Asterisk - The Open Source Telephony Project GIT-master-754dea3
All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Macros Modules Pages
res_rtp_asterisk.c
Go to the documentation of this file.
1/*
2 * Asterisk -- An open source telephony toolkit.
3 *
4 * Copyright (C) 1999 - 2008, Digium, Inc.
5 *
6 * Mark Spencer <markster@digium.com>
7 *
8 * See http://www.asterisk.org for more information about
9 * the Asterisk project. Please do not directly contact
10 * any of the maintainers of this project for assistance;
11 * the project provides a web site, mailing lists and IRC
12 * channels for your use.
13 *
14 * This program is free software, distributed under the terms of
15 * the GNU General Public License Version 2. See the LICENSE file
16 * at the top of the source tree.
17 */
18
19/*!
20 * \file
21 *
22 * \brief Supports RTP and RTCP with Symmetric RTP support for NAT traversal.
23 *
24 * \author Mark Spencer <markster@digium.com>
25 *
26 * \note RTP is defined in RFC 3550.
27 *
28 * \ingroup rtp_engines
29 */
30
31/*** MODULEINFO
32 <use type="external">openssl</use>
33 <use type="external">pjproject</use>
34 <support_level>core</support_level>
35 ***/
36
37#include "asterisk.h"
38
39#include <arpa/nameser.h>
40#include "asterisk/dns_core.h"
43
44#include <sys/time.h>
45#include <signal.h>
46#include <fcntl.h>
47#include <math.h>
48
49#ifdef HAVE_OPENSSL
50#include <openssl/opensslconf.h>
51#include <openssl/opensslv.h>
52#if !defined(OPENSSL_NO_SRTP) && (OPENSSL_VERSION_NUMBER >= 0x10001000L)
53#include <openssl/ssl.h>
54#include <openssl/err.h>
55#include <openssl/bio.h>
56#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L)
57#include <openssl/bn.h>
58#endif
59#ifndef OPENSSL_NO_DH
60#include <openssl/dh.h>
61#endif
62#endif
63#endif
64
65#ifdef HAVE_PJPROJECT
66#include <pjlib.h>
67#include <pjlib-util.h>
68#include <pjnath.h>
69#include <ifaddrs.h>
70#endif
71
73#include "asterisk/options.h"
75#include "asterisk/stun.h"
76#include "asterisk/pbx.h"
77#include "asterisk/frame.h"
79#include "asterisk/channel.h"
80#include "asterisk/acl.h"
81#include "asterisk/config.h"
82#include "asterisk/lock.h"
83#include "asterisk/utils.h"
84#include "asterisk/cli.h"
85#include "asterisk/manager.h"
86#include "asterisk/unaligned.h"
87#include "asterisk/module.h"
88#include "asterisk/rtp_engine.h"
89#include "asterisk/smoother.h"
90#include "asterisk/uuid.h"
91#include "asterisk/test.h"
93#ifdef HAVE_PJPROJECT
96#endif
97
98#define MAX_TIMESTAMP_SKEW 640
99
100#define RTP_SEQ_MOD (1<<16) /*!< A sequence number can't be more than 16 bits */
101#define RTCP_DEFAULT_INTERVALMS 5000 /*!< Default milli-seconds between RTCP reports we send */
102#define RTCP_MIN_INTERVALMS 500 /*!< Min milli-seconds between RTCP reports we send */
103#define RTCP_MAX_INTERVALMS 60000 /*!< Max milli-seconds between RTCP reports we send */
104
105#define DEFAULT_RTP_START 5000 /*!< Default port number to start allocating RTP ports from */
106#define DEFAULT_RTP_END 31000 /*!< Default maximum port number to end allocating RTP ports at */
107
108#define MINIMUM_RTP_PORT 1024 /*!< Minimum port number to accept */
109#define MAXIMUM_RTP_PORT 65535 /*!< Maximum port number to accept */
110
111#define DEFAULT_TURN_PORT 3478
112
113#define TURN_STATE_WAIT_TIME 2000
114
115#define DEFAULT_RTP_SEND_BUFFER_SIZE 250 /*!< The initial size of the RTP send buffer */
116#define MAXIMUM_RTP_SEND_BUFFER_SIZE (DEFAULT_RTP_SEND_BUFFER_SIZE + 200) /*!< Maximum RTP send buffer size */
117#define DEFAULT_RTP_RECV_BUFFER_SIZE 20 /*!< The initial size of the RTP receiver buffer */
118#define MAXIMUM_RTP_RECV_BUFFER_SIZE (DEFAULT_RTP_RECV_BUFFER_SIZE + 20) /*!< Maximum RTP receive buffer size */
119#define OLD_PACKET_COUNT 1000 /*!< The number of previous packets that are considered old */
120#define MISSING_SEQNOS_ADDED_TRIGGER 2 /*!< The number of immediate missing packets that will trigger an immediate NACK */
121
122#define SEQNO_CYCLE_OVER 65536 /*!< The number after the maximum allowed sequence number */
123
124/*! Full INTRA-frame Request / Fast Update Request (From RFC2032) */
125#define RTCP_PT_FUR 192
126/*! Sender Report (From RFC3550) */
127#define RTCP_PT_SR AST_RTP_RTCP_SR
128/*! Receiver Report (From RFC3550) */
129#define RTCP_PT_RR AST_RTP_RTCP_RR
130/*! Source Description (From RFC3550) */
131#define RTCP_PT_SDES 202
132/*! Goodbye (To remove SSRC's from tables) (From RFC3550) */
133#define RTCP_PT_BYE 203
134/*! Application defined (From RFC3550) */
135#define RTCP_PT_APP 204
136/* VP8: RTCP Feedback */
137/*! Payload Specific Feed Back (From RFC4585 also RFC5104) */
138#define RTCP_PT_PSFB AST_RTP_RTCP_PSFB
139
140#define RTP_MTU 1200
141
142#define DEFAULT_DTMF_TIMEOUT (150 * (8000 / 1000)) /*!< samples */
143
144#define ZFONE_PROFILE_ID 0x505a
145
146#define DEFAULT_LEARNING_MIN_SEQUENTIAL 4
147/*!
148 * \brief Calculate the min learning duration in ms.
149 *
150 * \details
151 * The min supported packet size represents 10 ms and we need to account
152 * for some jitter and fast clocks while learning. Some messed up devices
153 * have very bad jitter for a small packet sample size. Jitter can also
154 * be introduced by the network itself.
155 *
156 * So we'll allow packets to come in every 9ms on average for fast clocking
157 * with the last one coming in 5ms early for jitter.
158 */
159#define CALC_LEARNING_MIN_DURATION(count) (((count) - 1) * 9 - 5)
160#define DEFAULT_LEARNING_MIN_DURATION CALC_LEARNING_MIN_DURATION(DEFAULT_LEARNING_MIN_SEQUENTIAL)
161
162#define SRTP_MASTER_KEY_LEN 16
163#define SRTP_MASTER_SALT_LEN 14
164#define SRTP_MASTER_LEN (SRTP_MASTER_KEY_LEN + SRTP_MASTER_SALT_LEN)
165
166#define RTP_DTLS_ESTABLISHED -37
167
169 STRICT_RTP_OPEN = 0, /*! No RTP packets should be dropped, all sources accepted */
170 STRICT_RTP_LEARN, /*! Accept next packet as source */
171 STRICT_RTP_CLOSED, /*! Drop all RTP packets not coming from source that was learned */
172};
173
175 STRICT_RTP_NO = 0, /*! Don't adhere to any strict RTP rules */
176 STRICT_RTP_YES, /*! Strict RTP that restricts packets based on time and sequence number */
177 STRICT_RTP_SEQNO, /*! Strict RTP that restricts packets based on sequence number */
178};
179
180/*!
181 * \brief Strict RTP learning timeout time in milliseconds
182 *
183 * \note Set to 5 seconds to allow reinvite chains for direct media
184 * to settle before media actually starts to arrive. There may be a
185 * reinvite collision involved on the other leg.
186 */
187#define STRICT_RTP_LEARN_TIMEOUT 5000
188
189#define DEFAULT_STRICT_RTP STRICT_RTP_YES /*!< Enabled by default */
190#define DEFAULT_SRTP_REPLAY_PROTECTION 1
191#define DEFAULT_ICESUPPORT 1
192#define DEFAULT_STUN_SOFTWARE_ATTRIBUTE 1
193#define DEFAULT_DTLS_MTU 1200
194
195/*!
196 * Because both ends usually don't start sending RTP
197 * at the same time, some of the calculations like
198 * rtt and jitter will probably be unstable for a while
199 * so we'll skip some received packets before starting
200 * analyzing. This just affects analyzing; we still
201 * process the RTP as normal.
202 */
203#define RTP_IGNORE_FIRST_PACKETS_COUNT 15
204
205extern struct ast_srtp_res *res_srtp;
207
209
210static int rtpstart = DEFAULT_RTP_START; /*!< First port for RTP sessions (set in rtp.conf) */
211static int rtpend = DEFAULT_RTP_END; /*!< Last port for RTP sessions (set in rtp.conf) */
212static int rtcpstats; /*!< Are we debugging RTCP? */
213static int rtcpinterval = RTCP_DEFAULT_INTERVALMS; /*!< Time between rtcp reports in millisecs */
214static struct ast_sockaddr rtpdebugaddr; /*!< Debug packets to/from this host */
215static struct ast_sockaddr rtcpdebugaddr; /*!< Debug RTCP packets to/from this host */
216static int rtpdebugport; /*!< Debug only RTP packets from IP or IP+Port if port is > 0 */
217static int rtcpdebugport; /*!< Debug only RTCP packets from IP or IP+Port if port is > 0 */
218#ifdef SO_NO_CHECK
219static int nochecksums;
220#endif
221static int strictrtp = DEFAULT_STRICT_RTP; /*!< Only accept RTP frames from a defined source. If we receive an indication of a changing source, enter learning mode. */
222static int learning_min_sequential = DEFAULT_LEARNING_MIN_SEQUENTIAL; /*!< Number of sequential RTP frames needed from a single source during learning mode to accept new source. */
223static int learning_min_duration = DEFAULT_LEARNING_MIN_DURATION; /*!< Lowest acceptable timeout between the first and the last sequential RTP frame. */
225#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
226static int dtls_mtu = DEFAULT_DTLS_MTU;
227#endif
228#ifdef HAVE_PJPROJECT
229static int icesupport = DEFAULT_ICESUPPORT;
230static int stun_software_attribute = DEFAULT_STUN_SOFTWARE_ATTRIBUTE;
231static struct sockaddr_in stunaddr;
232static pj_str_t turnaddr;
233static int turnport = DEFAULT_TURN_PORT;
234static pj_str_t turnusername;
235static pj_str_t turnpassword;
237static struct ast_sockaddr lo6 = { .len = 0 };
238
239/*! ACL for ICE addresses */
240static struct ast_acl_list *ice_acl = NULL;
241static ast_rwlock_t ice_acl_lock = AST_RWLOCK_INIT_VALUE;
242
243/*! ACL for STUN requests */
244static struct ast_acl_list *stun_acl = NULL;
245static ast_rwlock_t stun_acl_lock = AST_RWLOCK_INIT_VALUE;
246
247/*! stunaddr recurring resolution */
248static ast_rwlock_t stunaddr_lock = AST_RWLOCK_INIT_VALUE;
249static struct ast_dns_query_recurring *stunaddr_resolver = NULL;
250
251/*! \brief Pool factory used by pjlib to allocate memory. */
252static pj_caching_pool cachingpool;
253
254/*! \brief Global memory pool for configuration and timers */
255static pj_pool_t *pool;
256
257/*! \brief Global timer heap */
258static pj_timer_heap_t *timer_heap;
259
260/*! \brief Thread executing the timer heap */
261static pj_thread_t *timer_thread;
262
263/*! \brief Used to tell the timer thread to terminate */
264static int timer_terminate;
265
266/*! \brief Structure which contains ioqueue thread information */
267struct ast_rtp_ioqueue_thread {
268 /*! \brief Pool used by the thread */
269 pj_pool_t *pool;
270 /*! \brief The thread handling the queue and timer heap */
271 pj_thread_t *thread;
272 /*! \brief Ioqueue which polls on sockets */
273 pj_ioqueue_t *ioqueue;
274 /*! \brief Timer heap for scheduled items */
275 pj_timer_heap_t *timerheap;
276 /*! \brief Termination request */
277 int terminate;
278 /*! \brief Current number of descriptors being waited on */
279 unsigned int count;
280 /*! \brief Linked list information */
281 AST_LIST_ENTRY(ast_rtp_ioqueue_thread) next;
282};
283
284/*! \brief List of ioqueue threads */
285static AST_LIST_HEAD_STATIC(ioqueues, ast_rtp_ioqueue_thread);
286
287/*! \brief Structure which contains ICE host candidate mapping information */
288struct ast_ice_host_candidate {
289 struct ast_sockaddr local;
290 struct ast_sockaddr advertised;
291 unsigned int include_local;
292 AST_RWLIST_ENTRY(ast_ice_host_candidate) next;
293};
294
295/*! \brief List of ICE host candidate mappings */
296static AST_RWLIST_HEAD_STATIC(host_candidates, ast_ice_host_candidate);
297
