10 &&
9860 !strcasecmp(a->argv[7 + use_random_num], "every")) {
9861 /* rtp drop <N> [random] incoming packets on <ip[:port]> every <N> [random] {usec|msec|sec|min} */
9862 interval_s = a->argv[8 + use_random_num];
9863 unit_s = a->argv[9 + use_random_num + use_random_interval];
9864 }
9865 } else if (a->argc - use_random_num >= 8 && !strcasecmp(a->argv[5 + use_random_num], "every")) {
9866 /* rtp drop <N> [random] incoming packets every <N> [random] {usec|msec|sec|min} */
9867 interval_s = a->argv[6 + use_random_num];
9868 unit_s = a->argv[7 + use_random_num + use_random_interval];
9869 if (a->argc == 10 + use_random_num + use_random_interval &&
9870 !strcasecmp(a->argv[8 + use_random_num + use_random_interval], "on")) {
9871 /* rtp drop <N> [random] incoming packets every <N> [random] {usec|msec|sec|min} on <ip[:port]> */
9872 addr_s = a->argv[9 + use_random_num + use_random_interval];
9873 }
9874 } else {
9875 return CLI_SHOWUSAGE;
9876 }
9877
9878 if (a->argc - use_random_num >= 8 && !interval_s && !addr_s) {
9879 return CLI_SHOWUSAGE;
9880 }
9881
9882 if (interval_s && ast_str_to_uint(interval_s, &interval)) {
9883 ast_cli(a->fd, "%s is not a valid interval number\n", interval_s);
9884 return CLI_FAILURE;
9885 }
9886
9887 memset(&addr, 0, sizeof(addr));
9888 if (addr_s && !ast_sockaddr_parse(&addr, addr_s, 0)) {
9889 ast_cli(a->fd, "%s is not a valid hostname[:port]\n", addr_s);
9890 return CLI_FAILURE;
9891 }
9892
9893 drop_packets_data.use_random_num = use_random_num;
9894 drop_packets_data.use_random_interval = use_random_interval;
9895 drop_packets_data.num_to_drop = num_to_drop;
9896 drop_packets_data.interval = ast_time_create_by_unit_str(interval, unit_s);
9897 ast_sockaddr_copy(&drop_packets_data.addr, &addr);
9898 drop_packets_data.port = ast_sockaddr_port(&addr);
9899
9900 drop_packets_data_update(ast_tvnow());
9901
9902 return CLI_SUCCESS;
9903}
9904#endif
9905
9906static struct ast_cli_entry cli_rtp[] = {
9907 AST_CLI_DEFINE(handle_cli_rtp_set_debug, "Enable/Disable RTP debugging"),
9908 AST_CLI_DEFINE(handle_cli_rtp_settings, "Display RTP settings"),
9909 AST_CLI_DEFINE(handle_cli_rtcp_set_debug, "Enable/Disable RTCP debugging"),
9910 AST_CLI_DEFINE(handle_cli_rtcp_set_stats, "Enable/Disable RTCP stats"),
9911#ifdef AST_DEVMODE
9912 AST_CLI_DEFINE(handle_cli_rtp_drop_incoming_packets, "Drop RTP incoming packets"),
9913#endif
9914};
9915
9916static int rtp_reload(int reload, int by_external_config)
9917{
9918 struct ast_config *cfg;
9919 const char *s;
9920 struct ast_flags config_flags = { (reload && !by_external_config) ? CONFIG_FLAG_FILEUNCHANGED : 0 };
9921
9922#ifdef HAVE_PJPROJECT
9923 struct ast_variable *var;
9924 struct ast_ice_host_candidate *candidate;
9925 int acl_subscription_flag = 0;
9926#endif
9927
9928 cfg = ast_config_load2("rtp.conf", "rtp", config_flags);
9929 if (!cfg || cfg == CONFIG_STATUS_FILEUNCHANGED || cfg == CONFIG_STATUS_FILEINVALID) {
9930 return 0;
9931 }
9932
9933#ifdef SO_NO_CHECK
9934 nochecksums = 0;
9935#endif
9936
9945
9946 /** This resource is not "reloaded" so much as unloaded and loaded again.
9947 * In the case of the TURN related variables, the memory referenced by a
9948 * previously loaded instance *should* have been released when the
9949 * corresponding pool was destroyed. If at some point in the future this
9950 * resource were to support ACTUAL live reconfiguration and did NOT release
9951 * the pool this will cause a small memory leak.
9952 */
9953
9954#ifdef HAVE_PJPROJECT
9955 icesupport = DEFAULT_ICESUPPORT;
9956 stun_software_attribute = DEFAULT_STUN_SOFTWARE_ATTRIBUTE;
9957 turnport = DEFAULT_TURN_PORT;
9958 clean_stunaddr();
9959 turnaddr = pj_str(NULL);
9960 turnusername = pj_str(NULL);
9961 turnpassword = pj_str(NULL);
9962 host_candidate_overrides_clear();
9963#endif
9964
9965#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
9966 dtls_mtu = DEFAULT_DTLS_MTU;
9967#endif
9968
9969 if ((s = ast_variable_retrieve(cfg, "general", "rtpstart"))) {
9970 rtpstart = atoi(s);
9975 }
9976 if ((s = ast_variable_retrieve(cfg, "general", "rtpend"))) {
9977 rtpend = atoi(s);
9982 }
9983 if ((s = ast_variable_retrieve(cfg, "general", "rtcpinterval"))) {
9984 rtcpinterval = atoi(s);
9985 if (rtcpinterval == 0)
9986 rtcpinterval = 0; /* Just so we're clear... it's zero */
9988 rtcpinterval = RTCP_MIN_INTERVALMS; /* This catches negative numbers too */
9991 }
9992 if ((s = ast_variable_retrieve(cfg, "general", "rtpchecksums"))) {
9993#ifdef SO_NO_CHECK
9994 nochecksums = ast_false(s) ? 1 : 0;
9995#else
9996 if (ast_false(s))
9997 ast_log(LOG_WARNING, "Disabling RTP checksums is not supported on this operating system!\n");
9998#endif
9999 }
10000 if ((s = ast_variable_retrieve(cfg, "general", "dtmftimeout"))) {
10001 dtmftimeout = atoi(s);
10002 if ((dtmftimeout < 0) || (dtmftimeout > 64000)) {
10003 ast_log(LOG_WARNING, "DTMF timeout of '%d' outside range, using default of '%d' instead\n",
10006 };
10007 }
10008 if ((s = ast_variable_retrieve(cfg, "general", "strictrtp"))) {
10009 if (ast_true(s)) {
10011 } else if (!strcasecmp(s, "seqno")) {
10013 } else {
10015 }
10016 }
10017 if ((s = ast_variable_retrieve(cfg, "general", "probation"))) {
10018 if ((sscanf(s, "%d", &learning_min_sequential) != 1) || learning_min_sequential <= 1) {
10019 ast_log(LOG_WARNING, "Value for 'probation' could not be read, using default of '%d' instead\n",
10022 }
10024 }
10025 if ((s = ast_variable_retrieve(cfg, "general", "srtpreplayprotection"))) {
10027 }
10028#ifdef HAVE_PJPROJECT
10029 if ((s = ast_variable_retrieve(cfg, "general", "icesupport"))) {
10030 icesupport = ast_true(s);
10031 }
10032 if ((s = ast_variable_retrieve(cfg, "general", "stun_software_attribute"))) {
10033 stun_software_attribute = ast_true(s);
10034 }
10035 if ((s = ast_variable_retrieve(cfg, "general", "stunaddr"))) {
10036 char *hostport, *host, *port;
10037 unsigned int port_parsed = STANDARD_STUN_PORT;
10038 struct ast_sockaddr stunaddr_parsed;
10039
10040 hostport = ast_strdupa(s);
10041
10042 if (!ast_parse_arg(hostport, PARSE_ADDR, &stunaddr_parsed)) {
10043 ast_debug_stun(3, "stunaddr = '%s' does not need name resolution\n",
10044 ast_sockaddr_stringify_host(&stunaddr_parsed));
10045 if (!ast_sockaddr_port(&stunaddr_parsed)) {
10046 ast_sockaddr_set_port(&stunaddr_parsed, STANDARD_STUN_PORT);
10047 }
10048 ast_rwlock_wrlock(&stunaddr_lock);
10049 ast_sockaddr_to_sin(&stunaddr_parsed, &stunaddr);
10050 ast_rwlock_unlock(&stunaddr_lock);
10051 } else if (ast_sockaddr_split_hostport(hostport, &host, &port, 0)) {
10052 if (port) {
10053 ast_parse_arg(port, PARSE_UINT32|PARSE_IN_RANGE, &port_parsed, 1, 65535);
10054 }
10055 stunaddr.sin_port = htons(port_parsed);
10056
10057 stunaddr_resolver = ast_dns_resolve_recurring(host, T_A, C_IN,
10058 &stunaddr_resolve_callback, NULL);
10059 if (!stunaddr_resolver) {
10060 ast_log(LOG_ERROR, "Failed to setup recurring DNS resolution of stunaddr '%s'",
10061 host);
10062 }
10063 } else {
10064 ast_log(LOG_ERROR, "Failed to parse stunaddr '%s'", hostport);
10065 }
10066 }
10067 if ((s = ast_variable_retrieve(cfg, "general", "turnaddr"))) {
10068 struct sockaddr_in addr;
10069 addr.sin_port = htons(DEFAULT_TURN_PORT);
10070 if (ast_parse_arg(s, PARSE_INADDR, &addr)) {
10071 ast_log(LOG_WARNING, "Invalid TURN server address: %s\n", s);
10072 } else {
10073 pj_strdup2_with_null(pool, &turnaddr, ast_inet_ntoa(addr.sin_addr));
10074 /* ntohs() is not a bug here. The port number is used in host byte order with
10075 * a pjnat API. */
10076 turnport = ntohs(addr.sin_port);
10077 }
10078 }
10079 if ((s = ast_variable_retrieve(cfg, "general", "turnusername"))) {
10080 pj_strdup2_with_null(pool, &turnusername, s);
10081 }
10082 if ((s = ast_variable_retrieve(cfg, "general", "turnpassword"))) {
10083 pj_strdup2_with_null(pool, &turnpassword, s);
10084 }
10085
10086 AST_RWLIST_WRLOCK(&host_candidates);
10087 for (var = ast_variable_browse(cfg, "ice_host_candidates"); var; var = var->next) {
10088 struct ast_sockaddr local_addr, advertised_addr;
10089 unsigned int include_local_address = 0;
10090 char *sep;
10091
10092 ast_sockaddr_setnull(&local_addr);
10093 ast_sockaddr_setnull(&advertised_addr);
10094
10095 if (ast_parse_arg(var->name, PARSE_ADDR | PARSE_PORT_IGNORE, &local_addr)) {
10096 ast_log(LOG_WARNING, "Invalid local ICE host address: %s\n", var->name);
10097 continue;
10098 }
10099
10100 sep = strchr(var->value,',');
10101 if (sep) {
10102 *sep = '\0';
10103 sep++;
10104 sep = ast_skip_blanks(sep);
10105 include_local_address = strcmp(sep, "include_local_address") == 0;
10106 }
10107
10108 if (ast_parse_arg(var->value, PARSE_ADDR | PARSE_PORT_IGNORE, &advertised_addr)) {
10109 ast_log(LOG_WARNING, "Invalid advertised ICE host address: %s\n", var->value);
10110 continue;
10111 }
10112
10113 if (!(candidate = ast_calloc(1, sizeof(*candidate)))) {
10114 ast_log(LOG_ERROR, "Failed to allocate ICE host candidate mapping.\n");
10115 break;
10116 }
10117
10118 candidate->include_local = include_local_address;
10119
10120 ast_sockaddr_copy(&candidate->local, &local_addr);
10121 ast_sockaddr_copy(&candidate->advertised, &advertised_addr);
10122
10123 AST_RWLIST_INSERT_TAIL(&host_candidates, candidate, next);
10124 }
10125 AST_RWLIST_UNLOCK(&host_candidates);
10126
10127 ast_rwlock_wrlock(&ice_acl_lock);
10128 ast_rwlock_wrlock(&stun_acl_lock);
10129
10130 ice_acl = ast_free_acl_list(ice_acl);
10131 stun_acl = ast_free_acl_list(stun_acl);
10132
10133 for (var = ast_variable_browse(cfg, "general"); var; var = var->next) {
10134 const char* sense = NULL;
10135 struct ast_acl_list **acl = NULL;