298static char *generate_random_string(char *buf, size_t size);
299
300#endif
301
302#define FLAG_3389_WARNING (1 << 0)
303#define FLAG_NAT_ACTIVE (3 << 1)
304#define FLAG_NAT_INACTIVE (0 << 1)
305#define FLAG_NAT_INACTIVE_NOWARN (1 << 1)
306#define FLAG_NEED_MARKER_BIT (1 << 3)
307#define FLAG_DTMF_COMPENSATE (1 << 4)
308#define FLAG_REQ_LOCAL_BRIDGE_BIT (1 << 5)
309
310#define TRANSPORT_SOCKET_RTP 0
311#define TRANSPORT_SOCKET_RTCP 1
312#define TRANSPORT_TURN_RTP 2
313#define TRANSPORT_TURN_RTCP 3
314
315/*! \brief RTP learning mode tracking information */
317 struct ast_sockaddr proposed_address; /*!< Proposed remote address for strict RTP */
318 struct timeval start; /*!< The time learning mode was started */
319 struct timeval received; /*!< The time of the first received packet */
320 int max_seq; /*!< The highest sequence number received */
321 int packets; /*!< The number of remaining packets before the source is accepted */
322 /*! Type of media stream carried by the RTP instance */
324};
325
326#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
327struct dtls_details {
328 SSL *ssl; /*!< SSL session */
329 BIO *read_bio; /*!< Memory buffer for reading */
330 BIO *write_bio; /*!< Memory buffer for writing */
331 enum ast_rtp_dtls_setup dtls_setup; /*!< Current setup state */
332 enum ast_rtp_dtls_connection connection; /*!< Whether this is a new or existing connection */
333 int timeout_timer; /*!< Scheduler id for timeout timer */
334};
335#endif
336
337#ifdef HAVE_PJPROJECT
338/*! An ao2 wrapper protecting the PJPROJECT ice structure with ref counting. */
339struct ice_wrap {
340 pj_ice_sess *real_ice; /*!< ICE session */
341};
342#endif
343
344/*! \brief Structure used for mapping an incoming SSRC to an RTP instance */
346 /*! \brief The received SSRC */
347 unsigned int ssrc;
348 /*! True if the SSRC is available. Otherwise, this is a placeholder mapping until the SSRC is set. */
349 unsigned int ssrc_valid;
350 /*! \brief The RTP instance this SSRC belongs to*/
352};
353
354/*! \brief Packet statistics (used for transport-cc) */
356 /*! The transport specific sequence number */
357 unsigned int seqno;
358 /*! The time at which the packet was received */
359 struct timeval received;
360 /*! The delta between this packet and the previous */
361 int delta;
362};
363
364/*! \brief Statistics information (used for transport-cc) */
366 /*! A vector of packet statistics */
367 AST_VECTOR(, struct rtp_transport_wide_cc_packet_statistics) packet_statistics; /*!< Packet statistics, used for transport-cc */
368 /*! The last sequence number received */
369 unsigned int last_seqno;
370 /*! The last extended sequence number */
372 /*! How many feedback packets have gone out */
373 unsigned int feedback_count;
374 /*! How many cycles have occurred for the sequence numbers */
375 unsigned int cycles;
376 /*! Scheduler id for periodic feedback transmission */
378};
379
380typedef struct {
381 unsigned int ts;
382 unsigned char is_set;
384
385/*! \brief RTP session description */
386struct ast_rtp {
387 int s;
388 /*! \note The f.subclass.format holds a ref. */
389 struct ast_frame f;
390 unsigned char rawdata[8192 + AST_FRIENDLY_OFFSET];
391 unsigned int ssrc; /*!< Synchronization source, RFC 3550, page 10. */
392 unsigned int ssrc_orig; /*!< SSRC used before native bridge activated */
393 unsigned char ssrc_saved; /*!< indicates if ssrc_orig has a value */
394 char cname[AST_UUID_STR_LEN]; /*!< Our local CNAME */
395 unsigned int themssrc; /*!< Their SSRC */
396 unsigned int themssrc_valid; /*!< True if their SSRC is available. */
397 unsigned int lastts;
398 unsigned int lastividtimestamp;
399 unsigned int lastovidtimestamp;
400 unsigned int lastitexttimestamp;
401 unsigned int lastotexttimestamp;
402 int prevrxseqno; /*!< Previous received packeted sequence number, from the network */
403 int lastrxseqno; /*!< Last received sequence number, from the network */
404 int expectedrxseqno; /*!< Next expected sequence number, from the network */
405 AST_VECTOR(, int) missing_seqno; /*!< A vector of sequence numbers we never received */
406 int expectedseqno; /*!< Next expected sequence number, from the core */
407 unsigned short seedrxseqno; /*!< What sequence number did they start with?*/
408 unsigned int rxcount; /*!< How many packets have we received? */
409 unsigned int rxoctetcount; /*!< How many octets have we received? should be rxcount *160*/
410 unsigned int txcount; /*!< How many packets have we sent? */
411 unsigned int txoctetcount; /*!< How many octets have we sent? (txcount*160)*/
412 unsigned int cycles; /*!< Shifted count of sequence number cycles */
415
416 /*
417 * RX RTP Timestamp and Jitter calculation.
418 */
419 double rxstart; /*!< RX time of the first packet in the session in seconds since EPOCH. */
420 double rxstart_stable; /*!< RX time of the first packet after RTP_IGNORE_FIRST_PACKETS_COUNT */
421 unsigned int remote_seed_rx_rtp_ts; /*!< RTP timestamp of first RX packet. */
422 unsigned int remote_seed_rx_rtp_ts_stable; /*!< RTP timestamp of first packet after RTP_IGNORE_FIRST_PACKETS_COUNT */
423 unsigned int last_transit_time_samples; /*!< The last transit time in samples */
424 double rxjitter; /*!< Last calculated Interarrival jitter in seconds. */
425 double rxjitter_samples; /*!< Last calculated Interarrival jitter in samples. */
426 double rxmes; /*!< Media Experince Score at the moment to be reported */
427
428 /* DTMF Reception Variables */
429 char resp; /*!< The current digit being processed */
430 unsigned int last_seqno; /*!< The last known sequence number for any DTMF packet */
431 optional_ts last_end_timestamp; /*!< The last known timestamp received from an END packet */
432 unsigned int dtmf_duration; /*!< Total duration in samples since the digit start event */
433 unsigned int dtmf_timeout; /*!< When this timestamp is reached we consider END frame lost and forcibly abort digit */
434 unsigned int dtmfsamples;
435 enum ast_rtp_dtmf_mode dtmfmode; /*!< The current DTMF mode of the RTP stream */
436 unsigned int dtmf_samplerate_ms; /*!< The sample rate of the current RTP stream in ms (sample rate / 1000) */
437 /* DTMF Transmission Variables */
438 unsigned int lastdigitts;
439 char sending_digit; /*!< boolean - are we sending digits */
440 char send_digit; /*!< digit we are sending */
443 unsigned int flags;
444 struct timeval rxcore;
445 struct timeval txcore;
446
447 struct timeval dtmfmute;
449 unsigned short seqno; /*!< Sequence number, RFC 3550, page 13. */
451 struct ast_rtcp *rtcp;
452 unsigned int asymmetric_codec; /*!< Indicate if asymmetric send/receive codecs are allowed */
453
454 struct ast_rtp_instance *bundled; /*!< The RTP instance we are bundled to */
455 /*!
456 * \brief The RTP instance owning us (used for debugging purposes)
457 * We don't hold a reference to the instance because it created
458 * us in the first place. It can't go away.
459 */
461 int stream_num; /*!< Stream num for this RTP instance */
462 AST_VECTOR(, struct rtp_ssrc_mapping) ssrc_mapping; /*!< Mappings of SSRC to RTP instances */
463 struct ast_sockaddr bind_address; /*!< Requested bind address for the sockets */
464
465 enum strict_rtp_state strict_rtp_state; /*!< Current state that strict RTP protection is in */
466 struct ast_sockaddr strict_rtp_address; /*!< Remote address information for strict RTP purposes */
467
468 /*
469 * Learning mode values based on pjmedia's probation mode. Many of these values are redundant to the above,
470 * but these are in place to keep learning mode sequence values sealed from their normal counterparts.
471 */
472 struct rtp_learning_info rtp_source_learn; /* Learning mode track for the expected RTP source */
473
474 struct rtp_red *red;
475
476 struct ast_data_buffer *send_buffer; /*!< Buffer for storing sent packets for retransmission */
477 struct ast_data_buffer *recv_buffer; /*!< Buffer for storing received packets for retransmission */
478
479 struct rtp_transport_wide_cc_statistics transport_wide_cc; /*!< Transport-cc statistics information */
480
481#ifdef HAVE_PJPROJECT
482 ast_cond_t cond; /*!< ICE/TURN condition for signaling */
483
484 struct ice_wrap *ice; /*!< ao2 wrapped ICE session */
485 enum ast_rtp_ice_role role; /*!< Our role in ICE negotiation */
486 pj_turn_sock *turn_rtp; /*!< RTP TURN relay */
487 pj_turn_sock *turn_rtcp; /*!< RTCP TURN relay */
488 pj_turn_state_t turn_state; /*!< Current state of the TURN relay session */
489 unsigned int passthrough:1; /*!< Bit to indicate that the received packet should be passed through */
490 unsigned int rtp_passthrough:1; /*!< Bit to indicate that TURN RTP should be passed through */
491 unsigned int rtcp_passthrough:1; /*!< Bit to indicate that TURN RTCP should be passed through */
492 unsigned int ice_port; /*!< Port that ICE was started with if it was previously started */
493 struct ast_sockaddr rtp_loop; /*!< Loopback address for forwarding RTP from TURN */
494 struct ast_sockaddr rtcp_loop; /*!< Loopback address for forwarding RTCP from TURN */
495
496 struct ast_rtp_ioqueue_thread *ioqueue; /*!< The ioqueue thread handling us */
497
498 char remote_ufrag[257]; /*!< The remote ICE username */
499 char remote_passwd[257]; /*!< The remote ICE password */
500
501 char local_ufrag[257]; /*!< The local ICE username */
502 char local_passwd[257]; /*!< The local ICE password */
503
504 struct ao2_container *ice_local_candidates; /*!< The local ICE candidates */
505 struct ao2_container *ice_active_remote_candidates; /*!< The remote ICE candidates */
506 struct ao2_container *ice_proposed_remote_candidates; /*!< Incoming remote ICE candidates for new session */
507 struct ast_sockaddr ice_original_rtp_addr; /*!< rtp address that ICE started on first session */
508 unsigned int ice_num_components; /*!< The number of ICE components */
509 unsigned int ice_media_started:1; /*!< ICE media has started, either on a valid pair or on ICE completion */
510#endif
511
512#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
513 SSL_CTX *ssl_ctx; /*!< SSL context */
514 enum ast_rtp_dtls_verify dtls_verify; /*!< What to verify */
515 enum ast_srtp_suite suite; /*!< SRTP crypto suite */
516 enum ast_rtp_dtls_hash local_hash; /*!< Local hash used for the fingerprint */
517 char local_fingerprint[160]; /*!< Fingerprint of our certificate */
518 enum ast_rtp_dtls_hash remote_hash; /*!< Remote hash used for the fingerprint */
519 unsigned char remote_fingerprint[EVP_MAX_MD_SIZE]; /*!< Fingerprint of the peer certificate */
520 unsigned int rekey; /*!< Interval at which to renegotiate and rekey */
521 int rekeyid; /*!< Scheduled item id for rekeying */
522 struct dtls_details dtls; /*!< DTLS state information */
523#endif
524};
525
526/*!
527 * \brief Structure defining an RTCP session.
528 *
529 * The concept "RTCP session" is not defined in RFC 3550, but since
530 * this structure is analogous to ast_rtp, which tracks a RTP session,
531 * it is logical to think of this as a RTCP session.
532 *
533 * RTCP packet is defined on page 9 of RFC 3550.
534 *
535 */
536struct ast_rtcp {
538 int s; /*!< Socket */
539 struct ast_sockaddr us; /*!< Socket representation of the local endpoint. */
540 struct ast_sockaddr them; /*!< Socket representation of the remote endpoint. */
541 unsigned int soc; /*!< What they told us */
542 unsigned int spc; /*!< What they told us */
543 unsigned int themrxlsr; /*!< The middle 32 bits of the NTP timestamp in the last received SR*/
544 struct timeval rxlsr; /*!< Time when we got their last SR */
545 struct timeval txlsr; /*!< Time when we sent or last SR*/
546 unsigned int expected_prior; /*!< no. packets in previous interval */
547 unsigned int received_prior; /*!< no. packets received in previous interval */
548 int schedid; /*!< Schedid returned from ast_sched_add() to schedule RTCP-transmissions*/
549 unsigned int rr_count; /*!< number of RRs we've sent, not including report blocks in SR's */
550 unsigned int sr_count; /*!< number of SRs we've sent */
551 unsigned int lastsrtxcount; /*!< Transmit packet count when last SR sent */
552 double accumulated_transit; /*!< accumulated a-dlsr-lsr */
553 double rtt; /*!< Last reported rtt */
554 double reported_jitter; /*!< The contents of their last jitter entry in the RR in seconds */
555 unsigned int reported_lost; /*!< Reported lost packets in their RR */
556
557 double reported_maxjitter; /*!< Maximum reported interarrival jitter */
558 double reported_minjitter; /*!< Minimum reported interarrival jitter */
559 double reported_normdev_jitter; /*!< Mean of reported interarrival jitter */
560 double reported_stdev_jitter; /*!< Standard deviation of reported interarrival jitter */
561 unsigned int reported_jitter_count; /*!< Reported interarrival jitter count */
562
563 double reported_maxlost; /*!< Maximum reported packets lost */
564 double reported_minlost; /*!< Minimum reported packets lost */
565 double reported_normdev_lost; /*!< Mean of reported packets lost */
566 double reported_stdev_lost; /*!< Standard deviation of reported packets lost */
567 unsigned int reported_lost_count; /*!< Reported packets lost count */
568
569 double rxlost; /*!< Calculated number of lost packets since last report */
570 double maxrxlost; /*!< Maximum calculated lost number of packets between reports */
571 double minrxlost; /*!< Minimum calculated lost number of packets between reports */
572 double normdev_rxlost; /*!< Mean of calculated lost packets between reports */
573 double stdev_rxlost; /*!< Standard deviation of calculated lost packets between reports */
574 unsigned int rxlost_count; /*!< Calculated lost packets sample count */
575
576 double maxrxjitter; /*!< Maximum of calculated interarrival jitter */
577 double minrxjitter; /*!< Minimum of calculated interarrival jitter */
578 double normdev_rxjitter; /*!< Mean of calculated interarrival jitter */
579 double stdev_rxjitter; /*!< Standard deviation of calculated interarrival jitter */
580 unsigned int rxjitter_count; /*!< Calculated interarrival jitter count */
581
582 double maxrtt; /*!< Maximum of calculated round trip time */
583 double minrtt; /*!< Minimum of calculated round trip time */
584 double normdevrtt; /*!< Mean of calculated round trip time */
585 double stdevrtt; /*!< Standard deviation of calculated round trip time */
586 unsigned int rtt_count; /*!< Calculated round trip time count */
587
588 double reported_mes; /*!< The calculated MES from their last RR */
589 double reported_maxmes; /*!< Maximum reported mes */
590 double reported_minmes; /*!< Minimum reported mes */
591 double reported_normdev_mes; /*!< Mean of reported mes */
592 double reported_stdev_mes; /*!< Standard deviation of reported mes */
593 unsigned int reported_mes_count; /*!< Reported mes count */
594
595 double maxrxmes; /*!< Maximum of calculated mes */
596 double minrxmes; /*!< Minimum of calculated mes */
597 double normdev_rxmes; /*!< Mean of calculated mes */
598 double stdev_rxmes; /*!< Standard deviation of calculated mes */
599 unsigned int rxmes_count; /*!< mes count */
600
601 /* VP8: sequence number for the RTCP FIR FCI */
603
604#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
605 struct dtls_details dtls; /*!< DTLS state information */
606#endif
607
608 /* Cached local address string allows us to generate
609 * RTCP stasis messages without having to look up our
610 * own address every time
611 */
614 /* Buffer for frames created during RTCP interpretation */
615 unsigned char frame_buf[512 + AST_FRIENDLY_OFFSET];
616};
617
618struct rtp_red {
619 struct ast_frame t140; /*!< Primary data */
620 struct ast_frame t140red; /*!< Redundant t140*/
621 unsigned char pt[AST_RED_MAX_GENERATION]; /*!< Payload types for redundancy data */
622 unsigned char ts[AST_RED_MAX_GENERATION]; /*!< Time stamps */
623 unsigned char len[AST_RED_MAX_GENERATION]; /*!< length of each generation */
624 int num_gen; /*!< Number of generations */
625 int schedid; /*!< Timer id */
626 unsigned char t140red_data[64000];
627 unsigned char buf_data[64000]; /*!< buffered primary data */
629 long int prev_ts;
630};
631
632/*! \brief Structure for storing RTP packets for retransmission */
634 size_t size; /*!< The size of the payload */
635 unsigned char buf[0]; /*!< The payload data */
636};
637
639
640/* Forward Declarations */
641static int ast_rtp_new(struct ast_rtp_instance *instance, struct ast_sched_context *sched, struct ast_sockaddr *addr, void *data);
642static int ast_rtp_destroy(struct ast_rtp_instance *instance);
643static int ast_rtp_dtmf_begin(struct ast_rtp_instance *instance, char digit);
644static int ast_rtp_dtmf_end(struct ast_rtp_instance *instance, char digit);
645static int ast_rtp_dtmf_end_with_duration(struct ast_rtp_instance *instance, char digit, unsigned int duration);
646static int ast_rtp_dtmf_mode_set(struct ast_rtp_instance *instance, enum ast_rtp_dtmf_mode dtmf_mode);
647static enum ast_rtp_dtmf_mode ast_rtp_dtmf_mode_get(struct ast_rtp_instance *instance);
648static void ast_rtp_update_source(struct ast_rtp_instance *instance);
649static void ast_rtp_change_source(struct ast_rtp_instance *instance);
650static int ast_rtp_write(struct ast_rtp_instance *instance, struct ast_frame *frame);
651static struct ast_frame *ast_rtp_read(struct ast_rtp_instance *instance, int rtcp);
652static void ast_rtp_prop_set(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value);
653static int ast_rtp_fd(struct ast_rtp_instance *instance, int rtcp);
654static void ast_rtp_remote_address_set(struct ast_rtp_instance *instance, struct ast_sockaddr *addr);
655static int rtp_red_init(struct ast_rtp_instance *instance, int buffer_time, int *payloads, int generations);
656static int rtp_red_buffer(struct ast_rtp_instance *instance, struct ast_frame *frame);
657static int ast_rtp_local_bridge(struct ast_rtp_instance *instance0, struct ast_rtp_instance *instance1);
658static int ast_rtp_get_stat(struct ast_rtp_instance *instance, struct ast_rtp_instance_stats *stats, enum ast_rtp_instance_stat stat);
659static int ast_rtp_dtmf_compatible(struct ast_channel *chan0, struct ast_rtp_instance *instance0, struct ast_channel *chan1, struct ast_rtp_instance *instance1);
660static void ast_rtp_stun_request(struct ast_rtp_instance *instance, struct ast_sockaddr *suggestion, const char *username);
661static void ast_rtp_stop(struct ast_rtp_instance *instance);
662static int ast_rtp_qos_set(struct ast_rtp_instance *instance, int tos, int cos, const char* desc);
663static int ast_rtp_sendcng(struct ast_rtp_instance *instance, int level);
664static unsigned int ast_rtp_get_ssrc(struct ast_rtp_instance *instance);
665static const char *ast_rtp_get_cname(struct ast_rtp_instance *instance);
666static void ast_rtp_set_remote_ssrc(struct ast_rtp_instance *instance, unsigned int ssrc);
667static void ast_rtp_set_stream_num(struct ast_rtp_instance *instance, int stream_num);
669static int ast_rtp_bundle(struct ast_rtp_instance *child, struct ast_rtp_instance *parent);
670static void update_reported_mes_stats(struct ast_rtp *rtp);
671static void update_local_mes_stats(struct ast_rtp *rtp);
672
673#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
674static int ast_rtp_activate(struct ast_rtp_instance *instance);
675static void dtls_srtp_start_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp);
676static void dtls_srtp_stop_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp);
677static int dtls_bio_write(BIO *bio, const char *buf, int len);
678static long dtls_bio_ctrl(BIO *bio, int cmd, long arg1, void *arg2);
679static int dtls_bio_new(BIO *bio);
680static int dtls_bio_free(BIO *bio);
681
682#ifndef HAVE_OPENSSL_BIO_METHOD
683static BIO_METHOD dtls_bio_methods = {
684 .type = BIO_TYPE_BIO,
685 .name = "rtp write",
686 .bwrite = dtls_bio_write,
687 .ctrl = dtls_bio_ctrl,
688 .create = dtls_bio_new,
689 .destroy = dtls_bio_free,
690};
691#else
692static BIO_METHOD *dtls_bio_methods;
693#endif
694#endif
695
696static int __rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp, int *via_ice, int use_srtp);
697
698#ifdef HAVE_PJPROJECT
699static void stunaddr_resolve_callback(const struct ast_dns_query *query);
700static int store_stunaddr_resolved(const struct ast_dns_query *query);
701#endif
702
703#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
704static int dtls_bio_new(BIO *bio)
705{
706#ifdef HAVE_OPENSSL_BIO_METHOD
707 BIO_set_init(bio, 1);
708 BIO_set_data(bio, NULL);
709 BIO_set_shutdown(bio, 0);
710#else
711 bio->init = 1;
712 bio->ptr = NULL;
713 bio->flags = 0;
714#endif
715 return 1;
716}
717
718static int dtls_bio_free(BIO *bio)
719{
720 /* The pointer on the BIO is that of the RTP instance. It is not reference counted as the BIO
721 * lifetime is tied to the instance, and actions on the BIO are taken by the thread handling
722 * the RTP instance - not another thread.
723 */
724#ifdef HAVE_OPENSSL_BIO_METHOD
725 BIO_set_data(bio, NULL);
726#else
727 bio->ptr = NULL;
728#endif
729 return 1;
730}
731
732static int dtls_bio_write(BIO *bio, const char *buf, int len)
733{
734#ifdef HAVE_OPENSSL_BIO_METHOD
735 struct ast_rtp_instance *instance = BIO_get_data(bio);
736#else
737 struct ast_rtp_instance *instance = bio->ptr;
738#endif
739 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
740 int rtcp = 0;
741 struct ast_sockaddr remote_address = { {0, } };
742 int ice;
743 int bytes_sent;
744
745 /* OpenSSL can't tolerate a packet not being sent, so we always state that
746 * we sent the packet. If it isn't then retransmission will occur.