10136 if (strncasecmp(var->name, "ice_", 4) == 0) {
10137 sense = var->name + 4;
10138 acl = &ice_acl;
10139 } else if (strncasecmp(var->name, "stun_", 5) == 0) {
10140 sense = var->name + 5;
10141 acl = &stun_acl;
10142 } else {
10143 continue;
10144 }
10145
10146 if (strcasecmp(sense, "blacklist") == 0) {
10147 sense = "deny";
10148 }
10149
10150 if (strcasecmp(sense, "acl") && strcasecmp(sense, "permit") && strcasecmp(sense, "deny")) {
10151 continue;
10152 }
10153
10154 ast_append_acl(sense, var->value, acl, NULL, &acl_subscription_flag);
10155 }
10156 ast_rwlock_unlock(&ice_acl_lock);
10157 ast_rwlock_unlock(&stun_acl_lock);
10158
10159 if (acl_subscription_flag && !acl_change_sub) {
10163 } else if (!acl_subscription_flag && acl_change_sub) {
10165 }
10166#endif
10167#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
10168 if ((s = ast_variable_retrieve(cfg, "general", "dtls_mtu"))) {
10169 if ((sscanf(s, "%d", &dtls_mtu) != 1) || dtls_mtu < 256) {
10170 ast_log(LOG_WARNING, "Value for 'dtls_mtu' could not be read, using default of '%d' instead\n",
10172 dtls_mtu = DEFAULT_DTLS_MTU;
10173 }
10174 }
10175#endif
10176
10177 ast_config_destroy(cfg);
10178
10179 /* Choosing an odd start port casues issues (like a potential infinite loop) and as odd parts are not
10180 chosen anyway, we are going to round up and issue a warning */
10181 if (rtpstart & 1) {
10182 rtpstart++;
10183 ast_log(LOG_WARNING, "Odd start value for RTP port in rtp.conf, rounding up to %d\n", rtpstart);
10184 }
10185
10186 if (rtpstart >= rtpend) {
10187 ast_log(LOG_WARNING, "Unreasonable values for RTP start/end port in rtp.conf\n");
10190 }
10191 ast_verb(2, "RTP Allocating from port range %d -> %d\n", rtpstart, rtpend);
10192 return 0;
10193}
10194
10195static int reload_module(void)
10196{
10197 rtp_reload(1, 0);
10198 return 0;
10199}
10200
10201#ifdef HAVE_PJPROJECT
10202static void rtp_terminate_pjproject(void)
10203{
10204 pj_thread_register_check();
10205
10206 if (timer_thread) {
10207 timer_terminate = 1;
10208 pj_thread_join(timer_thread);
10209 pj_thread_destroy(timer_thread);
10210 }
10211
10213 pj_shutdown();
10214}
10215
10216static void acl_change_stasis_cb(void *data, struct stasis_subscription *sub, struct stasis_message *message)
10217{
10219 return;
10220 }
10221
10222 /* There is no simple way to just reload the ACLs, so just execute a forced reload. */
10223 rtp_reload(1, 1);
10224}
10225#endif
10226
10227static int load_module(void)
10228{
10229#ifdef HAVE_PJPROJECT
10230 pj_lock_t *lock;
10231
10233
10235 if (pj_init() != PJ_SUCCESS) {
10237 }
10238
10239 if (pjlib_util_init() != PJ_SUCCESS) {
10240 rtp_terminate_pjproject();
10242 }
10243
10244 if (pjnath_init() != PJ_SUCCESS) {
10245 rtp_terminate_pjproject();
10247 }
10248
10249 ast_pjproject_caching_pool_init(&cachingpool, &pj_pool_factory_default_policy, 0);
10250
10251 pool = pj_pool_create(&cachingpool.factory, "timer", 512, 512, NULL);
10252
10253 if (pj_timer_heap_create(pool, 100, &timer_heap) != PJ_SUCCESS) {
10254 rtp_terminate_pjproject();
10256 }
10257
10258 if (pj_lock_create_recursive_mutex(pool, "rtp%p", &lock) != PJ_SUCCESS) {
10259 rtp_terminate_pjproject();
10261 }
10262
10263 pj_timer_heap_set_lock(timer_heap, lock, PJ_TRUE);
10264
10265 if (pj_thread_create(pool, "timer", &timer_worker_thread, NULL, 0, 0, &timer_thread) != PJ_SUCCESS) {
10266 rtp_terminate_pjproject();
10268 }
10269
10270#endif
10271
10272#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
10273 dtls_bio_methods = BIO_meth_new(BIO_TYPE_BIO, "rtp write");
10274 if (!dtls_bio_methods) {
10275#ifdef HAVE_PJPROJECT
10276 rtp_terminate_pjproject();
10277#endif
10279 }
10280 BIO_meth_set_write(dtls_bio_methods, dtls_bio_write);
10281 BIO_meth_set_ctrl(dtls_bio_methods, dtls_bio_ctrl);
10282 BIO_meth_set_create(dtls_bio_methods, dtls_bio_new);
10283 BIO_meth_set_destroy(dtls_bio_methods, dtls_bio_free);
10284#endif
10285
10287#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
10288 BIO_meth_free(dtls_bio_methods);
10289#endif
10290#ifdef HAVE_PJPROJECT
10291 rtp_terminate_pjproject();
10292#endif
10294 }
10295
10297#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
10298 BIO_meth_free(dtls_bio_methods);
10299#endif
10300#ifdef HAVE_PJPROJECT
10302 rtp_terminate_pjproject();
10303#endif
10305 }
10306
10307 rtp_reload(0, 0);
10308
10310}
10311
10312static int unload_module(void)
10313{
10316
10317#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
10318 if (dtls_bio_methods) {
10319 BIO_meth_free(dtls_bio_methods);
10320 }
10321#endif
10322
10323#ifdef HAVE_PJPROJECT
10324 host_candidate_overrides_clear();
10325 pj_thread_register_check();
10326 rtp_terminate_pjproject();
10327
10329 rtp_unload_acl(&ice_acl_lock, &ice_acl);
10330 rtp_unload_acl(&stun_acl_lock, &stun_acl);
10331 clean_stunaddr();
10332#endif
10333
10334 return 0;
10335}
10336
10338 .support_level = AST_MODULE_SUPPORT_CORE,
10339 .load = load_module,
10340 .unload = unload_module,
10342 .load_pri = AST_MODPRI_CHANNEL_DEPEND,
10343#ifdef HAVE_PJPROJECT
10344 .requires = "res_pjproject",
10345#endif
Access Control of various sorts.
struct stasis_message_type * ast_named_acl_change_type(void)
a stasis_message_type for changes against a named ACL or the set of all named ACLs
int ast_ouraddrfor(const struct ast_sockaddr *them, struct ast_sockaddr *us)
Get our local IP address when contacting a remote host.
Definition: acl.c:1004
void ast_append_acl(const char *sense, const char *stuff, struct ast_acl_list **path, int *error, int *named_acl_flag)
Add a rule to an ACL struct.
Definition: acl.c:429
int ast_find_ourip(struct ast_sockaddr *ourip, const struct ast_sockaddr *bindaddr, int family)
Find our IP address.
Definition: acl.c:1051
@ AST_SENSE_DENY
Definition: acl.h:37
enum ast_acl_sense ast_apply_acl_nolog(struct ast_acl_list *acl_list, const struct ast_sockaddr *addr)
Apply a set of rules to a given IP address, don't log failure.
Definition: acl.c:803
struct ast_acl_list * ast_free_acl_list(struct ast_acl_list *acl)
Free a list of ACLs.
Definition: acl.c:233
char digit
jack_status_t status
Definition: app_jack.c:146
const char * str
Definition: app_jack.c:147
enum queue_result id
Definition: app_queue.c:1638
pthread_t thread
Definition: app_sla.c:329
ast_cond_t cond
Definition: app_sla.c:330
ast_mutex_t lock
Definition: app_sla.c:331
static volatile unsigned int seq
Definition: app_sms.c:120
#define var
Definition: ast_expr2f.c:605
if(!yyg->yy_init)
Definition: ast_expr2f.c:854
Asterisk main include file. File version handling, generic pbx functions.
#define ast_free(a)
Definition: astmm.h:180
#define ast_strndup(str, len)
A wrapper for strndup()
Definition: astmm.h:256
#define ast_strdup(str)
A wrapper for strdup()
Definition: astmm.h:241
#define ast_strdupa(s)
duplicate a string in memory from the stack
Definition: astmm.h:298
void ast_free_ptr(void *ptr)
free() wrapper
Definition: astmm.c:1739
#define ast_calloc(num, len)
A wrapper for calloc()
Definition: astmm.h:202
#define ast_malloc(len)
A wrapper for malloc()
Definition: astmm.h:191
#define ast_log
Definition: astobj2.c:42
#define ao2_iterator_next(iter)
Definition: astobj2.h:1911
#define ao2_link(container, obj)
Add an object to a container.
Definition: astobj2.h:1532
@ CMP_MATCH
Definition: astobj2.h:1027
@ CMP_STOP
Definition: astobj2.h:1028
#define OBJ_POINTER
Definition: astobj2.h:1150
@ AO2_ALLOC_OPT_LOCK_NOLOCK
Definition: astobj2.h:367
@ AO2_ALLOC_OPT_LOCK_MUTEX
Definition: astobj2.h:363
int ao2_container_count(struct ao2_container *c)
Returns the number of elements in a container.
#define ao2_cleanup(obj)
Definition: astobj2.h:1934
#define ao2_find(container, arg, flags)
Definition: astobj2.h:1736
struct ao2_iterator ao2_iterator_init(struct ao2_container *c, int flags) attribute_warn_unused_result
Create an iterator for a container.
#define ao2_unlock(a)
Definition: astobj2.h:729
#define ao2_replace(dst, src)
Replace one object reference with another cleaning up the original.
Definition: astobj2.h:501
#define ao2_lock(a)
Definition: astobj2.h:717
#define ao2_ref(o, delta)
Reference/unreference an object and return the old refcount.
Definition: astobj2.h:459
#define ao2_alloc_options(data_size, destructor_fn, options)
Definition: astobj2.h:404
void * ao2_object_get_lockaddr(void *obj)
Return the mutex lock address of an object.
Definition: astobj2.c:476
#define ao2_bump(obj)
Bump refcount on an AO2 object by one, returning the object.
Definition: astobj2.h:480
void ao2_iterator_destroy(struct ao2_iterator *iter)
Destroy a container iterator.
#define ao2_container_alloc_list(ao2_options, container_options, sort_fn, cmp_fn)
Allocate and initialize a list container.
Definition: astobj2.h:1327
#define ao2_alloc(data_size, destructor_fn)
Definition: astobj2.h:409
static int tmp()
Definition: bt_open.c:389
static const char desc[]
Definition: cdr_radius.c:84
static PGresult * result
Definition: cel_pgsql.c:84
unsigned int tos
Definition: chan_iax2.c:355
static struct stasis_subscription * acl_change_sub
Definition: chan_iax2.c:328
unsigned int cos
Definition: chan_iax2.c:356
static void acl_change_stasis_cb(void *data, struct stasis_subscription *sub, struct stasis_message *message)
Definition: chan_iax2.c:1558
static struct ast_sched_context * sched
Definition: chan_ooh323.c:400
static const char type[]
Definition: chan_ooh323.c:109
static char version[AST_MAX_EXTENSION]
Definition: chan_ooh323.c:391
static int answer(void *data)
Definition: chan_pjsip.c:683
General Asterisk PBX channel definitions.
const struct ast_channel_tech * ast_channel_tech(const struct ast_channel *chan)
Standard Command Line Interface.