747 */
748
749 if (rtp->rtcp && rtp->rtcp->dtls.write_bio == bio) {
750 rtcp = 1;
751 ast_sockaddr_copy(&remote_address, &rtp->rtcp->them);
752 } else {
753 ast_rtp_instance_get_remote_address(instance, &remote_address);
754 }
755
756 if (ast_sockaddr_isnull(&remote_address)) {
757 return len;
758 }
759
760 bytes_sent = __rtp_sendto(instance, (char *)buf, len, 0, &remote_address, rtcp, &ice, 0);
761
762 if (bytes_sent > 0 && ast_debug_dtls_packet_is_allowed) {
763 ast_debug(0, "(%p) DTLS - sent %s packet to %s%s (len %-6.6d)\n",
764 instance, rtcp ? "RTCP" : "RTP", ast_sockaddr_stringify(&remote_address),
765 ice ? " (via ICE)" : "", bytes_sent);
766 }
767
768 return len;
769}
770
771static long dtls_bio_ctrl(BIO *bio, int cmd, long arg1, void *arg2)
772{
773 switch (cmd) {
774 case BIO_CTRL_FLUSH:
775 return 1;
776 case BIO_CTRL_DGRAM_QUERY_MTU:
777 return dtls_mtu;
778 case BIO_CTRL_WPENDING:
779 case BIO_CTRL_PENDING:
780 return 0L;
781 default:
782 return 0;
783 }
784}
785
786#endif
787
788#ifdef HAVE_PJPROJECT
789/*! \brief Helper function which clears the ICE host candidate mapping */
790static void host_candidate_overrides_clear(void)
791{
792 struct ast_ice_host_candidate *candidate;
793
794 AST_RWLIST_WRLOCK(&host_candidates);
795 AST_RWLIST_TRAVERSE_SAFE_BEGIN(&host_candidates, candidate, next) {
797 ast_free(candidate);
798 }
800 AST_RWLIST_UNLOCK(&host_candidates);
801}
802
803/*! \brief Helper function which updates an ast_sockaddr with the candidate used for the component */
804static void update_address_with_ice_candidate(pj_ice_sess *ice, enum ast_rtp_ice_component_type component,
805 struct ast_sockaddr *cand_address)
806{
807 char address[PJ_INET6_ADDRSTRLEN];
808
809 if (component < 1 || !ice->comp[component - 1].valid_check) {
810 return;
811 }
812
813 ast_sockaddr_parse(cand_address,
814 pj_sockaddr_print(&ice->comp[component - 1].valid_check->rcand->addr, address,
815 sizeof(address), 0), 0);
816 ast_sockaddr_set_port(cand_address,
817 pj_sockaddr_get_port(&ice->comp[component - 1].valid_check->rcand->addr));
818}
819
820/*! \brief Destructor for locally created ICE candidates */
821static void ast_rtp_ice_candidate_destroy(void *obj)
822{
823 struct ast_rtp_engine_ice_candidate *candidate = obj;
824
825 if (candidate->foundation) {
826 ast_free(candidate->foundation);
827 }
828
829 if (candidate->transport) {
830 ast_free(candidate->transport);
831 }
832}
833
834/*! \pre instance is locked */
835static void ast_rtp_ice_set_authentication(struct ast_rtp_instance *instance, const char *ufrag, const char *password)
836{
837 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
838 int ice_attrb_reset = 0;
839
840 if (!ast_strlen_zero(ufrag)) {
841 if (!ast_strlen_zero(rtp->remote_ufrag) && strcmp(ufrag, rtp->remote_ufrag)) {
842 ice_attrb_reset = 1;
843 }
844 ast_copy_string(rtp->remote_ufrag, ufrag, sizeof(rtp->remote_ufrag));
845 }
846
847 if (!ast_strlen_zero(password)) {
848 if (!ast_strlen_zero(rtp->remote_passwd) && strcmp(password, rtp->remote_passwd)) {
849 ice_attrb_reset = 1;
850 }
851 ast_copy_string(rtp->remote_passwd, password, sizeof(rtp->remote_passwd));
852 }
853
854 /* If the remote ufrag or passwd changed, local ufrag and passwd need to regenerate */
855 if (ice_attrb_reset) {
856 generate_random_string(rtp->local_ufrag, sizeof(rtp->local_ufrag));
857 generate_random_string(rtp->local_passwd, sizeof(rtp->local_passwd));
858 }
859}
860
861static int ice_candidate_cmp(void *obj, void *arg, int flags)
862{
863 struct ast_rtp_engine_ice_candidate *candidate1 = obj, *candidate2 = arg;
864
865 if (strcmp(candidate1->foundation, candidate2->foundation) ||
866 candidate1->id != candidate2->id ||
867 candidate1->type != candidate2->type ||
868 ast_sockaddr_cmp(&candidate1->address, &candidate2->address)) {
869 return 0;
870 }
871
872 return CMP_MATCH | CMP_STOP;
873}
874
875/*! \pre instance is locked */
876static void ast_rtp_ice_add_remote_candidate(struct ast_rtp_instance *instance, const struct ast_rtp_engine_ice_candidate *candidate)
877{
878 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
879 struct ast_rtp_engine_ice_candidate *remote_candidate;
880
881 /* ICE sessions only support UDP candidates */
882 if (strcasecmp(candidate->transport, "udp")) {
883 return;
884 }
885
886 if (!rtp->ice_proposed_remote_candidates) {
887 rtp->ice_proposed_remote_candidates = ao2_container_alloc_list(
888 AO2_ALLOC_OPT_LOCK_MUTEX, 0, NULL, ice_candidate_cmp);
889 if (!rtp->ice_proposed_remote_candidates) {
890 return;
891 }
892 }
893
894 /* If this is going to exceed the maximum number of ICE candidates don't even add it */
895 if (ao2_container_count(rtp->ice_proposed_remote_candidates) == PJ_ICE_MAX_CAND) {
896 return;
897 }
898
899 if (!(remote_candidate = ao2_alloc(sizeof(*remote_candidate), ast_rtp_ice_candidate_destroy))) {
900 return;
901 }
902
903 remote_candidate->foundation = ast_strdup(candidate->foundation);
904 remote_candidate->id = candidate->id;
905 remote_candidate->transport = ast_strdup(candidate->transport);
906 remote_candidate->priority = candidate->priority;
907 ast_sockaddr_copy(&remote_candidate->address, &candidate->address);
908 ast_sockaddr_copy(&remote_candidate->relay_address, &candidate->relay_address);
909 remote_candidate->type = candidate->type;
910
911 ast_debug_ice(2, "(%p) ICE add remote candidate\n", instance);
912
913 ao2_link(rtp->ice_proposed_remote_candidates, remote_candidate);
914 ao2_ref(remote_candidate, -1);
915}
916
918
919/*! \brief Function used to check if the calling thread is registered with pjlib. If it is not it will be registered. */
920static void pj_thread_register_check(void)
921{
922 pj_thread_desc *desc;
923 pj_thread_t *thread;
924
925 if (pj_thread_is_registered() == PJ_TRUE) {
926 return;
927 }
928
929 desc = ast_threadstorage_get(&pj_thread_storage, sizeof(pj_thread_desc));
930 if (!desc) {
931 ast_log(LOG_ERROR, "Could not get thread desc from thread-local storage. Expect awful things to occur\n");
932 return;
933 }
934 pj_bzero(*desc, sizeof(*desc));
935
936 if (pj_thread_register("Asterisk Thread", *desc, &thread) != PJ_SUCCESS) {
937 ast_log(LOG_ERROR, "Coudln't register thread with PJLIB.\n");
938 }
939 return;
940}
941
942static int ice_create(struct ast_rtp_instance *instance, struct ast_sockaddr *addr,
943 int port, int replace);
944
945/*! \pre instance is locked */
946static void ast_rtp_ice_stop(struct ast_rtp_instance *instance)
947{
948 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
949 struct ice_wrap *ice;
950
951 ice = rtp->ice;
952 rtp->ice = NULL;
953 if (ice) {
954 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
955 ao2_unlock(instance);
956 ao2_ref(ice, -1);
957 ao2_lock(instance);
958 ast_debug_ice(2, "(%p) ICE stopped\n", instance);
959 }
960}
961
962/*!
963 * \brief ao2 ICE wrapper object destructor.
964 *
965 * \param vdoomed Object being destroyed.
966 *
967 * \note The associated struct ast_rtp_instance object must not
968 * be locked when unreffing the object. Otherwise we could
969 * deadlock trying to destroy the PJPROJECT ICE structure.
970 */
971static void ice_wrap_dtor(void *vdoomed)
972{
973 struct ice_wrap *ice = vdoomed;
974
975 if (ice->real_ice) {
976 pj_thread_register_check();
977
978 pj_ice_sess_destroy(ice->real_ice);
979 }
980}
981
982static void ast2pj_rtp_ice_role(enum ast_rtp_ice_role ast_role, enum pj_ice_sess_role *pj_role)
983{
984 switch (ast_role) {
986 *pj_role = PJ_ICE_SESS_ROLE_CONTROLLED;
987 break;
989 *pj_role = PJ_ICE_SESS_ROLE_CONTROLLING;
990 break;
991 }
992}
993
994static void pj2ast_rtp_ice_role(enum pj_ice_sess_role pj_role, enum ast_rtp_ice_role *ast_role)
995{
996 switch (pj_role) {
997 case PJ_ICE_SESS_ROLE_CONTROLLED:
998 *ast_role = AST_RTP_ICE_ROLE_CONTROLLED;
999 return;
1000 case PJ_ICE_SESS_ROLE_CONTROLLING:
1001 *ast_role = AST_RTP_ICE_ROLE_CONTROLLING;
1002 return;
1003 case PJ_ICE_SESS_ROLE_UNKNOWN:
1004 /* Don't change anything */
1005 return;
1006 default:
1007 /* If we aren't explicitly handling something, it's a bug */
1008 ast_assert(0);
1009 return;
1010 }
1011}
1012
1013/*! \pre instance is locked */
1014static int ice_reset_session(struct ast_rtp_instance *instance)
1015{
1016 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1017 int res;
1018
1019 ast_debug_ice(3, "(%p) ICE resetting\n", instance);
1020 if (!rtp->ice->real_ice->is_nominating && !rtp->ice->real_ice->is_complete) {
1021 ast_debug_ice(3, " (%p) ICE nevermind, not ready for a reset\n", instance);
1022 return 0;
1023 }
1024
1025 ast_debug_ice(3, "(%p) ICE recreating ICE session %s (%d)\n",
1026 instance, ast_sockaddr_stringify(&rtp->ice_original_rtp_addr), rtp->ice_port);
1027 res = ice_create(instance, &rtp->ice_original_rtp_addr, rtp->ice_port, 1);
1028 if (!res) {
1029 /* Use the current expected role for the ICE session */
1030 enum pj_ice_sess_role role = PJ_ICE_SESS_ROLE_UNKNOWN;
1031 ast2pj_rtp_ice_role(rtp->role, &role);
1032 pj_ice_sess_change_role(rtp->ice->real_ice, role);
1033 }
1034
1035 /* If we only have one component now, and we previously set up TURN for RTCP,
1036 * we need to destroy that TURN socket.
1037 */
1038 if (rtp->ice_num_components == 1 && rtp->turn_rtcp) {
1039 struct timeval wait = ast_tvadd(ast_tvnow(), ast_samp2tv(TURN_STATE_WAIT_TIME, 1000));
1040 struct timespec ts = { .tv_sec = wait.tv_sec, .tv_nsec = wait.tv_usec * 1000, };
1041
1042 rtp->turn_state = PJ_TURN_STATE_NULL;
1043
1044 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1045 ao2_unlock(instance);
1046 pj_turn_sock_destroy(rtp->turn_rtcp);
1047 ao2_lock(instance);
1048 while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
1049 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
1050 }
1051 }
1052
1053 rtp->ice_media_started = 0;
1054
1055 return res;
1056}
1057
1058static int ice_candidates_compare(struct ao2_container *left, struct ao2_container *right)
1059{
1060 struct ao2_iterator i;
1061 struct ast_rtp_engine_ice_candidate *right_candidate;
1062
1063 if (ao2_container_count(left) != ao2_container_count(right)) {
1064 return -1;
1065 }
1066
1067 i = ao2_iterator_init(right, 0);
1068 while ((right_candidate = ao2_iterator_next(&i))) {
1069 struct ast_rtp_engine_ice_candidate *left_candidate = ao2_find(left, right_candidate, OBJ_POINTER);
1070
1071 if (!left_candidate) {
1072 ao2_ref(right_candidate, -1);
1074 return -1;
1075 }
1076
1077 ao2_ref(left_candidate, -1);
1078 ao2_ref(right_candidate, -1);
1079 }
1081
1082 return 0;
1083}
1084
1085/*! \pre instance is locked */
1086static void ast_rtp_ice_start(struct ast_rtp_instance *instance)
1087{
1088 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1089 pj_str_t ufrag = pj_str(rtp->remote_ufrag), passwd = pj_str(rtp->remote_passwd);
1090 pj_ice_sess_cand candidates[PJ_ICE_MAX_CAND];
1091 struct ao2_iterator i;
1092 struct ast_rtp_engine_ice_candidate *candidate;
1093 int cand_cnt = 0, has_rtp = 0, has_rtcp = 0;
1094
1095 if (!rtp->ice || !rtp->ice_proposed_remote_candidates) {
1096 return;
1097 }
1098
1099 /* Check for equivalence in the lists */
1100 if (rtp->ice_active_remote_candidates &&
1101 !ice_candidates_compare(rtp->ice_proposed_remote_candidates, rtp->ice_active_remote_candidates)) {
1102 ast_debug_ice(2, "(%p) ICE proposed equals active candidates\n", instance);
1103 ao2_cleanup(rtp->ice_proposed_remote_candidates);
1104 rtp->ice_proposed_remote_candidates = NULL;
1105 /* If this ICE session is being preserved then go back to the role it currently is */
1106 pj2ast_rtp_ice_role(rtp->ice->real_ice->role, &rtp->role);
1107 return;
1108 }
1109
1110 /* Out with the old, in with the new */
1111 ao2_cleanup(rtp->ice_active_remote_candidates);
1112 rtp->ice_active_remote_candidates = rtp->ice_proposed_remote_candidates;
1113 rtp->ice_proposed_remote_candidates = NULL;
1114
1115 ast_debug_ice(2, "(%p) ICE start\n", instance);
1116
1117 /* Reset the ICE session. Is this going to work? */
1118 if (ice_reset_session(instance)) {
1119 ast_log(LOG_NOTICE, "(%p) ICE failed to create replacement session\n", instance);
1120 return;
1121 }
1122
1123 pj_thread_register_check();
1124
1125 i = ao2_iterator_init(rtp->ice_active_remote_candidates, 0);
1126
1127 while ((candidate = ao2_iterator_next(&i)) && (cand_cnt < PJ_ICE_MAX_CAND)) {
1128 pj_str_t address;
1129
1130 /* there needs to be at least one rtp and rtcp candidate in the list */
1131 has_rtp |= candidate->id == AST_RTP_ICE_COMPONENT_RTP;
1132 has_rtcp |= candidate->id == AST_RTP_ICE_COMPONENT_RTCP;
1133
1134 pj_strdup2(rtp->ice->real_ice->pool, &candidates[cand_cnt].foundation,
1135 candidate->foundation);
1136 candidates[cand_cnt].comp_id = candidate->id;
1137 candidates[cand_cnt].prio = candidate->priority;
1138
1139 pj_sockaddr_parse(pj_AF_UNSPEC(), 0, pj_cstr(&address, ast_sockaddr_stringify(&candidate->address)), &candidates[cand_cnt].addr);
1140
1141 if (!ast_sockaddr_isnull(&candidate->relay_address)) {
1142 pj_sockaddr_parse(pj_AF_UNSPEC(), 0, pj_cstr(&address, ast_sockaddr_stringify(&candidate->relay_address)), &candidates[cand_cnt].rel_addr);
1143 }
1144
1145 if (candidate->type == AST_RTP_ICE_CANDIDATE_TYPE_HOST) {
1146 candidates[cand_cnt].type = PJ_ICE_CAND_TYPE_HOST;
1147 } else if (candidate->type == AST_RTP_ICE_CANDIDATE_TYPE_SRFLX) {
1148 candidates[cand_cnt].type = PJ_ICE_CAND_TYPE_SRFLX;
1149 } else if (candidate->type == AST_RTP_ICE_CANDIDATE_TYPE_RELAYED) {
1150 candidates[cand_cnt].type = PJ_ICE_CAND_TYPE_RELAYED;
1151 }
1152
1153 if (candidate->id == AST_RTP_ICE_COMPONENT_RTP && rtp->turn_rtp) {
1154 ast_debug_ice(2, "(%p) ICE RTP candidate %s\n", instance, ast_sockaddr_stringify(&candidate->address));
1155 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1156 ao2_unlock(instance);
1157 pj_turn_sock_set_perm(rtp->turn_rtp, 1, &candidates[cand_cnt].addr, 1);
1158 ao2_lock(instance);
1159 } else if (candidate->id == AST_RTP_ICE_COMPONENT_RTCP && rtp->turn_rtcp) {
1160 ast_debug_ice(2, "(%p) ICE RTCP candidate %s\n", instance, ast_sockaddr_stringify(&candidate->address));
1161 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1162 ao2_unlock(instance);
1163 pj_turn_sock_set_perm(rtp->turn_rtcp, 1, &candidates[cand_cnt].addr, 1);
1164 ao2_lock(instance);
1165 }
1166
1167 cand_cnt++;
1168 ao2_ref(candidate, -1);
1169 }
1170
1172
1173 if (cand_cnt < ao2_container_count(rtp->ice_active_remote_candidates)) {
1174 ast_log(LOG_WARNING, "(%p) ICE lost %d candidates. Consider increasing PJ_ICE_MAX_CAND in PJSIP\n",
1175 instance, ao2_container_count(rtp->ice_active_remote_candidates) - cand_cnt);
1176 }
1177
1178 if (!has_rtp) {
1179 ast_log(LOG_WARNING, "(%p) ICE no RTP candidates; skipping checklist\n", instance);
1180 }
1181
1182 /* If we're only dealing with one ICE component, then we don't care about the lack of RTCP candidates */
1183 if (!has_rtcp && rtp->ice_num_components > 1) {
1184 ast_log(LOG_WARNING, "(%p) ICE no RTCP candidates; skipping checklist\n", instance);
1185 }
1186
1187 if (rtp->ice && has_rtp && (has_rtcp || rtp->ice_num_components == 1)) {
1188 pj_status_t res;
1189 char reason[80];
1190 struct ice_wrap *ice;
1191
1192 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1193 ice = rtp->ice;
1194 ao2_ref(ice, +1);
1195 ao2_unlock(instance);
1196 res = pj_ice_sess_create_check_list(ice->real_ice, &ufrag, &passwd, cand_cnt, &candidates[0]);
1197 if (res == PJ_SUCCESS) {
1198 ast_debug_ice(2, "(%p) ICE successfully created checklist\n", instance);
1199 ast_test_suite_event_notify("ICECHECKLISTCREATE", "Result: SUCCESS");
1200 pj_ice_sess_start_check(ice->real_ice);
1201 pj_timer_heap_poll(timer_heap, NULL);
1202 ao2_ref(ice, -1);
1203 ao2_lock(instance);
1205 return;
1206 }
1207 ao2_ref(ice, -1);
1208 ao2_lock(instance);
1209
1210 pj_strerror(res, reason, sizeof(reason));
1211 ast_log(LOG_WARNING, "(%p) ICE failed to create session check list: %s\n", instance, reason);
1212 }
1213
1214 ast_test_suite_event_notify("ICECHECKLISTCREATE", "Result: FAILURE");
1215
1216 /* even though create check list failed don't stop ice as
1217 it might still work */
1218 /* however we do need to reset remote candidates since
1219 this function may be re-entered */
1220 ao2_ref(rtp->ice_active_remote_candidates, -1);
1221 rtp->ice_active_remote_candidates = NULL;
1222 if (rtp->ice) {
1223 rtp->ice->real_ice->rcand_cnt = rtp->ice->real_ice->clist.count = 0;
1224 }
1225}
1226
1227/*! \pre instance is locked */
1228static const char *ast_rtp_ice_get_ufrag(struct ast_rtp_instance *instance)
1229{
1230 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1231
1232 return rtp->local_ufrag;
1233}
1234
1235/*! \pre instance is locked */
1236static const char *ast_rtp_ice_get_password(struct ast_rtp_instance *instance)
1237{
1238 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1239
1240 return rtp->local_passwd;
1241}
1242
1243/*! \pre instance is locked */
1244static struct ao2_container *ast_rtp_ice_get_local_candidates(struct ast_rtp_instance *instance)
1245{
1246 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1247
1248 if (rtp->ice_local_candidates) {
1249 ao2_ref(rtp->ice_local_candidates, +1);
1250 }
1251
1252 return rtp->ice_local_candidates;
1253}
1254
1255/*! \pre instance is locked */
1256static void ast_rtp_ice_lite(struct ast_rtp_instance *instance)
1257{
1258 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1259
1260 if (!rtp->ice) {
1261 return;
1262 }
1263
1264 pj_thread_register_check();
1265
1266 pj_ice_sess_change_role(rtp->ice->real_ice, PJ_ICE_SESS_ROLE_CONTROLLING);
1267}
1268
1269/*! \pre instance is locked */
1270static void ast_rtp_ice_set_role(struct ast_rtp_instance *instance, enum ast_rtp_ice_role role)
1271{
1272 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1273
1274 if (!rtp->ice) {
1275 ast_debug_ice(3, "(%p) ICE set role failed; no ice instance\n", instance);
1276 return;
1277 }
1278
1279 rtp->role = role;
1280
1281 if (!rtp->ice->real_ice->is_nominating && !rtp->ice->real_ice->is_complete) {
1282 pj_thread_register_check();
1283 ast_debug_ice(2, "(%p) ICE set role to %s\n",
1284 instance, role == AST_RTP_ICE_ROLE_CONTROLLED ? "CONTROLLED" : "CONTROLLING");
1285 pj_ice_sess_change_role(rtp->ice->real_ice, role == AST_RTP_ICE_ROLE_CONTROLLED ?
1286 PJ_ICE_SESS_ROLE_CONTROLLED : PJ_ICE_SESS_ROLE_CONTROLLING);
1287 } else {
1288 ast_debug_ice(2, "(%p) ICE not setting role because state is %s\n",
1289 instance, rtp->ice->real_ice->is_nominating ? "nominating" : "complete");
1290 }
1291}
1292
1293/*! \pre instance is locked */
1294static void ast_rtp_ice_add_cand(struct ast_rtp_instance *instance, struct ast_rtp *rtp,
1295 unsigned comp_id, unsigned transport_id, pj_ice_cand_type type, pj_uint16_t local_pref,
1296 const pj_sockaddr_t *addr, const pj_sockaddr_t *base_addr, const pj_sockaddr_t *rel_addr,
1297 int addr_len)
1298{
1299 pj_str_t foundation;
1300 struct ast_rtp_engine_ice_candidate *candidate, *existing;
1301 struct ice_wrap *ice;
1302 char address[PJ_INET6_ADDRSTRLEN];
1303 pj_status_t status;
1304
1305 if (!rtp->ice) {
1306 return;
1307 }
1308
1309 pj_thread_register_check();
1310
1311 pj_ice_calc_foundation(rtp->ice->real_ice->pool, &foundation, type, addr);
1312
1313 if (!rtp->ice_local_candidates) {
1314 rtp->ice_local_candidates = ao2_container_alloc_list(AO2_ALLOC_OPT_LOCK_MUTEX, 0,
1315 NULL, ice_candidate_cmp);
1316 if (!rtp->ice_local_candidates) {
1317 return;
1318 }
1319 }
1320
1321 if (!(candidate = ao2_alloc(sizeof(*candidate), ast_rtp_ice_candidate_destroy))) {
1322 return;
1323 }
1324
1325 candidate->foundation = ast_strndup(pj_strbuf(&foundation), pj_strlen(&foundation));
1326 candidate->id = comp_id;
1327 candidate->transport = ast_strdup("UDP");
1328
1329 ast_sockaddr_parse(&candidate->address, pj_sockaddr_print(addr, address, sizeof(address), 0), 0);
1330 ast_sockaddr_set_port(&candidate->address, pj_sockaddr_get_port(addr));
1331
1332 if (rel_addr) {
1333 ast_sockaddr_parse(&candidate->relay_address, pj_sockaddr_print(rel_addr, address, sizeof(address), 0), 0);
1334 ast_sockaddr_set_port(&candidate->relay_address, pj_sockaddr_get_port(rel_addr));
1335 }
1336
1337 if (type == PJ_ICE_CAND_TYPE_HOST) {
1339 } else if (type == PJ_ICE_CAND_TYPE_SRFLX) {
1341 } else if (type == PJ_ICE_CAND_TYPE_RELAYED) {
1343 }
1344
1345 if ((existing = ao2_find(rtp->ice_local_candidates, candidate, OBJ_POINTER))) {
1346 ao2_ref(existing, -1);
1347 ao2_ref(candidate, -1);
1348 return;
1349 }
1350
1351 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1352 ice = rtp->ice;
1353 ao2_ref(ice, +1);
1354 ao2_unlock(instance);
1355 status = pj_ice_sess_add_cand(ice->real_ice, comp_id, transport_id, type, local_pref,
1356 &foundation, addr, base_addr, rel_addr, addr_len, NULL);
1357 ao2_ref(ice, -1);
1358 ao2_lock(instance);
1359 if (!rtp->ice || status != PJ_SUCCESS) {
1360 ast_debug_ice(2, "(%p) ICE unable to add candidate: %s, %d\n", instance, ast_sockaddr_stringify(
1361 &candidate->address), candidate->priority);
1362 ao2_ref(candidate, -1);
1363 return;
1364 }
1365
1366 /* By placing the candidate into the ICE session it will have produced the priority, so update the local candidate with it */
1367 candidate->priority = rtp->ice->real_ice->lcand[rtp->ice->real_ice->lcand_cnt - 1].prio;
1368
1369 ast_debug_ice(2, "(%p) ICE add candidate: %s, %d\n", instance, ast_sockaddr_stringify(
1370 &candidate->address), candidate->priority);
1371
1372 ao2_link(rtp->ice_local_candidates, candidate);
1373 ao2_ref(candidate, -1);
1374}
1375
1376/* PJPROJECT TURN callback */
1377static void ast_rtp_on_turn_rx_rtp_data(pj_turn_sock *turn_sock, void *pkt, unsigned pkt_len, const pj_sockaddr_t *peer_addr, unsigned addr_len)
1378{
1379 struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
1380 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1381 struct ice_wrap *ice;
1382 pj_status_t status;
1383
1384 ao2_lock(instance);
1385 ice = ao2_bump(rtp->ice);
1386 ao2_unlock(instance);
1387
1388 if (ice) {
1389 status = pj_ice_sess_on_rx_pkt(ice->real_ice, AST_RTP_ICE_COMPONENT_RTP,
1390 TRANSPORT_TURN_RTP, pkt, pkt_len, peer_addr, addr_len);
1391 ao2_ref(ice, -1);
1392 if (status != PJ_SUCCESS) {
1393 char buf[100];
1394
1395 pj_strerror(status, buf, sizeof(buf));
1396 ast_log(LOG_WARNING, "(%p) ICE PJ Rx error status code: %d '%s'.\n",
1397 instance, (int)status, buf);
1398 return;
1399 }
1400 if (!rtp->rtp_passthrough) {
1401 return;
1402 }
1403 rtp->rtp_passthrough = 0;
1404 }
1405
1406 ast_sendto(rtp->s, pkt, pkt_len, 0, &rtp->rtp_loop);
1407}
1408
1409/* PJPROJECT TURN callback */
1410static void ast_rtp_on_turn_rtp_state(pj_turn_sock *turn_sock, pj_turn_state_t old_state, pj_turn_state_t new_state)
1411{
1412 struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
1413 struct ast_rtp *rtp;
1414
1415 /* If this is a leftover from an already notified RTP instance just ignore the state change */
1416 if (!instance) {
1417 return;
1418 }
1419
1420 rtp = ast_rtp_instance_get_data(instance);
1421
1422 ao2_lock(instance);
1423
1424 /* We store the new state so the other thread can actually handle it */
1425 rtp->turn_state = new_state;
1426 ast_cond_signal(&rtp->cond);
1427
1428 if (new_state == PJ_TURN_STATE_DESTROYING) {
1429 pj_turn_sock_set_user_data(rtp->turn_rtp, NULL);
1430 rtp->turn_rtp = NULL;
1431 }
1432
1433 ao2_unlock(instance);
1434}
1435
1436/* RTP TURN Socket interface declaration */
1437static pj_turn_sock_cb ast_rtp_turn_rtp_sock_cb = {
1438 .on_rx_data = ast_rtp_on_turn_rx_rtp_data,
1439 .on_state = ast_rtp_on_turn_rtp_state,
1440};
1441
1442/* PJPROJECT TURN callback */
1443static void ast_rtp_on_turn_rx_rtcp_data(pj_turn_sock *turn_sock, void *pkt, unsigned pkt_len, const pj_sockaddr_t *peer_addr, unsigned addr_len)
1444{
1445 struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
1446 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1447 struct ice_wrap *ice;
1448 pj_status_t status;
1449
1450 ao2_lock(instance);
1451 ice = ao2_bump(rtp->ice);
1452 ao2_unlock(instance);
1453
1454 if (ice) {
1455 status = pj_ice_sess_on_rx_pkt(ice->real_ice, AST_RTP_ICE_COMPONENT_RTCP,
1456 TRANSPORT_TURN_RTCP, pkt, pkt_len, peer_addr, addr_len);
1457 ao2_ref(ice, -1);
1458 if (status != PJ_SUCCESS) {
1459 char buf[100];
1460
1461 pj_strerror(status, buf, sizeof(buf));
1462 ast_log(LOG_WARNING, "PJ ICE Rx error status code: %d '%s'.\n",
1463 (int)status, buf);
1464 return;
1465 }
1466 if (!rtp->rtcp_passthrough) {
1467 return;
1468 }
1469 rtp->rtcp_passthrough = 0;
1470 }
1471
1472 ast_sendto(rtp->rtcp->s, pkt, pkt_len, 0, &rtp->rtcp_loop);
1473}
1474
1475/* PJPROJECT TURN callback */
1476static void ast_rtp_on_turn_rtcp_state(pj_turn_sock *turn_sock, pj_turn_state_t old_state, pj_turn_state_t new_state)
1477{
1478 struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
1479 struct ast_rtp *rtp;
1480
1481 /* If this is a leftover from an already destroyed RTP instance just ignore the state change */
1482 if (!instance) {
1483 return;
1484 }
1485
1486 rtp = ast_rtp_instance_get_data(instance);
1487
1488 ao2_lock(instance);
1489
1490 /* We store the new state so the other thread can actually handle it */
1491 rtp->turn_state = new_state;
1492 ast_cond_signal(&rtp->cond);
1493
1494 if (new_state == PJ_TURN_STATE_DESTROYING) {
1495 pj_turn_sock_set_user_data(rtp->turn_rtcp, NULL);
1496 rtp->turn_rtcp = NULL;
1497 }
1498
1499 ao2_unlock(instance);
1500}
1501
1502/* RTCP TURN Socket interface declaration */
1503static pj_turn_sock_cb ast_rtp_turn_rtcp_sock_cb = {
1504 .on_rx_data = ast_rtp_on_turn_rx_rtcp_data,
1505 .on_state = ast_rtp_on_turn_rtcp_state,
1506};
1507
1508/*! \brief Worker thread for ioqueue and timerheap */
1509static int ioqueue_worker_thread(void *data)
1510{
1511 struct ast_rtp_ioqueue_thread *ioqueue = data;
1512
1513 while (!ioqueue->terminate) {
1514 const pj_time_val delay = {0, 10};
1515
1516 pj_ioqueue_poll(ioqueue->ioqueue, &delay);
1517
1518 pj_timer_heap_poll(ioqueue->timerheap, NULL);
1519 }
1520
1521 return 0;
1522}
1523
1524/*! \brief Destroyer for ioqueue thread */
1525static void rtp_ioqueue_thread_destroy(struct ast_rtp_ioqueue_thread *ioqueue)
1526{
1527 if (ioqueue->thread) {
1528 ioqueue->terminate = 1;
1529 pj_thread_join(ioqueue->thread);
1530 pj_thread_destroy(ioqueue->thread);
1531 }
1532
1533 if (ioqueue->pool) {
1534 /* This mimics the behavior of pj_pool_safe_release
1535 * which was introduced in pjproject 2.6.