#define CLI_SHOWUSAGE
Definition: cli.h:45
#define AST_CLI_YESNO(x)
Return Yes or No depending on the argument.
Definition: cli.h:71
#define CLI_SUCCESS
Definition: cli.h:44
int ast_cli_unregister_multiple(struct ast_cli_entry *e, int len)
Unregister multiple commands.
Definition: clicompat.c:30
#define AST_CLI_DEFINE(fn, txt,...)
Definition: cli.h:197
int ast_cli_completion_add(char *value)
Add a result to a request for completion options.
Definition: main/cli.c:2756
void ast_cli(int fd, const char *fmt,...)
Definition: clicompat.c:6
char * ast_cli_complete(const char *word, const char *const choices[], int pos)
Definition: main/cli.c:1841
@ CLI_INIT
Definition: cli.h:152
@ CLI_GENERATE
Definition: cli.h:153
#define CLI_FAILURE
Definition: cli.h:46
#define ast_cli_register_multiple(e, len)
Register multiple commands.
Definition: cli.h:265
static struct ao2_container * codecs
Registered codecs.
Definition: codec.c:48
ast_media_type
Types of media.
Definition: codec.h:30
@ AST_MEDIA_TYPE_AUDIO
Definition: codec.h:32
@ AST_MEDIA_TYPE_UNKNOWN
Definition: codec.h:31
@ AST_MEDIA_TYPE_VIDEO
Definition: codec.h:33
@ AST_MEDIA_TYPE_END
Definition: codec.h:36
@ AST_MEDIA_TYPE_IMAGE
Definition: codec.h:34
@ AST_MEDIA_TYPE_TEXT
Definition: codec.h:35
unsigned int ast_codec_samples_count(struct ast_frame *frame)
Get the number of samples contained within a frame.
Definition: codec.c:379
const char * ast_codec_media_type2str(enum ast_media_type type)
Conversion function to take a media type and turn it into a string.
Definition: codec.c:348
static int reconstruct(int sign, int dqln, int y)
Definition: codec_g726.c:331
Conversion utility functions.
int ast_str_to_uint(const char *str, unsigned int *res)
Convert the given string to an unsigned integer.
Definition: conversions.c:56
Data Buffer API.
void * ast_data_buffer_get(const struct ast_data_buffer *buffer, size_t pos)
Retrieve a data payload from the data buffer.
Definition: data_buffer.c:269
struct ast_data_buffer * ast_data_buffer_alloc(ast_data_buffer_free_callback free_fn, size_t size)
Allocate a data buffer.
Definition: data_buffer.c:145
size_t ast_data_buffer_count(const struct ast_data_buffer *buffer)
Return the number of payloads in a data buffer.
Definition: data_buffer.c:356
void ast_data_buffer_resize(struct ast_data_buffer *buffer, size_t size)
Resize a data buffer.
Definition: data_buffer.c:168
int ast_data_buffer_put(struct ast_data_buffer *buffer, size_t pos, void *payload)
Place a data payload at a position in the data buffer.
Definition: data_buffer.c:203
size_t ast_data_buffer_max(const struct ast_data_buffer *buffer)
Return the maximum number of payloads a data buffer can hold.
Definition: data_buffer.c:363
void * ast_data_buffer_remove(struct ast_data_buffer *buffer, size_t pos)
Remove a data payload from the data buffer.
Definition: data_buffer.c:299
void ast_data_buffer_free(struct ast_data_buffer *buffer)
Free a data buffer (and all held data payloads)
Definition: data_buffer.c:338
Core DNS API.
const struct ast_dns_record * ast_dns_record_get_next(const struct ast_dns_record *record)
Get the next DNS record.
Definition: dns_core.c:170
int ast_dns_result_get_lowest_ttl(const struct ast_dns_result *result)
Retrieve the lowest TTL from a result.
Definition: dns_core.c:112
const char * ast_dns_record_get_data(const struct ast_dns_record *record)
Retrieve the raw DNS record.
Definition: dns_core.c:160
const struct ast_dns_record * ast_dns_result_get_records(const struct ast_dns_result *result)
Get the first record of a DNS Result.
Definition: dns_core.c:102
struct ast_dns_result * ast_dns_query_get_result(const struct ast_dns_query *query)
Get the result information for a DNS query.
Definition: dns_core.c:77
int ast_dns_record_get_rr_type(const struct ast_dns_record *record)
Get the resource record type of a DNS record.
Definition: dns_core.c:145
const char * ast_dns_query_get_name(const struct ast_dns_query *query)
Get the name queried in a DNS query.
Definition: dns_core.c:57
size_t ast_dns_record_get_data_size(const struct ast_dns_record *record)
Retrieve the size of the raw DNS record.
Definition: dns_core.c:165
Internal DNS structure definitions.
DNS Recurring Resolution API.
int ast_dns_resolve_recurring_cancel(struct ast_dns_query_recurring *recurring)
Cancel an asynchronous recurring DNS resolution.
struct ast_dns_query_recurring * ast_dns_resolve_recurring(const char *name, int rr_type, int rr_class, ast_dns_resolve_callback callback, void *data)
Asynchronously resolve a DNS query, and continue resolving it according to the lowest TTL available.
char * end
Definition: eagi_proxy.c:73
char buf[BUFSIZE]
Definition: eagi_proxy.c:66
void ast_verbose(const char *fmt,...)
Definition: extconf.c:2206
char * address
Definition: f2c.h:59
#define abs(x)
Definition: f2c.h:195
int ast_format_get_smoother_flags(const struct ast_format *format)
Get smoother flags for this format.
Definition: format.c:349
enum ast_media_type ast_format_get_type(const struct ast_format *format)
Get the media type of a format.
Definition: format.c:354
int ast_format_can_be_smoothed(const struct ast_format *format)
Get whether or not the format can be smoothed.
Definition: format.c:344
unsigned int ast_format_get_minimum_bytes(const struct ast_format *format)
Get the minimum number of bytes expected in a frame for this format.
Definition: format.c:374
unsigned int ast_format_get_sample_rate(const struct ast_format *format)
Get the sample rate of a media format.
Definition: format.c:379
unsigned int ast_format_get_minimum_ms(const struct ast_format *format)
Get the minimum amount of media carried in this format.
Definition: format.c:364
enum ast_format_cmp_res ast_format_cmp(const struct ast_format *format1, const struct ast_format *format2)
Compare two formats.
Definition: format.c:201
@ AST_FORMAT_CMP_EQUAL
Definition: format.h:36
@ AST_FORMAT_CMP_NOT_EQUAL
Definition: format.h:38
const char * ast_format_get_name(const struct ast_format *format)
Get the name associated with a format.
Definition: format.c:334
unsigned int ast_format_get_default_ms(const struct ast_format *format)
Get the default framing size (in milliseconds) for a format.
Definition: format.c:359
Media Format Cache API.
int ast_format_cache_is_slinear(struct ast_format *format)
Determines if a format is one of the cached slin formats.
Definition: format_cache.c:534
struct ast_format * ast_format_none
Built-in "null" format.
Definition: format_cache.c:246
struct ast_format * ast_format_t140_red
Built-in cached t140 red format.
Definition: format_cache.c:236
struct ast_format * ast_format_g722
Built-in cached g722 format.
Definition: format_cache.c:106
struct ast_format * ast_format_t140
Built-in cached t140 format.
Definition: format_cache.c:231
static const char name[]
Definition: format_mp3.c:68
static int replace(struct ast_channel *chan, const char *cmd, char *data, struct ast_str **buf, ssize_t len)
Definition: func_strings.c:888
static int len(struct ast_channel *chan, const char *cmd, char *data, char *buf, size_t buflen)
struct stasis_message_type * ast_rtp_rtcp_sent_type(void)
Message type for an RTCP message sent from this Asterisk instance.
struct stasis_message_type * ast_rtp_rtcp_received_type(void)
Message type for an RTCP message received from some external source.
const char * ext
Definition: http.c:150
void timersub(struct timeval *tvend, struct timeval *tvstart, struct timeval *tvdiff)
char * strsep(char **str, const char *delims)
Configuration File Parser.
struct ast_config * ast_config_load2(const char *filename, const char *who_asked, struct ast_flags flags)
Load a config file.
Definition: main/config.c:3321
#define CONFIG_STATUS_FILEUNCHANGED
#define CONFIG_STATUS_FILEINVALID
int ast_parse_arg(const char *arg, enum ast_parse_flags flags, void *p_result,...)
The argument parsing routine.
Definition: main/config.c:3827
void ast_config_destroy(struct ast_config *cfg)
Destroys a config.
Definition: extconf.c:1289
const char * ast_variable_retrieve(struct ast_config *config, const char *category, const char *variable)
Definition: main/config.c:783
struct ast_variable * ast_variable_browse(const struct ast_config *config, const char *category_name)
Definition: extconf.c:1215
@ CONFIG_FLAG_FILEUNCHANGED
Asterisk internal frame definitions.
@ AST_FRFLAG_HAS_SEQUENCE_NUMBER
@ AST_FRFLAG_HAS_TIMING_INFO
#define ast_frame_byteswap_be(fr)
#define ast_frisolate(fr)
Makes a frame independent of any static storage.
void ast_frame_free(struct ast_frame *frame, int cache)
Frees a frame or list of frames.
Definition: main/frame.c:176
#define ast_frdup(fr)
Copies a frame.
#define ast_frfree(fr)
#define AST_FRIENDLY_OFFSET
Offset into a frame's data buffer.
ast_frame_type
Frame types.
@ AST_FRAME_VIDEO
@ AST_FRAME_DTMF_END
@ AST_FRAME_DTMF_BEGIN
@ AST_FRAME_VOICE
@ AST_FRAME_RTCP
@ AST_FRAME_CONTROL
@ AST_FRAME_TEXT
@ AST_CONTROL_VIDUPDATE
@ AST_CONTROL_FLASH
@ AST_CONTROL_SRCCHANGE
struct ast_frame ast_null_frame
Definition: main/frame.c:79
#define DEBUG_ATLEAST(level)
#define ast_debug(level,...)
Log a DEBUG message.
#define LOG_DEBUG
#define LOG_ERROR
#define ast_verb(level,...)
#define LOG_NOTICE
#define LOG_WARNING
struct ssl_ctx_st SSL_CTX
Definition: iostream.h:38
struct ssl_st SSL
Definition: iostream.h:37
void ast_json_unref(struct ast_json *value)
Decrease refcount on value. If refcount reaches zero, value is freed.
Definition: json.c:73
struct ast_json * ast_json_pack(char const *format,...)
Helper for creating complex JSON values.
Definition: json.c:612
#define AST_RWLIST_REMOVE_CURRENT
Definition: linkedlists.h:570
#define AST_RWLIST_RDLOCK(head)
Read locks a list.
Definition: linkedlists.h:78
#define AST_LIST_HEAD_INIT_NOLOCK(head)
Initializes a list head structure.
Definition: linkedlists.h:681
#define AST_LIST_HEAD_STATIC(name, type)
Defines a structure to be used to hold a list of specified type, statically initialized.
Definition: linkedlists.h:291
#define AST_LIST_HEAD_NOLOCK(name, type)
Defines a structure to be used to hold a list of specified type (with no lock).
Definition: linkedlists.h:225
#define AST_RWLIST_TRAVERSE_SAFE_BEGIN
Definition: linkedlists.h:545
#define AST_RWLIST_WRLOCK(head)
Write locks a list.
Definition: linkedlists.h:52
#define AST_RWLIST_UNLOCK(head)
Attempts to unlock a read/write based list.
Definition: linkedlists.h:151
#define AST_LIST_TRAVERSE(head, var, field)
Loops over (traverses) the entries in a list.
Definition: linkedlists.h:491
#define AST_RWLIST_HEAD_STATIC(name, type)
Defines a structure to be used to hold a read/write list of specified type, statically initialized.
Definition: linkedlists.h:333
#define AST_LIST_INSERT_TAIL(head, elm, field)
Appends a list entry to the tail of a list.