1536 */
1537 pj_pool_t *temp_pool = ioqueue->pool;
1538
1539 ioqueue->pool = NULL;
1540 pj_pool_release(temp_pool);
1541 }
1542
1543 ast_free(ioqueue);
1544}
1545
1546/*! \brief Removal function for ioqueue thread, determines if it should be terminated and destroyed */
1547static void rtp_ioqueue_thread_remove(struct ast_rtp_ioqueue_thread *ioqueue)
1548{
1549 int destroy = 0;
1550
1551 /* If nothing is using this ioqueue thread destroy it */
1552 AST_LIST_LOCK(&ioqueues);
1553 if ((ioqueue->count -= 2) == 0) {
1554 destroy = 1;
1555 AST_LIST_REMOVE(&ioqueues, ioqueue, next);
1556 }
1557 AST_LIST_UNLOCK(&ioqueues);
1558
1559 if (!destroy) {
1560 return;
1561 }
1562
1563 rtp_ioqueue_thread_destroy(ioqueue);
1564}
1565
1566/*! \brief Finder and allocator for an ioqueue thread */
1567static struct ast_rtp_ioqueue_thread *rtp_ioqueue_thread_get_or_create(void)
1568{
1569 struct ast_rtp_ioqueue_thread *ioqueue;
1570 pj_lock_t *lock;
1571
1572 AST_LIST_LOCK(&ioqueues);
1573
1574 /* See if an ioqueue thread exists that can handle more */
1575 AST_LIST_TRAVERSE(&ioqueues, ioqueue, next) {
1576 if ((ioqueue->count + 2) < PJ_IOQUEUE_MAX_HANDLES) {
1577 break;
1578 }
1579 }
1580
1581 /* If we found one bump it up and return it */
1582 if (ioqueue) {
1583 ioqueue->count += 2;
1584 goto end;
1585 }
1586
1587 ioqueue = ast_calloc(1, sizeof(*ioqueue));
1588 if (!ioqueue) {
1589 goto end;
1590 }
1591
1592 ioqueue->pool = pj_pool_create(&cachingpool.factory, "rtp", 512, 512, NULL);
1593
1594 /* We use a timer on the ioqueue thread for TURN so that two threads aren't operating
1595 * on a session at the same time
1596 */
1597 if (pj_timer_heap_create(ioqueue->pool, 4, &ioqueue->timerheap) != PJ_SUCCESS) {
1598 goto fatal;
1599 }
1600
1601 if (pj_lock_create_recursive_mutex(ioqueue->pool, "rtp%p", &lock) != PJ_SUCCESS) {
1602 goto fatal;
1603 }
1604
1605 pj_timer_heap_set_lock(ioqueue->timerheap, lock, PJ_TRUE);
1606
1607 if (pj_ioqueue_create(ioqueue->pool, PJ_IOQUEUE_MAX_HANDLES, &ioqueue->ioqueue) != PJ_SUCCESS) {
1608 goto fatal;
1609 }
1610
1611 if (pj_thread_create(ioqueue->pool, "ice", &ioqueue_worker_thread, ioqueue, 0, 0, &ioqueue->thread) != PJ_SUCCESS) {
1612 goto fatal;
1613 }
1614
1615 AST_LIST_INSERT_HEAD(&ioqueues, ioqueue, next);
1616
1617 /* Since this is being returned to an active session the count always starts at 2 */
1618 ioqueue->count = 2;
1619
1620 goto end;
1621
1622fatal:
1623 rtp_ioqueue_thread_destroy(ioqueue);
1624 ioqueue = NULL;
1625
1626end:
1627 AST_LIST_UNLOCK(&ioqueues);
1628 return ioqueue;
1629}
1630
1631/*! \pre instance is locked */
1632static void ast_rtp_ice_turn_request(struct ast_rtp_instance *instance, enum ast_rtp_ice_component_type component,
1633 enum ast_transport transport, const char *server, unsigned int port, const char *username, const char *password)
1634{
1635 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1636 pj_turn_sock **turn_sock;
1637 const pj_turn_sock_cb *turn_cb;
1638 pj_turn_tp_type conn_type;
1639 int conn_transport;
1640 pj_stun_auth_cred cred = { 0, };
1641 pj_str_t turn_addr;
1642 struct ast_sockaddr addr = { { 0, } };
1643 pj_stun_config stun_config;
1644 struct timeval wait = ast_tvadd(ast_tvnow(), ast_samp2tv(TURN_STATE_WAIT_TIME, 1000));
1645 struct timespec ts = { .tv_sec = wait.tv_sec, .tv_nsec = wait.tv_usec * 1000, };
1646 pj_turn_session_info info;
1647 struct ast_sockaddr local, loop;
1648 pj_status_t status;
1649 pj_turn_sock_cfg turn_sock_cfg;
1650 struct ice_wrap *ice;
1651
1652 ast_rtp_instance_get_local_address(instance, &local);
1653 if (ast_sockaddr_is_ipv4(&local)) {
1654 ast_sockaddr_parse(&loop, "127.0.0.1", PARSE_PORT_FORBID);
1655 } else {
1657 }
1658
1659 /* Determine what component we are requesting a TURN session for */
1660 if (component == AST_RTP_ICE_COMPONENT_RTP) {
1661 turn_sock = &rtp->turn_rtp;
1662 turn_cb = &ast_rtp_turn_rtp_sock_cb;
1663 conn_transport = TRANSPORT_TURN_RTP;
1665 } else if (component == AST_RTP_ICE_COMPONENT_RTCP) {
1666 turn_sock = &rtp->turn_rtcp;
1667 turn_cb = &ast_rtp_turn_rtcp_sock_cb;
1668 conn_transport = TRANSPORT_TURN_RTCP;
1670 } else {
1671 return;
1672 }
1673
1674 if (transport == AST_TRANSPORT_UDP) {
1675 conn_type = PJ_TURN_TP_UDP;
1676 } else if (transport == AST_TRANSPORT_TCP) {
1677 conn_type = PJ_TURN_TP_TCP;
1678 } else {
1679 ast_assert(0);
1680 return;
1681 }
1682
1683 ast_sockaddr_parse(&addr, server, PARSE_PORT_FORBID);
1684
1685 if (*turn_sock) {
1686 rtp->turn_state = PJ_TURN_STATE_NULL;
1687
1688 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1689 ao2_unlock(instance);
1690 pj_turn_sock_destroy(*turn_sock);
1691 ao2_lock(instance);
1692 while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
1693 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
1694 }
1695 }
1696
1697 if (component == AST_RTP_ICE_COMPONENT_RTP && !rtp->ioqueue) {
1698 /*
1699 * We cannot hold the instance lock because we could wait
1700 * for the ioqueue thread to die and we might deadlock as
1701 * a result.
1702 */
1703 ao2_unlock(instance);
1704 rtp->ioqueue = rtp_ioqueue_thread_get_or_create();
1705 ao2_lock(instance);
1706 if (!rtp->ioqueue) {
1707 return;
1708 }
1709 }
1710
1711 pj_stun_config_init(&stun_config, &cachingpool.factory, 0, rtp->ioqueue->ioqueue, rtp->ioqueue->timerheap);
1712 if (!stun_software_attribute) {
1713 stun_config.software_name = pj_str(NULL);
1714 }
1715
1716 /* Use ICE session group lock for TURN session to avoid deadlock */
1717 pj_turn_sock_cfg_default(&turn_sock_cfg);
1718 ice = rtp->ice;
1719 if (ice) {
1720 turn_sock_cfg.grp_lock = ice->real_ice->grp_lock;
1721 ao2_ref(ice, +1);
1722 }
1723
1724 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1725 ao2_unlock(instance);
1726 status = pj_turn_sock_create(&stun_config,
1727 ast_sockaddr_is_ipv4(&addr) ? pj_AF_INET() : pj_AF_INET6(), conn_type,
1728 turn_cb, &turn_sock_cfg, instance, turn_sock);
1729 ao2_cleanup(ice);
1730 if (status != PJ_SUCCESS) {
1731 ast_log(LOG_WARNING, "(%p) Could not create a TURN client socket\n", instance);
1732 ao2_lock(instance);
1733 return;
1734 }
1735
1736 cred.type = PJ_STUN_AUTH_CRED_STATIC;
1737 pj_strset2(&cred.data.static_cred.username, (char*)username);
1738 cred.data.static_cred.data_type = PJ_STUN_PASSWD_PLAIN;
1739 pj_strset2(&cred.data.static_cred.data, (char*)password);
1740
1741 pj_turn_sock_alloc(*turn_sock, pj_cstr(&turn_addr, server), port, NULL, &cred, NULL);
1742
1743 ast_debug_ice(2, "(%p) ICE request TURN %s %s candidate\n", instance,
1744 transport == AST_TRANSPORT_UDP ? "UDP" : "TCP",
1745 component == AST_RTP_ICE_COMPONENT_RTP ? "RTP" : "RTCP");
1746
1747 ao2_lock(instance);
1748
1749 /*
1750 * Because the TURN socket is asynchronous and we are synchronous we need to
1751 * wait until it is done
1752 */
1753 while (rtp->turn_state < PJ_TURN_STATE_READY) {
1754 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
1755 }
1756
1757 /* If a TURN session was allocated add it as a candidate */
1758 if (rtp->turn_state != PJ_TURN_STATE_READY) {
1759 return;
1760 }
1761
1762 pj_turn_sock_get_info(*turn_sock, &info);
1763
1764 ast_rtp_ice_add_cand(instance, rtp, component, conn_transport,
1765 PJ_ICE_CAND_TYPE_RELAYED, 65535, &info.relay_addr, &info.relay_addr,
1766 &info.mapped_addr, pj_sockaddr_get_len(&info.relay_addr));
1767
1768 if (component == AST_RTP_ICE_COMPONENT_RTP) {
1769 ast_sockaddr_copy(&rtp->rtp_loop, &loop);
1770 } else if (component == AST_RTP_ICE_COMPONENT_RTCP) {
1771 ast_sockaddr_copy(&rtp->rtcp_loop, &loop);
1772 }
1773}
1774
1775static char *generate_random_string(char *buf, size_t size)
1776{
1777 long val[4];
1778 int x;
1779
1780 for (x=0; x<4; x++) {
1781 val[x] = ast_random();
1782 }
1783 snprintf(buf, size, "%08lx%08lx%08lx%08lx", (long unsigned)val[0], (long unsigned)val[1], (long unsigned)val[2], (long unsigned)val[3]);
1784
1785 return buf;
1786}
1787
1788/*! \pre instance is locked */
1789static void ast_rtp_ice_change_components(struct ast_rtp_instance *instance, int num_components)
1790{
1791 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1792
1793 /* Don't do anything if ICE is unsupported or if we're not changing the
1794 * number of components
1795 */
1796 if (!icesupport || !rtp->ice || rtp->ice_num_components == num_components) {
1797 return;
1798 }
1799
1800 ast_debug_ice(2, "(%p) ICE change number of components %u -> %u\n", instance,
1801 rtp->ice_num_components, num_components);
1802
1803 rtp->ice_num_components = num_components;
1804 ice_reset_session(instance);
1805}
1806
1807/* ICE RTP Engine interface declaration */
1808static struct ast_rtp_engine_ice ast_rtp_ice = {
1809 .set_authentication = ast_rtp_ice_set_authentication,
1810 .add_remote_candidate = ast_rtp_ice_add_remote_candidate,
1811 .start = ast_rtp_ice_start,
1812 .stop = ast_rtp_ice_stop,
1813 .get_ufrag = ast_rtp_ice_get_ufrag,
1814 .get_password = ast_rtp_ice_get_password,
1815 .get_local_candidates = ast_rtp_ice_get_local_candidates,
1816 .ice_lite = ast_rtp_ice_lite,
1817 .set_role = ast_rtp_ice_set_role,
1818 .turn_request = ast_rtp_ice_turn_request,
1819 .change_components = ast_rtp_ice_change_components,
1820};
1821#endif
1822
1823#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
1824static int dtls_verify_callback(int preverify_ok, X509_STORE_CTX *ctx)
1825{
1826 /* We don't want to actually verify the certificate so just accept what they have provided */
1827 return 1;
1828}
1829
1830static int dtls_details_initialize(struct dtls_details *dtls, SSL_CTX *ssl_ctx,
1831 enum ast_rtp_dtls_setup setup, struct ast_rtp_instance *instance)
1832{
1833 dtls->dtls_setup = setup;
1834
1835 if (!(dtls->ssl = SSL_new(ssl_ctx))) {
1836 ast_log(LOG_ERROR, "Failed to allocate memory for SSL\n");
1837 goto error;
1838 }
1839
1840 if (!(dtls->read_bio = BIO_new(BIO_s_mem()))) {
1841 ast_log(LOG_ERROR, "Failed to allocate memory for inbound SSL traffic\n");
1842 goto error;
1843 }
1844 BIO_set_mem_eof_return(dtls->read_bio, -1);
1845
1846#ifdef HAVE_OPENSSL_BIO_METHOD
1847 if (!(dtls->write_bio = BIO_new(dtls_bio_methods))) {
1848 ast_log(LOG_ERROR, "Failed to allocate memory for outbound SSL traffic\n");
1849 goto error;
1850 }
1851
1852 BIO_set_data(dtls->write_bio, instance);
1853#else
1854 if (!(dtls->write_bio = BIO_new(&dtls_bio_methods))) {
1855 ast_log(LOG_ERROR, "Failed to allocate memory for outbound SSL traffic\n");
1856 goto error;
1857 }
1858 dtls->write_bio->ptr = instance;
1859#endif
1860 SSL_set_bio(dtls->ssl, dtls->read_bio, dtls->write_bio);
1861
1862 if (dtls->dtls_setup == AST_RTP_DTLS_SETUP_PASSIVE) {
1863 SSL_set_accept_state(dtls->ssl);
1864 } else {
1865 SSL_set_connect_state(dtls->ssl);
1866 }
1867 dtls->connection = AST_RTP_DTLS_CONNECTION_NEW;
1868
1869 return 0;
1870
1871error:
1872 if (dtls->read_bio) {
1873 BIO_free(dtls->read_bio);
1874 dtls->read_bio = NULL;
1875 }
1876
1877 if (dtls->write_bio) {
1878 BIO_free(dtls->write_bio);
1879 dtls->write_bio = NULL;
1880 }
1881
1882 if (dtls->ssl) {
1883 SSL_free(dtls->ssl);
1884 dtls->ssl = NULL;
1885 }
1886 return -1;
1887}
1888
1889static int dtls_setup_rtcp(struct ast_rtp_instance *instance)
1890{
1891 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1892
1893 if (!rtp->ssl_ctx || !rtp->rtcp) {
1894 return 0;
1895 }
1896
1897 ast_debug_dtls(3, "(%p) DTLS RTCP setup\n", instance);
1898 return dtls_details_initialize(&rtp->rtcp->dtls, rtp->ssl_ctx, rtp->dtls.dtls_setup, instance);
1899}
1900
1901static const SSL_METHOD *get_dtls_method(void)
1902{
1903#if OPENSSL_VERSION_NUMBER < 0x10002000L
1904 return DTLSv1_method();
1905#else
1906 return DTLS_method();
1907#endif
1908}
1909
1910struct dtls_cert_info {
1911 EVP_PKEY *private_key;
1912 X509 *certificate;
1913};
1914
1915static int apply_dh_params(SSL_CTX *ctx, BIO *bio)
1916{
1917 int res = 0;
1918
1919#if OPENSSL_VERSION_NUMBER >= 0x30000000L
1920 EVP_PKEY *dhpkey = PEM_read_bio_Parameters(bio, NULL);
1921 if (dhpkey && EVP_PKEY_is_a(dhpkey, "DH")) {
1922 res = SSL_CTX_set0_tmp_dh_pkey(ctx, dhpkey);
1923 }
1924 if (!res) {
1925 /* A successful call to SSL_CTX_set0_tmp_dh_pkey() means
1926 that we lost ownership of dhpkey and should not free
1927 it ourselves */
1928 EVP_PKEY_free(dhpkey);
1929 }
1930#else
1931 DH *dh = PEM_read_bio_DHparams(bio, NULL, NULL, NULL);
1932 if (dh) {
1933 res = SSL_CTX_set_tmp_dh(ctx, dh);
1934 }
1935 DH_free(dh);
1936#endif
1937
1938 return res;
1939}
1940
1941static void configure_dhparams(const struct ast_rtp *rtp, const struct ast_rtp_dtls_cfg *dtls_cfg)
1942{
1943#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L) && (OPENSSL_VERSION_NUMBER < 0x10100000L)
1944 EC_KEY *ecdh;
1945#endif
1946
1947#ifndef OPENSSL_NO_DH
1948 if (!ast_strlen_zero(dtls_cfg->pvtfile)) {
1949 BIO *bio = BIO_new_file(dtls_cfg->pvtfile, "r");
1950 if (bio) {
1951 if (apply_dh_params(rtp->ssl_ctx, bio)) {
1952 long options = SSL_OP_CIPHER_SERVER_PREFERENCE |
1953 SSL_OP_SINGLE_DH_USE | SSL_OP_SINGLE_ECDH_USE;
1954 options = SSL_CTX_set_options(rtp->ssl_ctx, options);
1955 ast_verb(2, "DTLS DH initialized, PFS enabled\n");
1956 }
1957 BIO_free(bio);
1958 }
1959 }
1960#endif /* !OPENSSL_NO_DH */
1961
1962#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L) && (OPENSSL_VERSION_NUMBER < 0x10100000L)
1963 /* enables AES-128 ciphers, to get AES-256 use NID_secp384r1 */
1964 ecdh = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1);
1965 if (ecdh) {
1966 if (SSL_CTX_set_tmp_ecdh(rtp->ssl_ctx, ecdh)) {
1967 #ifndef SSL_CTRL_SET_ECDH_AUTO
1968 #define SSL_CTRL_SET_ECDH_AUTO 94
1969 #endif
1970 /* SSL_CTX_set_ecdh_auto(rtp->ssl_ctx, on); requires OpenSSL 1.0.2 which wraps: */
1971 if (SSL_CTX_ctrl(rtp->ssl_ctx, SSL_CTRL_SET_ECDH_AUTO, 1, NULL)) {
1972 ast_verb(2, "DTLS ECDH initialized (automatic), faster PFS enabled\n");
1973 } else {
1974 ast_verb(2, "DTLS ECDH initialized (secp256r1), faster PFS enabled\n");
1975 }
1976 }
1977 EC_KEY_free(ecdh);
1978 }
1979#endif /* !OPENSSL_NO_ECDH */
1980}
1981
1982#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L)
1983
1984static int create_ephemeral_ec_keypair(EVP_PKEY **keypair)
1985{
1986#if OPENSSL_VERSION_NUMBER >= 0x30000000L
1987 *keypair = EVP_EC_gen(SN_X9_62_prime256v1);
1988 return *keypair ? 0 : -1;
1989#else
1990 EC_KEY *eckey = NULL;
1991 EC_GROUP *group = NULL;
1992
1993 group = EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1);
1994 if (!group) {
1995 goto error;
1996 }
1997
1998 EC_GROUP_set_asn1_flag(group, OPENSSL_EC_NAMED_CURVE);
1999 EC_GROUP_set_point_conversion_form(group, POINT_CONVERSION_UNCOMPRESSED);
2000
2001 eckey = EC_KEY_new();
2002 if (!eckey) {
2003 goto error;
2004 }
2005
2006 if (!EC_KEY_set_group(eckey, group)) {
2007 goto error;
2008 }
2009
2010 if (!EC_KEY_generate_key(eckey)) {
2011 goto error;
2012 }
2013
2014 *keypair = EVP_PKEY_new();
2015 if (!*keypair) {
2016 goto error;
2017 }
2018
2019 EVP_PKEY_assign_EC_KEY(*keypair, eckey);
2020 EC_GROUP_free(group);
2021
2022 return 0;
2023
2024error:
2025 EC_KEY_free(eckey);
2026 EC_GROUP_free(group);
2027
2028 return -1;
2029#endif
2030}
2031
2032/* From OpenSSL's x509 command */
2033#define SERIAL_RAND_BITS 159
2034
2035static int create_ephemeral_certificate(EVP_PKEY *keypair, X509 **certificate)
2036{
2037 X509 *cert = NULL;
2038 BIGNUM *serial = NULL;
2039 X509_NAME *name = NULL;
2040
2041 cert = X509_new();
2042 if (!cert) {
2043 goto error;
2044 }
2045
2046 if (!X509_set_version(cert, 2)) {
2047 goto error;
2048 }
2049
2050 /* Set the public key */
2051 X509_set_pubkey(cert, keypair);
2052
2053 /* Generate a random serial number */
2054 if (!(serial = BN_new())
2055 || !BN_rand(serial, SERIAL_RAND_BITS, -1, 0)
2056 || !BN_to_ASN1_INTEGER(serial, X509_get_serialNumber(cert))) {
2057 BN_free(serial);
2058 goto error;
2059 }
2060
2061 BN_free(serial);
2062
2063 /*
2064 * Validity period - Current Chrome & Firefox make it 31 days starting
2065 * with yesterday at the current time, so we will do the same.