Definition: linkedlists.h:731
#define AST_LIST_ENTRY(type)
Declare a forward link structure inside a list entry.
Definition: linkedlists.h:410
#define AST_RWLIST_TRAVERSE_SAFE_END
Definition: linkedlists.h:617
#define AST_LIST_LOCK(head)
Locks a list.
Definition: linkedlists.h:40
#define AST_LIST_INSERT_HEAD(head, elm, field)
Inserts a list entry at the head of a list.
Definition: linkedlists.h:711
#define AST_LIST_REMOVE(head, elm, field)
Removes a specific entry from a list.
Definition: linkedlists.h:856
#define AST_RWLIST_INSERT_TAIL
Definition: linkedlists.h:741
#define AST_LIST_REMOVE_HEAD(head, field)
Removes and returns the head entry from a list.
Definition: linkedlists.h:833
#define AST_LIST_UNLOCK(head)
Attempts to unlock a list.
Definition: linkedlists.h:140
#define AST_RWLIST_ENTRY
Definition: linkedlists.h:415
#define AST_LIST_FIRST(head)
Returns the first entry contained in a list.
Definition: linkedlists.h:421
#define AST_LIST_NEXT(elm, field)
Returns the next entry in the list after the given entry.
Definition: linkedlists.h:439
Asterisk locking-related definitions:
#define ast_rwlock_wrlock(a)
Definition: lock.h:236
#define AST_RWLOCK_INIT_VALUE
Definition: lock.h:98
#define ast_cond_init(cond, attr)
Definition: lock.h:201
#define ast_cond_timedwait(cond, mutex, time)
Definition: lock.h:206
#define ast_rwlock_rdlock(a)
Definition: lock.h:235
pthread_cond_t ast_cond_t
Definition: lock.h:178
#define ast_rwlock_unlock(a)
Definition: lock.h:234
#define ast_cond_signal(cond)
Definition: lock.h:203
#define AST_LOG_CATEGORY_DISABLED
#define AST_LOG_CATEGORY_ENABLED
#define ast_debug_category(sublevel, ids,...)
Log for a debug category.
int ast_debug_category_set_sublevel(const char *name, int sublevel)
Set the debug category's sublevel.
int errno
The AMI - Asterisk Manager Interface - is a TCP protocol created to manage Asterisk with third-party ...
Asterisk module definitions.
@ AST_MODFLAG_LOAD_ORDER
Definition: module.h:317
#define AST_MODULE_INFO(keystr, flags_to_set, desc, fields...)
Definition: module.h:543
@ AST_MODPRI_CHANNEL_DEPEND
Definition: module.h:326
@ AST_MODULE_SUPPORT_CORE
Definition: module.h:121
#define ASTERISK_GPL_KEY
The text the key() function should return.
Definition: module.h:46
@ AST_MODULE_LOAD_SUCCESS
Definition: module.h:70
@ AST_MODULE_LOAD_DECLINE
Module has failed to load, may be in an inconsistent state.
Definition: module.h:78
def info(msg)
int ast_sockaddr_ipv4_mapped(const struct ast_sockaddr *addr, struct ast_sockaddr *ast_mapped)
Convert an IPv4-mapped IPv6 address into an IPv4 address.
Definition: netsock2.c:37
static char * ast_sockaddr_stringify(const struct ast_sockaddr *addr)
Wrapper around ast_sockaddr_stringify_fmt() with default format.
Definition: netsock2.h:256
#define ast_sockaddr_port(addr)
Get the port number of a socket address.
Definition: netsock2.h:517
static void ast_sockaddr_copy(struct ast_sockaddr *dst, const struct ast_sockaddr *src)
Copies the data from one ast_sockaddr to another.
Definition: netsock2.h:167
int ast_sockaddr_is_ipv6(const struct ast_sockaddr *addr)
Determine if this is an IPv6 address.
Definition: netsock2.c:524
int ast_bind(int sockfd, const struct ast_sockaddr *addr)
Wrapper around bind(2) that uses struct ast_sockaddr.
Definition: netsock2.c:590
#define ast_sockaddr_from_sockaddr(addr, sa)
Converts a struct sockaddr to a struct ast_sockaddr.
Definition: netsock2.h:819
int ast_sockaddr_cmp_addr(const struct ast_sockaddr *a, const struct ast_sockaddr *b)
Compares the addresses of two ast_sockaddr structures.
Definition: netsock2.c:413
static char * ast_sockaddr_stringify_host(const struct ast_sockaddr *addr)
Wrapper around ast_sockaddr_stringify_fmt() to return an address only, suitable for a URL (with brack...
Definition: netsock2.h:327
ssize_t ast_sendto(int sockfd, const void *buf, size_t len, int flags, const struct ast_sockaddr *dest_addr)
Wrapper around sendto(2) that uses ast_sockaddr.
Definition: netsock2.c:614
int ast_sockaddr_is_any(const struct ast_sockaddr *addr)
Determine if the address type is unspecified, or "any" address.
Definition: netsock2.c:534
int ast_sockaddr_split_hostport(char *str, char **host, char **port, int flags)
Splits a string into its host and port components.
Definition: netsock2.c:164
int ast_set_qos(int sockfd, int tos, int cos, const char *desc)
Set type of service.
Definition: netsock2.c:621
ast_transport
Definition: netsock2.h:59
@ AST_TRANSPORT_UDP
Definition: netsock2.h:60
@ AST_TRANSPORT_TCP
Definition: netsock2.h:61
#define ast_sockaddr_to_sin(addr, sin)
Converts a struct ast_sockaddr to a struct sockaddr_in.
Definition: netsock2.h:765
int ast_sockaddr_parse(struct ast_sockaddr *addr, const char *str, int flags)
Parse an IPv4 or IPv6 address string.
Definition: netsock2.c:230
static int ast_sockaddr_isnull(const struct ast_sockaddr *addr)
Checks if the ast_sockaddr is null. "null" in this sense essentially means uninitialized,...
Definition: netsock2.h:127
ssize_t ast_recvfrom(int sockfd, void *buf, size_t len, int flags, struct ast_sockaddr *src_addr)
Wrapper around recvfrom(2) that uses struct ast_sockaddr.
Definition: netsock2.c:606
int ast_sockaddr_cmp(const struct ast_sockaddr *a, const struct ast_sockaddr *b)
Compares two ast_sockaddr structures.
Definition: netsock2.c:388
#define ast_sockaddr_set_port(addr, port)
Sets the port number of a socket address.
Definition: netsock2.h:532
#define ast_sockaddr_from_sin(addr, sin)
Converts a struct sockaddr_in to a struct ast_sockaddr.
Definition: netsock2.h:778
static void ast_sockaddr_setnull(struct ast_sockaddr *addr)
Sets address addr to null.
Definition: netsock2.h:138
int ast_sockaddr_is_ipv4(const struct ast_sockaddr *addr)
Determine if the address is an IPv4 address.
Definition: netsock2.c:497
const char * ast_inet_ntoa(struct in_addr ia)
thread-safe replacement for inet_ntoa().
Definition: utils.c:928
Options provided by main asterisk program.
#define AST_PJPROJECT_INIT_LOG_LEVEL()
Get maximum log level pjproject was compiled with.
Definition: options.h:167
static int frames
Definition: parser.c:51
Core PBX routines and definitions.
static void * cleanup(void *unused)
Definition: pbx_realtime.c:124
static char * generate_random_string(char *buf, size_t size)
Generate 32 byte random string (stolen from chan_sip.c)
Definition: res_calendar.c:719
static int reload(void)
struct stasis_forward * sub
Definition: res_corosync.c:240
int ast_sockaddr_to_pj_sockaddr(const struct ast_sockaddr *addr, pj_sockaddr *pjaddr)
Fill a pj_sockaddr from an ast_sockaddr.
void ast_pjproject_caching_pool_destroy(pj_caching_pool *cp)
Destroy caching pool factory and all cached pools.
int ast_sockaddr_pj_sockaddr_cmp(const struct ast_sockaddr *addr, const pj_sockaddr *pjaddr)
Compare an ast_sockaddr to a pj_sockaddr.
void ast_pjproject_caching_pool_init(pj_caching_pool *cp, const pj_pool_factory_policy *policy, pj_size_t max_capacity)
Initialize the caching pool factory.
static struct ast_threadstorage pj_thread_storage
Definition: res_pjsip.c:2281
static pj_caching_pool cachingpool
Pool factory used by pjlib to allocate memory.
#define OLD_PACKET_COUNT
#define TURN_STATE_WAIT_TIME
static int ast_rtp_dtmf_compatible(struct ast_channel *chan0, struct ast_rtp_instance *instance0, struct ast_channel *chan1, struct ast_rtp_instance *instance1)
static int rtpdebugport
static void ast_rtp_update_source(struct ast_rtp_instance *instance)
#define TRANSPORT_TURN_RTCP
static int ast_rtp_destroy(struct ast_rtp_instance *instance)
#define RTCP_LENGTH_SHIFT
struct ast_srtp_res * res_srtp
Definition: rtp_engine.c:176
static int ast_rtp_rtcp_handle_nack(struct ast_rtp_instance *instance, unsigned int *nackdata, unsigned int position, unsigned int length)
static int rtp_reload(int reload, int by_external_config)
#define RTCP_PAYLOAD_TYPE_SHIFT
#define DEFAULT_RTP_RECV_BUFFER_SIZE
#define MAX_TIMESTAMP_SKEW
#define DEFAULT_ICESUPPORT
static void ntp2timeval(unsigned int msw, unsigned int lsw, struct timeval *tv)
#define RTCP_VALID_VALUE
#define RTCP_FB_NACK_BLOCK_WORD_LENGTH
static struct ast_sockaddr rtpdebugaddr
#define DEFAULT_LEARNING_MIN_SEQUENTIAL
#define FLAG_3389_WARNING
static int rtp_learning_rtp_seq_update(struct rtp_learning_info *info, uint16_t seq)
static int rtp_transport_wide_cc_feedback_produce(const void *data)
#define RTCP_RR_BLOCK_WORD_LENGTH
static struct ast_frame * ast_rtcp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp, const unsigned char *rtcpdata, size_t size, struct ast_sockaddr *addr)
static const char * rtcp_payload_subtype2str(unsigned int pt, unsigned int subtype)
static int ast_rtp_new(struct ast_rtp_instance *instance, struct ast_sched_context *sched, struct ast_sockaddr *addr, void *data)
static char * handle_cli_rtp_settings(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
static struct ast_frame * ast_rtcp_read(struct ast_rtp_instance *instance)
#define RTP_IGNORE_FIRST_PACKETS_COUNT
static int rtp_raw_write(struct ast_rtp_instance *instance, struct ast_frame *frame, int codec)
static int rtcpdebugport
#define RTCP_SR_BLOCK_WORD_LENGTH
static int ast_rtp_dtmf_end_with_duration(struct ast_rtp_instance *instance, char digit, unsigned int duration)
#define DEFAULT_RTP_END
static int rtcp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
static struct ast_rtp_instance * rtp_find_instance_by_packet_source_ssrc(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned int ssrc)
#define SRTP_MASTER_LEN
#define RTCP_REPORT_COUNT_SHIFT
#define RTCP_PT_FUR
#define RTCP_DEFAULT_INTERVALMS
static void rtp_deallocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
#define RTP_DTLS_ESTABLISHED
static int bridge_p2p_rtp_write(struct ast_rtp_instance *instance, struct ast_rtp_instance *instance1, unsigned int *rtpheader, int len, int hdrlen)
#define DEFAULT_DTMF_TIMEOUT
static void put_unaligned_time24(void *p, uint32_t time_msw, uint32_t time_lsw)
#define RTCP_MAX_INTERVALMS
static int ast_rtcp_generate_nack(struct ast_rtp_instance *instance, unsigned char *rtcpheader)
static char * handle_cli_rtp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
strict_rtp_mode
@ STRICT_RTP_SEQNO
@ STRICT_RTP_YES
@ STRICT_RTP_NO
static void rtp_transport_wide_cc_feedback_status_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits, uint16_t *status_vector_chunk, int *run_length_chunk_count, int *run_length_chunk_status, int status)
static int ast_rtp_bundle(struct ast_rtp_instance *child, struct ast_rtp_instance *parent)
static struct ast_rtp_engine asterisk_rtp_engine
static const char * rtcp_payload_type2str(unsigned int pt)
#define DTMF_SAMPLE_RATE_MS
#define TRANSPORT_SOCKET_RTP
static int rtpend
static void rtp_instance_parse_transport_wide_cc(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned char *data, int len)
static void calc_rxstamp_and_jitter(struct timeval *tv, struct ast_rtp *rtp, unsigned int rx_rtp_ts, int mark)
static unsigned int calc_txstamp(struct ast_rtp *rtp, struct timeval *delivery)
static int ast_rtp_dtmf_continuation(struct ast_rtp_instance *instance)
#define RTCP_PT_RR
#define SRTP_MASTER_KEY_LEN
static int learning_min_sequential
static int rtp_allocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
static char * rtcp_do_debug_ip(struct ast_cli_args *a)
static int ast_rtcp_generate_report(struct ast_rtp_instance *instance, unsigned char *rtcpheader, struct ast_rtp_rtcp_report *rtcp_report, int *sr)
static struct ast_frame * ast_rtp_read(struct ast_rtp_instance *instance, int rtcp)
static char * handle_cli_rtcp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
struct ast_srtp_policy_res * res_srtp_policy
Definition: rtp_engine.c:177
#define RTCP_PT_BYE
static struct ast_rtp_instance * __rtp_find_instance_by_ssrc(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned int ssrc, int source)
static void calculate_lost_packet_statistics(struct ast_rtp *rtp, unsigned int *lost_packets, int *fraction_lost)
#define RTCP_HEADER_SSRC_LENGTH
static void process_dtmf_rfc2833(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark, struct frame_list *frames)
#define RTCP_VALID_MASK
static int srtp_replay_protection
static void ast_rtp_set_stream_num(struct ast_rtp_instance *instance, int stream_num)
static int learning_min_duration
static int create_new_socket(const char *type, int af)
static int ast_rtp_fd(struct ast_rtp_instance *instance, int rtcp)
static int ast_rtcp_generate_compound_prefix(struct ast_rtp_instance *instance, unsigned char *rtcpheader, struct ast_rtp_rtcp_report *report, int *sr)
static void update_jitter_stats(struct ast_rtp *rtp, unsigned int ia_jitter)
#define RTCP_FB_REMB_BLOCK_WORD_LENGTH
#define RTCP_PT_PSFB
static struct ast_frame * process_cn_rfc3389(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
#define DEFAULT_SRTP_REPLAY_PROTECTION
#define DEFAULT_DTLS_MTU
static int reload_module(void)
#define FLAG_NAT_INACTIVE
static int rtcp_debug_test_addr(struct ast_sockaddr *addr)
static int ast_rtp_qos_set(struct ast_rtp_instance *instance, int tos, int cos, const char *desc)
static void ast_rtp_change_source(struct ast_rtp_instance *instance)
static int ast_rtp_dtmf_end(struct ast_rtp_instance *instance, char digit)
static void calc_mean_and_standard_deviation(double new_sample, double *mean, double *std_dev, unsigned int *count)
static int compare_by_value(int elem, int value)
Helper function to compare an elem in a vector by value.
static int update_rtt_stats(struct ast_rtp *rtp, unsigned int lsr, unsigned int dlsr)
static int rtcp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
static struct ast_sockaddr rtcpdebugaddr
static struct ast_rtp_instance * rtp_find_instance_by_media_source_ssrc(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned int ssrc)
#define MAXIMUM_RTP_RECV_BUFFER_SIZE
static int rtp_red_buffer(struct ast_rtp_instance *instance, struct ast_frame *frame)
#define STRICT_RTP_LEARN_TIMEOUT
Strict RTP learning timeout time in milliseconds.
#define RTCP_VERSION_SHIFTED
static int rtcpinterval
static int strictrtp
static int ast_rtp_dtmf_begin(struct ast_rtp_instance *instance, char digit)
static void rtp_instance_parse_extmap_extensions(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned char *extension, int len)
static int find_by_value(int elem, int value)
Helper function to find an elem in a vector by value.
#define RTCP_REPORT_COUNT_MASK
static void rtp_instance_unlock(struct ast_rtp_instance *instance)
#define DEFAULT_RTP_START
#define TRANSPORT_TURN_RTP
static int rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
static int rtpstart
#define MINIMUM_RTP_PORT
static struct ast_cli_entry cli_rtp[]
static int ast_rtp_get_stat(struct ast_rtp_instance *instance, struct ast_rtp_instance_stats *stats, enum ast_rtp_instance_stat stat)
#define RESCALE(in, inmin, inmax, outmin, outmax)
#define RTCP_PT_SDES
#define MISSING_SEQNOS_ADDED_TRIGGER
#define SRTP_MASTER_SALT_LEN
static int ast_rtp_write(struct ast_rtp_instance *instance, struct ast_frame *frame)
#define RTCP_PAYLOAD_TYPE_MASK
#define DEFAULT_RTP_SEND_BUFFER_SIZE
#define FLAG_NAT_ACTIVE
#define FLAG_NEED_MARKER_BIT
static int __rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp)
#define RTCP_MIN_INTERVALMS
static void ast_rtp_stop(struct ast_rtp_instance *instance)
#define FLAG_REQ_LOCAL_BRIDGE_BIT
#define RTCP_PT_SR
static int __rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp, int *via_ice, int use_srtp)
static int load_module(void)
static int ast_rtcp_calculate_sr_rr_statistics(struct ast_rtp_instance *instance, struct ast_rtp_rtcp_report *rtcp_report, struct ast_sockaddr remote_address, int ice, int sr)
#define RTCP_VERSION_MASK_SHIFTED
#define CALC_LEARNING_MIN_DURATION(count)
Calculate the min learning duration in ms.
static int rtp_transport_wide_cc_packet_statistics_cmp(struct rtp_transport_wide_cc_packet_statistics a, struct rtp_transport_wide_cc_packet_statistics b)
#define SSRC_MAPPING_ELEM_CMP(elem, value)
SSRC mapping comparator for AST_VECTOR_REMOVE_CMP_UNORDERED()
static int rtp_debug_test_addr(struct ast_sockaddr *addr)
static int rtp_red_init(struct ast_rtp_instance *instance, int buffer_time, int *payloads, int generations)
strict_rtp_state
@ STRICT_RTP_LEARN
@ STRICT_RTP_OPEN
@ STRICT_RTP_CLOSED
static int unload_module(void)
static void ast_rtp_set_remote_ssrc(struct ast_rtp_instance *instance, unsigned int ssrc)
static void ast_rtp_prop_set(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value)
#define FLAG_NAT_INACTIVE_NOWARN
static int rtcp_mux(struct ast_rtp *rtp, const unsigned char *packet)
static void rtp_learning_seq_init(struct rtp_learning_info *info, uint16_t seq)
#define TRANSPORT_SOCKET_RTCP
static void rtp_learning_start(struct ast_rtp *rtp)
Start the strictrtp learning mode.
static int ast_rtp_dtmf_mode_set(struct ast_rtp_instance *instance, enum ast_rtp_dtmf_mode dtmf_mode)
static unsigned int ast_rtcp_calc_interval(struct ast_rtp *rtp)
static char * rtp_do_debug_ip(struct ast_cli_args *a)
static enum ast_rtp_dtmf_mode ast_rtp_dtmf_mode_get(struct ast_rtp_instance *instance)
static int rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
static unsigned int ast_rtp_get_ssrc(struct ast_rtp_instance *instance)
#define MAXIMUM_RTP_PORT
static void timeval2ntp(struct timeval tv, unsigned int *msw, unsigned int *lsw)
static void ast_rtp_remote_address_set(struct ast_rtp_instance *instance, struct ast_sockaddr *addr)
static struct ast_frame * ast_rtp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp, const struct ast_sockaddr *remote_address, unsigned char *read_area, int length, int prev_seqno, unsigned int bundled)
static int ast_rtp_local_bridge(struct ast_rtp_instance *instance0, struct ast_rtp_instance *instance1)
static struct ast_frame * red_t140_to_red(struct rtp_red *red)
static int ast_rtcp_generate_sdes(struct ast_rtp_instance *instance, unsigned char *rtcpheader, struct ast_rtp_rtcp_report *rtcp_report)
#define SEQNO_CYCLE_OVER
static double calc_media_experience_score(struct ast_rtp_instance *instance, double normdevrtt, double normdev_rxjitter, double stdev_rxjitter, double normdev_rxlost)
Calculate a "media experience score" based on given data.
static void update_reported_mes_stats(struct ast_rtp *rtp)
static int dtmftimeout
#define DEFAULT_STRICT_RTP
static int ast_rtp_sendcng(struct ast_rtp_instance *instance, int level)
generate comfort noice (CNG)
static char * handle_cli_rtcp_set_stats(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
static void update_lost_stats(struct ast_rtp *rtp, unsigned int lost_packets)
static void ast_rtp_stun_request(struct ast_rtp_instance *instance, struct ast_sockaddr *suggestion, const char *username)
static const char * ast_rtp_get_cname(struct ast_rtp_instance *instance)
static void rtp_write_rtcp_psfb(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_frame *frame, struct ast_sockaddr *remote_address)
static int rtcpstats
static struct ast_frame * process_dtmf_cisco(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
#define RTP_SEQ_MOD
static struct ast_frame * create_dtmf_frame(struct ast_rtp_instance *instance, enum ast_frame_type type, int compensate)
static void rtp_write_rtcp_fir(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_sockaddr *remote_address)
#define DEFAULT_TURN_PORT
#define MAXIMUM_RTP_SEND_BUFFER_SIZE
static int red_write(const void *data)
Write t140 redundancy frame.
#define DEFAULT_STUN_SOFTWARE_ATTRIBUTE
#define RTCP_LENGTH_MASK
#define DEFAULT_LEARNING_MIN_DURATION
static void update_local_mes_stats(struct ast_rtp *rtp)
static void rtp_transport_wide_cc_feedback_status_vector_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits, uint16_t *status_vector_chunk, int status)
static int ast_rtp_extension_enable(struct ast_rtp_instance *instance, enum ast_rtp_extension extension)
static int ast_rtcp_write(const void *data)
Write a RTCP packet to the far end.
ast_srtp_suite
Definition: res_srtp.h:56
@ AST_AES_CM_128_HMAC_SHA1_80
Definition: res_srtp.h:58
@ AST_AES_CM_128_HMAC_SHA1_32
Definition: res_srtp.h:59
#define NULL
Definition: resample.c:96
Pluggable RTP Architecture.
ast_rtp_dtls_setup
DTLS setup types.
Definition: rtp_engine.h:559
@ AST_RTP_DTLS_SETUP_PASSIVE
Definition: rtp_engine.h:561
@ AST_RTP_DTLS_SETUP_HOLDCONN
Definition: rtp_engine.h:563
@ AST_RTP_DTLS_SETUP_ACTPASS
Definition: rtp_engine.h:562
@ AST_RTP_DTLS_SETUP_ACTIVE
Definition: rtp_engine.h:560
#define AST_RTP_RTCP_PSFB
Definition: rtp_engine.h:324
#define AST_DEBUG_CATEGORY_DTLS
Definition: rtp_engine.h:2896
#define ast_debug_rtcp_packet_is_allowed
Definition: rtp_engine.h:2931
ast_rtp_ice_role
ICE role during negotiation.
Definition: rtp_engine.h:514
@ AST_RTP_ICE_ROLE_CONTROLLING
Definition: rtp_engine.h:516
@ AST_RTP_ICE_ROLE_CONTROLLED
Definition: rtp_engine.h:515
#define AST_RTP_RTCP_FMT_FIR
Definition: rtp_engine.h:332
#define ast_debug_rtcp(sublevel,...)
Log debug level RTCP information.
Definition: rtp_engine.h:2923
ast_rtp_ice_component_type
ICE component types.
Definition: rtp_engine.h:508
@ AST_RTP_ICE_COMPONENT_RTCP
Definition: rtp_engine.h:510
@ AST_RTP_ICE_COMPONENT_RTP
Definition: rtp_engine.h:509
struct ast_rtp_rtcp_report * ast_rtp_rtcp_report_alloc(unsigned int report_blocks)
Allocate an ao2 ref counted instance of ast_rtp_rtcp_report.
Definition: rtp_engine.c:3516
struct ast_rtp_payload_type * ast_rtp_codecs_get_payload(struct ast_rtp_codecs *codecs, int payload)
Retrieve rx payload mapped information by payload type.
Definition: rtp_engine.c:1492
int ast_rtp_instance_get_prop(struct ast_rtp_instance *instance, enum ast_rtp_property property)
Get the value of an RTP instance property.
Definition: rtp_engine.c:737
ast_rtp_dtls_hash
DTLS fingerprint hashes.
Definition: rtp_engine.h:573
@ AST_RTP_DTLS_HASH_SHA1
Definition: rtp_engine.h:575
@ AST_RTP_DTLS_HASH_SHA256
Definition: rtp_engine.h:574
int ast_rtp_engine_srtp_is_registered(void)
Definition: rtp_engine.c:2768
ast_rtp_dtmf_mode
Definition: rtp_engine.h:148
#define AST_RED_MAX_GENERATION
Definition: rtp_engine.h:98
#define AST_RTP_DTMF
Definition: rtp_engine.h:291
ast_rtp_instance_rtcp
Definition: rtp_engine.h:280
@ AST_RTP_INSTANCE_RTCP_MUX
Definition: rtp_engine.h:286
@ AST_RTP_INSTANCE_RTCP_STANDARD
Definition: rtp_engine.h:284
void ast_rtp_publish_rtcp_message(struct ast_rtp_instance *rtp, struct stasis_message_type *message_type, struct ast_rtp_rtcp_report *report, struct ast_json *blob)
Publish an RTCP message to Stasis Message Bus API.
Definition: rtp_engine.c:3527
struct ast_srtp * ast_rtp_instance_get_srtp(struct ast_rtp_instance *instance, int rtcp)
Obtain the SRTP instance associated with an RTP instance.
Definition: rtp_engine.c:2800
#define AST_RTP_STAT_TERMINATOR(combined)
Definition: rtp_engine.h:495
#define AST_RTP_RTCP_RTPFB
Definition: rtp_engine.h:322
struct ast_rtp_instance * ast_rtp_instance_get_bridged(struct ast_rtp_instance *instance)
Get the other RTP instance that an instance is bridged to.
Definition: rtp_engine.c:2247
ast_rtp_dtls_verify
DTLS verification settings.
Definition: rtp_engine.h:579
@ AST_RTP_DTLS_VERIFY_FINGERPRINT
Definition: rtp_engine.h:581
@ AST_RTP_DTLS_VERIFY_CERTIFICATE
Definition: rtp_engine.h:582
#define ast_debug_rtp_packet_is_allowed
Definition: rtp_engine.h:2914
#define AST_LOG_CATEGORY_RTCP_PACKET
Definition: rtp_engine.h:2876
ast_rtp_instance_stat
Definition: rtp_engine.h:182
@ AST_RTP_INSTANCE_STAT_LOCAL_MAXRXPLOSS
Definition: rtp_engine.h:204
@ AST_RTP_INSTANCE_STAT_REMOTE_NORMDEVRXPLOSS
Definition: rtp_engine.h:200
@ AST_RTP_INSTANCE_STAT_REMOTE_MAXRXPLOSS
Definition: rtp_engine.h:196
@ AST_RTP_INSTANCE_STAT_REMOTE_NORMDEVMES
Definition: rtp_engine.h:267
@ AST_RTP_INSTANCE_STAT_REMOTE_MINJITTER
Definition: rtp_engine.h:220
@ AST_RTP_INSTANCE_STAT_LOCAL_NORMDEVMES
Definition: rtp_engine.h:275
@ AST_RTP_INSTANCE_STAT_MIN_RTT
Definition: rtp_engine.h:240
@ AST_RTP_INSTANCE_STAT_TXMES
Definition: rtp_engine.h:259
@ AST_RTP_INSTANCE_STAT_CHANNEL_UNIQUEID
Definition: rtp_engine.h:250
@ AST_RTP_INSTANCE_STAT_TXPLOSS
Definition: rtp_engine.h:192
@ AST_RTP_INSTANCE_STAT_MAX_RTT
Definition: rtp_engine.h:238
@ AST_RTP_INSTANCE_STAT_RXPLOSS
Definition: rtp_engine.h:194
@ AST_RTP_INSTANCE_STAT_REMOTE_MAXJITTER
Definition: rtp_engine.h:218
@ AST_RTP_INSTANCE_STAT_LOCAL_MAXJITTER
Definition: rtp_engine.h:226
@ AST_RTP_INSTANCE_STAT_REMOTE_MINMES
Definition: rtp_engine.h:265
@ AST_RTP_INSTANCE_STAT_REMOTE_STDEVJITTER
Definition: rtp_engine.h:224
@ AST_RTP_INSTANCE_STAT_REMOTE_MINRXPLOSS
Definition: rtp_engine.h:198
@ AST_RTP_INSTANCE_STAT_LOCAL_MINMES
Definition: rtp_engine.h:273
@ AST_RTP_INSTANCE_STAT_TXOCTETCOUNT
Definition: rtp_engine.h:252
@ AST_RTP_INSTANCE_STAT_RXMES
Definition: rtp_engine.h:261
@ AST_RTP_INSTANCE_STAT_REMOTE_STDEVMES
Definition: rtp_engine.h:269
@ AST_RTP_INSTANCE_STAT_LOCAL_NORMDEVRXPLOSS
Definition: rtp_engine.h:208
@ AST_RTP_INSTANCE_STAT_REMOTE_STDEVRXPLOSS
Definition: rtp_engine.h:202
@ AST_RTP_INSTANCE_STAT_LOCAL_STDEVRXPLOSS
Definition: rtp_engine.h:210
@ AST_RTP_INSTANCE_STAT_REMOTE_MAXMES
Definition: rtp_engine.h:263
@ AST_RTP_INSTANCE_STAT_TXCOUNT
Definition: rtp_engine.h:186
@ AST_RTP_INSTANCE_STAT_STDEVRTT
Definition: rtp_engine.h:244
@ AST_RTP_INSTANCE_STAT_COMBINED_MES
Definition: rtp_engine.h:257
@ AST_RTP_INSTANCE_STAT_LOCAL_MAXMES
Definition: rtp_engine.h:271
@ AST_RTP_INSTANCE_STAT_RXJITTER
Definition: rtp_engine.h:216
@ AST_RTP_INSTANCE_STAT_LOCAL_MINRXPLOSS
Definition: rtp_engine.h:206
@ AST_RTP_INSTANCE_STAT_LOCAL_SSRC
Definition: rtp_engine.h:246
@ AST_RTP_INSTANCE_STAT_REMOTE_NORMDEVJITTER
Definition: rtp_engine.h:222
@ AST_RTP_INSTANCE_STAT_COMBINED_JITTER
Definition: rtp_engine.h:212
@ AST_RTP_INSTANCE_STAT_TXJITTER
Definition: rtp_engine.h:214
@ AST_RTP_INSTANCE_STAT_LOCAL_MINJITTER
Definition: rtp_engine.h:228
@ AST_RTP_INSTANCE_STAT_COMBINED_LOSS
Definition: rtp_engine.h:190
@ AST_RTP_INSTANCE_STAT_LOCAL_STDEVJITTER
Definition: rtp_engine.h:232
@ AST_RTP_INSTANCE_STAT_COMBINED_RTT
Definition: rtp_engine.h:234
@ AST_RTP_INSTANCE_STAT_NORMDEVRTT
Definition: rtp_engine.h:242
@ AST_RTP_INSTANCE_STAT_RTT
Definition: rtp_engine.h:236
@ AST_RTP_INSTANCE_STAT_RXOCTETCOUNT
Definition: rtp_engine.h:254
@ AST_RTP_INSTANCE_STAT_LOCAL_STDEVMES
Definition: rtp_engine.h:277
@ AST_RTP_INSTANCE_STAT_LOCAL_NORMDEVJITTER
Definition: rtp_engine.h:230
@ AST_RTP_INSTANCE_STAT_RXCOUNT
Definition: rtp_engine.h:188
@ AST_RTP_INSTANCE_STAT_REMOTE_SSRC
Definition: rtp_engine.h:248
void * ast_rtp_instance_get_data(struct ast_rtp_instance *instance)
Get the data portion of an RTP instance.
Definition: rtp_engine.c:584
#define ast_rtp_instance_get_remote_address(instance, address)
Get the address of the remote endpoint that we are sending RTP to.
Definition: rtp_engine.h:1238
enum ast_media_type ast_rtp_codecs_get_stream_type(struct ast_rtp_codecs *codecs)
Determine the type of RTP stream media from the codecs mapped.
Definition: rtp_engine.c:1473
#define AST_RTP_RTCP_FMT_NACK
Definition: rtp_engine.h:328
#define ast_debug_rtp(sublevel,...)
Log debug level RTP information.
Definition: rtp_engine.h:2906
void ast_rtp_instance_set_last_tx(struct ast_rtp_instance *rtp, time_t time)
Set the last RTP transmission time.
Definition: rtp_engine.c:3828
void ast_rtp_instance_set_data(struct ast_rtp_instance *instance, void *data)
Set the data portion of an RTP instance.
Definition: rtp_engine.c:579
void ast_rtp_instance_set_prop(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value)
Set the value of an RTP instance property.
Definition: rtp_engine.c:726
int ast_rtp_codecs_find_payload_code(struct ast_rtp_codecs *codecs, int payload)
Search for the tx payload type in the ast_rtp_codecs structure.
Definition: rtp_engine.c:1988
void ast_rtp_instance_get_local_address(struct ast_rtp_instance *instance, struct ast_sockaddr *address)
Get the local address that we are expecting RTP on.
Definition: rtp_engine.c:664
@ AST_RTP_ICE_CANDIDATE_TYPE_RELAYED
Definition: rtp_engine.h:504
@ AST_RTP_ICE_CANDIDATE_TYPE_SRFLX
Definition: rtp_engine.h:503
@ AST_RTP_ICE_CANDIDATE_TYPE_HOST
Definition: rtp_engine.h:502
#define AST_DEBUG_CATEGORY_ICE
Definition: rtp_engine.h:2898
int ast_rtp_instance_set_local_address(struct ast_rtp_instance *instance, const struct ast_sockaddr *address)
Set the address that we are expecting to receive RTP on.
Definition: rtp_engine.c:609
int ast_rtp_get_rate(const struct ast_format *format)
Retrieve the sample rate of a format according to RTP specifications.
Definition: rtp_engine.c:4108
int ast_rtp_codecs_payload_code_tx(struct ast_rtp_codecs *codecs, int asterisk_format, const struct ast_format *format, int code)
Retrieve a tx mapped payload type based on whether it is an Asterisk format and the code.
Definition: rtp_engine.c:1941
ast_rtp_extension
Known RTP extensions.
Definition: rtp_engine.h:588
@ AST_RTP_EXTENSION_TRANSPORT_WIDE_CC
Definition: rtp_engine.h:594
@ AST_RTP_EXTENSION_ABS_SEND_TIME
Definition: rtp_engine.h:592
#define ast_rtp_instance_set_remote_address(instance, address)
Set the address of the remote endpoint that we are sending RTP to.
Definition: rtp_engine.h:1126
#define AST_RTP_RTCP_FMT_REMB
Definition: rtp_engine.h:334
ast_rtp_dtls_connection
DTLS connection states.
Definition: rtp_engine.h:567
@ AST_RTP_DTLS_CONNECTION_NEW
Definition: rtp_engine.h:568
@ AST_RTP_DTLS_CONNECTION_EXISTING
Definition: rtp_engine.h:569
#define ast_debug_dtls(sublevel,...)
Log debug level DTLS information.
Definition: rtp_engine.h:2940
ast_rtp_property
Definition: rtp_engine.h:113
@ AST_RTP_PROPERTY_NAT
Definition: rtp_engine.h:115
@ AST_RTP_PROPERTY_RETRANS_RECV
Definition: rtp_engine.h:127
@ AST_RTP_PROPERTY_RETRANS_SEND
Definition: rtp_engine.h:129
@ AST_RTP_PROPERTY_RTCP
Definition: rtp_engine.h:123
@ AST_RTP_PROPERTY_ASYMMETRIC_CODEC
Definition: rtp_engine.h:125
@ AST_RTP_PROPERTY_DTMF
Definition: rtp_engine.h:117
@ AST_RTP_PROPERTY_DTMF_COMPENSATE
Definition: rtp_engine.h:119
@ AST_RTP_PROPERTY_REMB
Definition: rtp_engine.h:131
#define ast_debug_dtls_packet_is_allowed
Definition: rtp_engine.h:2944
#define AST_LOG_CATEGORY_RTP_PACKET
Definition: rtp_engine.h:2872
#define AST_RTP_STAT_STRCPY(current_stat, combined, placement, value)
Definition: rtp_engine.h:487
#define ast_debug_ice(sublevel,...)
Log debug level ICE information.
Definition: rtp_engine.h:2952
void ast_rtp_instance_get_requested_target_address(struct ast_rtp_instance *instance, struct ast_sockaddr *address)
Get the requested target address of the remote endpoint.
Definition: rtp_engine.c:694
int ast_rtp_instance_set_incoming_source_address(struct ast_rtp_instance *instance, const struct ast_sockaddr *address)
Set the incoming source address of the remote endpoint that we are sending RTP to.
Definition: rtp_engine.c:627
int ast_rtp_instance_extmap_get_id(struct ast_rtp_instance *instance, enum ast_rtp_extension extension)
Retrieve the id for an RTP extension.
Definition: rtp_engine.c:907
#define AST_RTP_CN
Definition: rtp_engine.h:293
int ast_rtp_engine_unregister(struct ast_rtp_engine *engine)
Unregister an RTP engine.
Definition: rtp_engine.c:363
#define AST_RTP_RTCP_FMT_TRANSPORT_WIDE_CC
Definition: rtp_engine.h:336
struct ast_rtp_codecs * ast_rtp_instance_get_codecs(struct ast_rtp_instance *instance)
Get the codecs structure of an RTP instance.
Definition: rtp_engine.c:748
const char * ast_rtp_instance_get_channel_id(struct ast_rtp_instance *instance)
Get the unique ID of the channel that owns this RTP instance.
Definition: rtp_engine.c:569
unsigned int ast_rtp_codecs_get_framing(struct ast_rtp_codecs *codecs)
Get the framing used for a set of codecs.
Definition: rtp_engine.c:1582
unsigned int ast_rtp_instance_get_ssrc(struct ast_rtp_instance *rtp)
Retrieve the local SSRC value that we will be using.
Definition: rtp_engine.c:3843
#define AST_RTP_STAT_SET(current_stat, combined, placement, value)
Definition: rtp_engine.h:479
int ast_rtp_instance_add_srtp_policy(struct ast_rtp_instance *instance, struct ast_srtp_policy *remote_policy, struct ast_srtp_policy *local_policy, int rtcp)
Add or replace the SRTP policies for the given RTP instance.
Definition: rtp_engine.c:2773
#define AST_RTP_RTCP_FMT_PLI
Definition: rtp_engine.h:330
#define ast_rtp_engine_register(engine)
Definition: rtp_engine.h:840
#define AST_RTP_CISCO_DTMF
Definition: rtp_engine.h:295
#define AST_SCHED_DEL_UNREF(sched, id, refcall)
schedule task to get deleted and call unref function
Definition: sched.h:82
#define AST_SCHED_DEL(sched, id)
Remove a scheduler entry.
Definition: sched.h:46
int ast_sched_del(struct ast_sched_context *con, int id) attribute_warn_unused_result
Deletes a scheduled event.
Definition: sched.c:614
int ast_sched_add(struct ast_sched_context *con, int when, ast_sched_cb callback, const void *data) attribute_warn_unused_result
Adds a scheduled event.
Definition: sched.c:567
Security Event Reporting API.
struct stasis_topic * ast_security_topic(void)
A stasis_topic which publishes messages for security related issues.
Asterisk internal frame definitions.
void ast_smoother_set_flags(struct ast_smoother *smoother, int flags)
Definition: smoother.c:123
#define ast_smoother_feed_be(s, f)
Definition: smoother.h:80
int ast_smoother_test_flag(struct ast_smoother *s, int flag)
Definition: smoother.c:128
void ast_smoother_free(struct ast_smoother *s)
Definition: smoother.c:220
#define AST_SMOOTHER_FLAG_FORCED
Definition: smoother.h:36
struct ast_frame * ast_smoother_read(struct ast_smoother *s)
Definition: smoother.c:169
#define ast_smoother_feed(s, f)
Definition: smoother.h:75
struct ast_smoother * ast_smoother_new(int bytes)
Definition: smoother.c:108
#define AST_SMOOTHER_FLAG_BE
Definition: smoother.h:35
struct stasis_message_type * stasis_message_type(const struct stasis_message *msg)
Get the message type for a stasis_message.
@ STASIS_SUBSCRIPTION_FILTER_SELECTIVE
Definition: stasis.h:297
int stasis_subscription_accept_message_type(struct stasis_subscription *subscription, const struct stasis_message_type *type)
Indicate to a subscription that we are interested in a message type.
Definition: stasis.c:1023
int stasis_subscription_set_filter(struct stasis_subscription *subscription, enum stasis_subscription_message_filter filter)
Set the message type filtering level on a subscription.
Definition: stasis.c:1077
struct stasis_subscription * stasis_unsubscribe_and_join(struct stasis_subscription *subscription)
Cancel a subscription, blocking until the last message is processed.
Definition: stasis.c:1134
#define stasis_subscribe(topic, callback, data)
Definition: stasis.h:649
#define S_OR(a, b)
returns the equivalent of logic or for strings: first one if not empty, otherwise second one.
Definition: strings.h:80
int attribute_pure ast_true(const char *val)
Make sure something is true. Determine if a string containing a boolean value is "true"....
Definition: utils.c:2199
static force_inline int attribute_pure ast_strlen_zero(const char *s)
Definition: strings.h:65
int attribute_pure ast_false(const char *val)
Make sure something is false. Determine if a string containing a boolean value is "false"....
Definition: utils.c:2216
void ast_copy_string(char *dst, const char *src, size_t size)
Size-limited null-terminating string copy.
Definition: strings.h:425
char * ast_skip_blanks(const char *str)
Gets a pointer to the first non-whitespace character in a string.
Definition: strings.h:161
Definition: test_acl.c:111
Generic container type.
When we need to walk through a container, we use an ao2_iterator to keep track of the current positio...
Definition: astobj2.h:1821
Wrapper for an ast_acl linked list.
Definition: acl.h:76
Main Channel structure associated with a channel.
descriptor for a cli entry.
Definition: cli.h:171
int args
This gets set in ast_cli_register()
Definition: cli.h:185
char * command
Definition: cli.h:186
const char * usage
Definition: cli.h:177
Data buffer containing fixed number of data payloads.
Definition: data_buffer.c:59
A recurring DNS query.
Definition: dns_internal.h:157
A DNS query.
Definition: dns_internal.h:137
For AST_LIST.
Definition: dns_internal.h:39
char data[0]
The raw DNS record.
Definition: dns_internal.h:60
int rr_type
Resource record type.
Definition: dns_internal.h:41
The result of a DNS query.
Definition: dns_internal.h:117
Structure used to handle boolean flags.
Definition: utils.h:199
Definition of a media format.
Definition: format.c:43
struct ast_codec * codec
Pointer to the codec in use for this format.
Definition: format.c:47
struct ast_format * format
Data structure associated with a single frame of data.
struct ast_frame_subclass subclass
union ast_frame::@226 data
struct timeval delivery
enum ast_frame_type frametype
unsigned int flags
const char * src
Abstract JSON element (object, array, string, int, ...).
Structure defining an RTCP session.
double maxrxmes
double reported_mes
double maxrxlost
unsigned int themrxlsr
unsigned int rxmes_count
unsigned int received_prior
unsigned int sr_count
unsigned char frame_buf[512+AST_FRIENDLY_OFFSET]
double reported_maxjitter
unsigned int reported_mes_count
double reported_normdev_lost
double reported_minlost
double normdevrtt
double reported_normdev_mes
double stdevrtt
double minrxjitter
unsigned int soc
unsigned int lastsrtxcount
double reported_maxmes
struct ast_sockaddr them
unsigned int reported_lost
double reported_stdev_jitter
unsigned int reported_jitter_count
double normdev_rxjitter
double accumulated_transit
double reported_stdev_lost
struct timeval txlsr
enum ast_rtp_instance_rtcp type
unsigned int spc
unsigned int rxjitter_count
unsigned int reported_lost_count
double normdev_rxlost
double reported_stdev_mes
unsigned int rtt_count
double normdev_rxmes
double maxrxjitter
double reported_normdev_jitter
double reported_maxlost
unsigned int rxlost_count
unsigned int rr_count
double stdev_rxjitter
double reported_jitter
double stdev_rxmes
double reported_minjitter
double minrxlost
struct ast_sockaddr us
struct timeval rxlsr
double minrxmes
char * local_addr_str
unsigned int expected_prior
double reported_minmes
double stdev_rxlost
DTLS configuration structure.
Definition: rtp_engine.h:600
enum ast_rtp_dtls_setup default_setup
Definition: rtp_engine.h:603
enum ast_rtp_dtls_verify verify
Definition: rtp_engine.h:606
unsigned int rekey
Definition: rtp_engine.h:602
enum ast_rtp_dtls_hash hash
Definition: rtp_engine.h:605
unsigned int enabled
Definition: rtp_engine.h:601
unsigned int ephemeral_cert
Definition: rtp_engine.h:612
enum ast_srtp_suite suite
Definition: rtp_engine.h:604
Structure that represents the optional DTLS SRTP support within an RTP engine.
Definition: rtp_engine.h:616
int(* set_configuration)(struct ast_rtp_instance *instance, const struct ast_rtp_dtls_cfg *dtls_cfg)
Definition: rtp_engine.h:618
Structure for an ICE candidate.
Definition: rtp_engine.h:520
struct ast_sockaddr address
Definition: rtp_engine.h:525
enum ast_rtp_ice_component_type id
Definition: rtp_engine.h:522
struct ast_sockaddr relay_address
Definition: rtp_engine.h:526
enum ast_rtp_ice_candidate_type type
Definition: rtp_engine.h:527
Structure that represents the optional ICE support within an RTP engine.
Definition: rtp_engine.h:531
void(* set_authentication)(struct ast_rtp_instance *instance, const char *ufrag, const char *password)
Definition: rtp_engine.h:533
const char * name
Definition: rtp_engine.h:662
struct ast_rtp_engine_dtls * dtls
Definition: rtp_engine.h:739
unsigned int remote_ssrc
Definition: rtp_engine.h:449
unsigned int rxcount
Definition: rtp_engine.h:395
unsigned int local_ssrc
Definition: rtp_engine.h:447
unsigned int rxoctetcount
Definition: rtp_engine.h:455
unsigned int rxploss
Definition: rtp_engine.h:419
unsigned int txcount
Definition: rtp_engine.h:393
unsigned int txploss
Definition: rtp_engine.h:417
unsigned int txoctetcount
Definition: rtp_engine.h:453
char channel_uniqueid[MAX_CHANNEL_ID]
Definition: rtp_engine.h:451
An object that represents data received in a feedback report.
Definition: rtp_engine.h:383
unsigned int fmt
Definition: rtp_engine.h:384
struct ast_rtp_rtcp_feedback_remb remb
Definition: rtp_engine.h:386
Structure for storing RTP packets for retransmission.
A report block within a SR/RR report.
Definition: rtp_engine.h:341
unsigned int highest_seq_no
Definition: rtp_engine.h:347
struct ast_rtp_rtcp_report_block::@272 lost_count
unsigned short fraction
Definition: rtp_engine.h:344
unsigned int source_ssrc
Definition: rtp_engine.h:342
An object that represents data sent during a SR/RR RTCP report.
Definition: rtp_engine.h:356
struct ast_rtp_rtcp_report::@273 sender_information
unsigned int type
Definition: rtp_engine.h:359
unsigned short reception_report_count
Definition: rtp_engine.h:357
unsigned int rtp_timestamp
Definition: rtp_engine.h:362
struct ast_rtp_rtcp_report_block * report_block[0]
Definition: rtp_engine.h:369
struct timeval ntp_timestamp
Definition: rtp_engine.h:361
unsigned int octet_count
Definition: rtp_engine.h:364
unsigned int ssrc
Definition: rtp_engine.h:358
unsigned int packet_count
Definition: rtp_engine.h:363
RTP session description.
unsigned int rxcount
unsigned int lastividtimestamp
unsigned int dtmf_duration
unsigned int dtmfsamples
unsigned int ssrc_orig
struct ast_format * lasttxformat
struct rtp_transport_wide_cc_statistics transport_wide_cc
unsigned int lastts
struct ast_smoother * smoother
struct ast_sched_context * sched
unsigned short seedrxseqno
struct timeval txcore
unsigned int remote_seed_rx_rtp_ts_stable
double rxmes
enum ast_rtp_dtmf_mode dtmfmode
struct ast_sockaddr strict_rtp_address
double rxstart
double rxstart_stable
enum strict_rtp_state strict_rtp_state
unsigned short seqno
unsigned int rxoctetcount
struct timeval rxcore
unsigned int last_seqno
struct ast_frame f
struct ast_rtcp * rtcp
int expectedrxseqno
unsigned int themssrc_valid
double rxjitter
unsigned int dtmf_timeout
char cname[AST_UUID_STR_LEN]
unsigned int txcount
unsigned char rawdata[8192+AST_FRIENDLY_OFFSET]
unsigned int last_transit_time_samples
unsigned int cycles
unsigned int lastovidtimestamp
unsigned int ssrc
unsigned int asymmetric_codec
double rxjitter_samples
struct ast_rtp::@471 missing_seqno
struct ast_data_buffer * recv_buffer
optional_ts last_end_timestamp
unsigned int lastotexttimestamp
unsigned int flags
struct timeval dtmfmute
struct ast_sockaddr bind_address
unsigned char ssrc_saved
struct ast_data_buffer * send_buffer
struct rtp_learning_info rtp_source_learn
struct ast_rtp_instance * owner
The RTP instance owning us (used for debugging purposes) We don't hold a reference to the instance be...
unsigned int remote_seed_rx_rtp_ts
unsigned int lastitexttimestamp
unsigned int lastdigitts
unsigned int txoctetcount
struct ast_rtp_instance * bundled
char sending_digit
struct rtp_red * red
struct ast_rtp::@472 ssrc_mapping
struct ast_format * lastrxformat
unsigned int themssrc
Structure for rwlock and tracking information.
Definition: lock.h:157
Socket address structure.
Definition: netsock2.h:97
socklen_t len
Definition: netsock2.h:99
void(* destroy)(struct ast_srtp_policy *policy)
Definition: res_srtp.h:72
int(* set_master_key)(struct ast_srtp_policy *policy, const unsigned char *key, size_t key_len, const unsigned char *salt, size_t salt_len)
Definition: res_srtp.h:74
void(* set_ssrc)(struct ast_srtp_policy *policy, unsigned long ssrc, int inbound)
Definition: res_srtp.h:75
int(* set_suite)(struct ast_srtp_policy *policy, enum ast_srtp_suite suite)
Definition: res_srtp.h:73
struct ast_srtp_policy *(* alloc)(void)
Definition: res_srtp.h:71
int(* unprotect)(struct ast_srtp *srtp, void *buf, int *size, int rtcp)
Definition: res_srtp.h:48
int(* change_source)(struct ast_srtp *srtp, unsigned int from_ssrc, unsigned int to_ssrc)
Definition: res_srtp.h:44
int(* protect)(struct ast_srtp *srtp, void **buf, int *size, int rtcp)
Definition: res_srtp.h:50
struct ast_rtp_instance * rtp
Definition: res_srtp.c:67
Structure for variables, used for configurations and for channel variables.
Definition: ndbm.h:57
Definition: astman.c:222
structure to hold extensions
unsigned int ts
unsigned char is_set
RTP learning mode tracking information.
enum ast_media_type stream_type
struct timeval received
struct ast_sockaddr proposed_address
struct timeval start
struct ast_frame t140
unsigned char t140red_data[64000]
unsigned char ts[AST_RED_MAX_GENERATION]
unsigned char len[AST_RED_MAX_GENERATION]
unsigned char buf_data[64000]
unsigned char pt[AST_RED_MAX_GENERATION]
long int prev_ts
struct ast_frame t140red
Structure used for mapping an incoming SSRC to an RTP instance.
unsigned int ssrc
The received SSRC.
unsigned int ssrc_valid
struct ast_rtp_instance * instance
The RTP instance this SSRC belongs to.
Packet statistics (used for transport-cc)
Statistics information (used for transport-cc)
struct rtp_transport_wide_cc_statistics::@470 packet_statistics
Definition: sched.c:76
Definition: ast_expr2.c:325
STUN support.
int ast_stun_request(int s, struct sockaddr_in *dst, const char *username, struct sockaddr_in *answer)
Generic STUN request.
Definition: stun.c:415
int ast_stun_handle_packet(int s, struct sockaddr_in *src, unsigned char *data, size_t len, stun_cb_f *stun_cb, void *arg)
handle an incoming STUN message.
Definition: stun.c:293
#define ast_debug_stun(sublevel,...)
Log debug level STUN information.
Definition: stun.h:54
#define AST_DEBUG_CATEGORY_STUN
Definition: stun.h:45
static const int STANDARD_STUN_PORT
Definition: stun.h:61
@ AST_STUN_ACCEPT
Definition: stun.h:65
int value
Definition: syslog.c:37
Test Framework API.
#define ast_test_suite_event_notify(s, f,...)
Definition: test.h:189
static struct test_options options
static struct test_val b
static struct test_val a
static struct test_val d
void * ast_threadstorage_get(struct ast_threadstorage *ts, size_t init_size)
Retrieve thread storage.
#define AST_THREADSTORAGE(name)
Define a thread storage variable.
Definition: threadstorage.h:86
int64_t ast_tvdiff_us(struct timeval end, struct timeval start)
Computes the difference (in microseconds) between two struct timeval instances.
Definition: time.h:87
struct timeval ast_samp2tv(unsigned int _nsamp, unsigned int _rate)
Returns a timeval corresponding to the duration of n samples at rate r. Useful to convert samples to ...
Definition: time.h:282
int ast_tvzero(const struct timeval t)
Returns true if the argument is 0,0.
Definition: time.h:117
@ TIME_UNIT_MICROSECOND
Definition: time.h:341
int ast_tvcmp(struct timeval _a, struct timeval _b)
Compress two struct timeval instances returning -1, 0, 1 if the first arg is smaller,...
Definition: time.h:137
struct timeval ast_time_create_by_unit(unsigned long val, enum TIME_UNIT unit)
Convert the given unit value, and create a timeval object from it.
Definition: time.c:113
double ast_samp2sec(unsigned int _nsamp, unsigned int _rate)
Returns the duration in seconds of _nsamp samples at rate _rate.
Definition: time.h:316
unsigned int ast_sec2samp(double _seconds, int _rate)
Returns the number of samples at _rate in the duration in _seconds.
Definition: time.h:333
struct timeval ast_tvadd(struct timeval a, struct timeval b)
Returns the sum of two timevals a + b.
Definition: extconf.c:2282
struct timeval ast_time_create_by_unit_str(unsigned long val, const char *unit)
Convert the given unit value, and create a timeval object from it.
Definition: time.c:143
struct timeval ast_tvsub(struct timeval a, struct timeval b)
Returns the difference of two timevals a - b.
Definition: extconf.c:2297
double ast_tv2double(const struct timeval *tv)
Returns a double corresponding to the number of seconds in the timeval tv.
Definition: time.h:270
ast_suseconds_t ast_time_tv_to_usec(const struct timeval *tv)
Convert a timeval structure to microseconds.
Definition: time.c:90
int64_t ast_tvdiff_ms(struct timeval end, struct timeval start)
Computes the difference (in milliseconds) between two struct timeval instances.
Definition: time.h:107
struct timeval ast_tvnow(void)
Returns current timeval. Meant to replace calls to gettimeofday().
Definition: time.h:159
struct timeval ast_tv(ast_time_t sec, ast_suseconds_t usec)
Returns a timeval from sec, usec.
Definition: time.h:235
static void destroy(struct ast_trans_pvt *pvt)
Definition: translate.c:292
Handle unaligned data access.
static void put_unaligned_uint16(void *p, unsigned short datum)
Definition: unaligned.h:65
static void put_unaligned_uint32(void *p, unsigned int datum)
Definition: unaligned.h:58
int error(const char *format,...)
Definition: utils/frame.c:999
static void statistics(void)
Definition: utils/frame.c:287
FILE * in
Definition: utils/frame.c:33
Utility functions.
#define ast_test_flag(p, flag)
Definition: utils.h:63
#define RAII_VAR(vartype, varname, initval, dtor)
Declare a variable that will call a destructor function when it goes out of scope.
Definition: utils.h:941
#define ast_assert(a)
Definition: utils.h:739
#define MIN(a, b)
Definition: utils.h:231
#define ast_socket_nonblock(domain, type, protocol)
Create a non-blocking socket.
Definition: utils.h:1073
#define ast_clear_flag(p, flag)
Definition: utils.h:77
long int ast_random(void)
Definition: utils.c:2312
#define ast_set_flag(p, flag)
Definition: utils.h:70
#define ARRAY_LEN(a)
Definition: utils.h:666
Universally unique identifier support.
#define AST_UUID_STR_LEN
Definition: uuid.h:27
char * ast_uuid_generate_str(char *buf, size_t size)
Generate a UUID string.
Definition: uuid.c:141
#define AST_VECTOR_RESET(vec, cleanup)
Reset vector.
Definition: vector.h:625
#define AST_VECTOR_ELEM_CLEANUP_NOOP(elem)
Vector element cleanup that does nothing.
Definition: vector.h:571
#define AST_VECTOR_SIZE(vec)
Get the number of elements in a vector.
Definition: vector.h:609
#define AST_VECTOR_REMOVE_CMP_ORDERED(vec, value, cmp, cleanup)
Remove an element from a vector that matches the given comparison while maintaining order.
Definition: vector.h:540
#define AST_VECTOR_FREE(vec)
Deallocates this vector.
Definition: vector.h:174
#define AST_VECTOR_REMOVE_CMP_UNORDERED(vec, value, cmp, cleanup)
Remove an element from a vector that matches the given comparison.
Definition: vector.h:488
#define AST_VECTOR_GET_CMP(vec, value, cmp)
Get an element from a vector that matches the given comparison.
Definition: vector.h:731
#define AST_VECTOR_ADD_SORTED(vec, elem, cmp)
Add an element into a sorted vector.
Definition: vector.h:371
#define AST_VECTOR_INIT(vec, size)
Initialize a vector.
Definition: vector.h:113
#define AST_VECTOR_APPEND(vec, elem)
Append an element to a vector, growing the vector if needed.
Definition: vector.h:256
#define AST_VECTOR(name, type)
Define a vector structure.
Definition: vector.h:44
#define AST_VECTOR_GET_ADDR(vec, idx)
Get an address of element in a vector.
Definition: vector.h:668