2066 */
2067#if OPENSSL_VERSION_NUMBER < 0x10100000L
2068 if (!X509_time_adj_ex(X509_get_notBefore(cert), -1, 0, NULL)
2069 || !X509_time_adj_ex(X509_get_notAfter(cert), 30, 0, NULL)) {
2070 goto error;
2071 }
2072#else
2073 if (!X509_time_adj_ex(X509_getm_notBefore(cert), -1, 0, NULL)
2074 || !X509_time_adj_ex(X509_getm_notAfter(cert), 30, 0, NULL)) {
2075 goto error;
2076 }
2077#endif
2078
2079 /* Set the name and issuer */
2080 if (!(name = X509_get_subject_name(cert))
2081 || !X509_NAME_add_entry_by_NID(name, NID_commonName, MBSTRING_ASC,
2082 (unsigned char *) "asterisk", -1, -1, 0)
2083 || !X509_set_issuer_name(cert, name)) {
2084 goto error;
2085 }
2086
2087 /* Sign it */
2088 if (!X509_sign(cert, keypair, EVP_sha256())) {
2089 goto error;
2090 }
2091
2092 *certificate = cert;
2093
2094 return 0;
2095
2096error:
2097 X509_free(cert);
2098
2099 return -1;
2100}
2101
2102static int create_certificate_ephemeral(struct ast_rtp_instance *instance,
2103 const struct ast_rtp_dtls_cfg *dtls_cfg,
2104 struct dtls_cert_info *cert_info)
2105{
2106 /* Make sure these are initialized */
2107 cert_info->private_key = NULL;
2108 cert_info->certificate = NULL;
2109
2110 if (create_ephemeral_ec_keypair(&cert_info->private_key)) {
2111 ast_log(LOG_ERROR, "Failed to create ephemeral ECDSA keypair\n");
2112 goto error;
2113 }
2114
2115 if (create_ephemeral_certificate(cert_info->private_key, &cert_info->certificate)) {
2116 ast_log(LOG_ERROR, "Failed to create ephemeral X509 certificate\n");
2117 goto error;
2118 }
2119
2120 return 0;
2121
2122 error:
2123 X509_free(cert_info->certificate);
2124 EVP_PKEY_free(cert_info->private_key);
2125
2126 return -1;
2127}
2128
2129#else
2130
2131static int create_certificate_ephemeral(struct ast_rtp_instance *instance,
2132 const struct ast_rtp_dtls_cfg *dtls_cfg,
2133 struct dtls_cert_info *cert_info)
2134{
2135 ast_log(LOG_ERROR, "Your version of OpenSSL does not support ECDSA keys\n");
2136 return -1;
2137}
2138
2139#endif /* !OPENSSL_NO_ECDH */
2140
2141static int create_certificate_from_file(struct ast_rtp_instance *instance,
2142 const struct ast_rtp_dtls_cfg *dtls_cfg,
2143 struct dtls_cert_info *cert_info)
2144{
2145 FILE *fp;
2146 BIO *certbio = NULL;
2147 EVP_PKEY *private_key = NULL;
2148 X509 *cert = NULL;
2149 char *private_key_file = ast_strlen_zero(dtls_cfg->pvtfile) ? dtls_cfg->certfile : dtls_cfg->pvtfile;
2150
2151 fp = fopen(private_key_file, "r");
2152 if (!fp) {
2153 ast_log(LOG_ERROR, "Failed to read private key from file '%s': %s\n", private_key_file, strerror(errno));
2154 goto error;
2155 }
2156
2157 if (!PEM_read_PrivateKey(fp, &private_key, NULL, NULL)) {
2158 ast_log(LOG_ERROR, "Failed to read private key from PEM file '%s'\n", private_key_file);
2159 fclose(fp);
2160 goto error;
2161 }
2162
2163 if (fclose(fp)) {
2164 ast_log(LOG_ERROR, "Failed to close private key file '%s': %s\n", private_key_file, strerror(errno));
2165 goto error;
2166 }
2167
2168 certbio = BIO_new(BIO_s_file());
2169 if (!certbio) {
2170 ast_log(LOG_ERROR, "Failed to allocate memory for certificate fingerprinting on RTP instance '%p'\n",
2171 instance);
2172 goto error;
2173 }
2174
2175 if (!BIO_read_filename(certbio, dtls_cfg->certfile)
2176 || !(cert = PEM_read_bio_X509(certbio, NULL, 0, NULL))) {
2177 ast_log(LOG_ERROR, "Failed to read certificate from file '%s'\n", dtls_cfg->certfile);
2178 goto error;
2179 }
2180
2181 cert_info->private_key = private_key;
2182 cert_info->certificate = cert;
2183
2184 BIO_free_all(certbio);
2185
2186 return 0;
2187
2188error:
2189 X509_free(cert);
2190 BIO_free_all(certbio);
2191 EVP_PKEY_free(private_key);
2192
2193 return -1;
2194}
2195
2196static int load_dtls_certificate(struct ast_rtp_instance *instance,
2197 const struct ast_rtp_dtls_cfg *dtls_cfg,
2198 struct dtls_cert_info *cert_info)
2199{
2200 if (dtls_cfg->ephemeral_cert) {
2201 return create_certificate_ephemeral(instance, dtls_cfg, cert_info);
2202 } else if (!ast_strlen_zero(dtls_cfg->certfile)) {
2203 return create_certificate_from_file(instance, dtls_cfg, cert_info);
2204 } else {
2205 return -1;
2206 }
2207}
2208
2209/*! \pre instance is locked */
2210static int ast_rtp_dtls_set_configuration(struct ast_rtp_instance *instance, const struct ast_rtp_dtls_cfg *dtls_cfg)
2211{
2212 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2213 struct dtls_cert_info cert_info = { 0 };
2214 int res;
2215
2216 if (!dtls_cfg->enabled) {
2217 return 0;
2218 }
2219
2220 ast_debug_dtls(3, "(%p) DTLS RTP setup\n", instance);
2221
2223 ast_log(LOG_ERROR, "SRTP support module is not loaded or available. Try loading res_srtp.so.\n");
2224 return -1;
2225 }
2226
2227 if (rtp->ssl_ctx) {
2228 return 0;
2229 }
2230
2231 rtp->ssl_ctx = SSL_CTX_new(get_dtls_method());
2232 if (!rtp->ssl_ctx) {
2233 return -1;
2234 }
2235
2236 SSL_CTX_set_read_ahead(rtp->ssl_ctx, 1);
2237
2238 configure_dhparams(rtp, dtls_cfg);
2239
2240 rtp->dtls_verify = dtls_cfg->verify;
2241
2242 SSL_CTX_set_verify(rtp->ssl_ctx, (rtp->dtls_verify & AST_RTP_DTLS_VERIFY_FINGERPRINT) || (rtp->dtls_verify & AST_RTP_DTLS_VERIFY_CERTIFICATE) ?
2243 SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT : SSL_VERIFY_NONE, !(rtp->dtls_verify & AST_RTP_DTLS_VERIFY_CERTIFICATE) ?
2244 dtls_verify_callback : NULL);
2245
2246 if (dtls_cfg->suite == AST_AES_CM_128_HMAC_SHA1_80) {
2247 SSL_CTX_set_tlsext_use_srtp(rtp->ssl_ctx, "SRTP_AES128_CM_SHA1_80");
2248 } else if (dtls_cfg->suite == AST_AES_CM_128_HMAC_SHA1_32) {
2249 SSL_CTX_set_tlsext_use_srtp(rtp->ssl_ctx, "SRTP_AES128_CM_SHA1_32");
2250 } else {
2251 ast_log(LOG_ERROR, "Unsupported suite specified for DTLS-SRTP on RTP instance '%p'\n", instance);
2252 return -1;
2253 }
2254
2255 rtp->local_hash = dtls_cfg->hash;
2256
2257 if (!load_dtls_certificate(instance, dtls_cfg, &cert_info)) {
2258 const EVP_MD *type;
2259 unsigned int size, i;
2260 unsigned char fingerprint[EVP_MAX_MD_SIZE];
2261 char *local_fingerprint = rtp->local_fingerprint;
2262
2263 if (!SSL_CTX_use_certificate(rtp->ssl_ctx, cert_info.certificate)) {
2264 ast_log(LOG_ERROR, "Specified certificate for RTP instance '%p' could not be used\n",
2265 instance);
2266 return -1;
2267 }
2268
2269 if (!SSL_CTX_use_PrivateKey(rtp->ssl_ctx, cert_info.private_key)
2270 || !SSL_CTX_check_private_key(rtp->ssl_ctx)) {
2271 ast_log(LOG_ERROR, "Specified private key for RTP instance '%p' could not be used\n",
2272 instance);
2273 return -1;
2274 }
2275
2276 if (rtp->local_hash == AST_RTP_DTLS_HASH_SHA1) {
2277 type = EVP_sha1();
2278 } else if (rtp->local_hash == AST_RTP_DTLS_HASH_SHA256) {
2279 type = EVP_sha256();
2280 } else {
2281 ast_log(LOG_ERROR, "Unsupported fingerprint hash type on RTP instance '%p'\n",
2282 instance);
2283 return -1;
2284 }
2285
2286 if (!X509_digest(cert_info.certificate, type, fingerprint, &size) || !size) {
2287 ast_log(LOG_ERROR, "Could not produce fingerprint from certificate for RTP instance '%p'\n",
2288 instance);
2289 return -1;
2290 }
2291
2292 for (i = 0; i < size; i++) {
2293 sprintf(local_fingerprint, "%02hhX:", fingerprint[i]);
2294 local_fingerprint += 3;
2295 }
2296
2297 *(local_fingerprint - 1) = 0;
2298
2299 EVP_PKEY_free(cert_info.private_key);
2300 X509_free(cert_info.certificate);
2301 }
2302
2303 if (!ast_strlen_zero(dtls_cfg->cipher)) {
2304 if (!SSL_CTX_set_cipher_list(rtp->ssl_ctx, dtls_cfg->cipher)) {
2305 ast_log(LOG_ERROR, "Invalid cipher specified in cipher list '%s' for RTP instance '%p'\n",
2306 dtls_cfg->cipher, instance);
2307 return -1;
2308 }
2309 }
2310
2311 if (!ast_strlen_zero(dtls_cfg->cafile) || !ast_strlen_zero(dtls_cfg->capath)) {
2312 if (!SSL_CTX_load_verify_locations(rtp->ssl_ctx, S_OR(dtls_cfg->cafile, NULL), S_OR(dtls_cfg->capath, NULL))) {
2313 ast_log(LOG_ERROR, "Invalid certificate authority file '%s' or path '%s' specified for RTP instance '%p'\n",
2314 S_OR(dtls_cfg->cafile, ""), S_OR(dtls_cfg->capath, ""), instance);
2315 return -1;
2316 }
2317 }
2318
2319 rtp->rekey = dtls_cfg->rekey;
2320 rtp->suite = dtls_cfg->suite;
2321
2322 res = dtls_details_initialize(&rtp->dtls, rtp->ssl_ctx, dtls_cfg->default_setup, instance);
2323 if (!res) {
2324 dtls_setup_rtcp(instance);
2325 }
2326
2327 return res;
2328}
2329
2330/*! \pre instance is locked */
2331static int ast_rtp_dtls_active(struct ast_rtp_instance *instance)
2332{
2333 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2334
2335 return !rtp->ssl_ctx ? 0 : 1;
2336}
2337
2338/*! \pre instance is locked */
2339static void ast_rtp_dtls_stop(struct ast_rtp_instance *instance)
2340{
2341 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2342 SSL *ssl = rtp->dtls.ssl;
2343
2344 ast_debug_dtls(3, "(%p) DTLS stop\n", instance);
2345 ao2_unlock(instance);
2346 dtls_srtp_stop_timeout_timer(instance, rtp, 0);
2347 ao2_lock(instance);
2348
2349 if (rtp->ssl_ctx) {
2350 SSL_CTX_free(rtp->ssl_ctx);
2351 rtp->ssl_ctx = NULL;
2352 }
2353
2354 if (rtp->dtls.ssl) {
2355 SSL_free(rtp->dtls.ssl);
2356 rtp->dtls.ssl = NULL;
2357 }
2358
2359 if (rtp->rtcp) {
2360 ao2_unlock(instance);
2361 dtls_srtp_stop_timeout_timer(instance, rtp, 1);
2362 ao2_lock(instance);
2363
2364 if (rtp->rtcp->dtls.ssl) {
2365 if (rtp->rtcp->dtls.ssl != ssl) {
2366 SSL_free(rtp->rtcp->dtls.ssl);
2367 }
2368 rtp->rtcp->dtls.ssl = NULL;
2369 }
2370 }
2371}
2372
2373/*! \pre instance is locked */
2374static void ast_rtp_dtls_reset(struct ast_rtp_instance *instance)
2375{
2376 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2377
2378 if (SSL_is_init_finished(rtp->dtls.ssl)) {
2379 SSL_shutdown(rtp->dtls.ssl);
2380 rtp->dtls.connection = AST_RTP_DTLS_CONNECTION_NEW;
2381 }
2382
2383 if (rtp->rtcp && SSL_is_init_finished(rtp->rtcp->dtls.ssl)) {
2384 SSL_shutdown(rtp->rtcp->dtls.ssl);
2385 rtp->rtcp->dtls.connection = AST_RTP_DTLS_CONNECTION_NEW;
2386 }
2387}
2388
2389/*! \pre instance is locked */
2390static enum ast_rtp_dtls_connection ast_rtp_dtls_get_connection(struct ast_rtp_instance *instance)
2391{
2392 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2393
2394 return rtp->dtls.connection;
2395}
2396
2397/*! \pre instance is locked */
2398static enum ast_rtp_dtls_setup ast_rtp_dtls_get_setup(struct ast_rtp_instance *instance)
2399{
2400 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2401
2402 return rtp->dtls.dtls_setup;
2403}
2404
2405static void dtls_set_setup(enum ast_rtp_dtls_setup *dtls_setup, enum ast_rtp_dtls_setup setup, SSL *ssl)
2406{
2407 enum ast_rtp_dtls_setup old = *dtls_setup;
2408
2409 switch (setup) {
2411 *dtls_setup = AST_RTP_DTLS_SETUP_PASSIVE;
2412 break;
2414 *dtls_setup = AST_RTP_DTLS_SETUP_ACTIVE;
2415 break;
2417 /* We can't respond to an actpass setup with actpass ourselves... so respond with active, as we can initiate connections */
2418 if (*dtls_setup == AST_RTP_DTLS_SETUP_ACTPASS) {
2419 *dtls_setup = AST_RTP_DTLS_SETUP_ACTIVE;
2420 }
2421 break;
2423 *dtls_setup = AST_RTP_DTLS_SETUP_HOLDCONN;
2424 break;
2425 default:
2426 /* This should never occur... if it does exit early as we don't know what state things are in */
2427 return;
2428 }
2429
2430 /* If the setup state did not change we go on as if nothing happened */
2431 if (old == *dtls_setup) {
2432 return;
2433 }
2434
2435 /* If they don't want us to establish a connection wait until later */
2436 if (*dtls_setup == AST_RTP_DTLS_SETUP_HOLDCONN) {
2437 return;
2438 }
2439
2440 if (*dtls_setup == AST_RTP_DTLS_SETUP_ACTIVE) {
2441 SSL_set_connect_state(ssl);
2442 } else if (*dtls_setup == AST_RTP_DTLS_SETUP_PASSIVE) {
2443 SSL_set_accept_state(ssl);
2444 } else {
2445 return;
2446 }
2447}
2448
2449/*! \pre instance is locked */
2450static void ast_rtp_dtls_set_setup(struct ast_rtp_instance *instance, enum ast_rtp_dtls_setup setup)
2451{
2452 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2453
2454 if (rtp->dtls.ssl) {
2455 dtls_set_setup(&rtp->dtls.dtls_setup, setup, rtp->dtls.ssl);
2456 }
2457
2458 if (rtp->rtcp && rtp->rtcp->dtls.ssl) {
2459 dtls_set_setup(&rtp->rtcp->dtls.dtls_setup, setup, rtp->rtcp->dtls.ssl);
2460 }
2461}
2462
2463/*! \pre instance is locked */
2464static void ast_rtp_dtls_set_fingerprint(struct ast_rtp_instance *instance, enum ast_rtp_dtls_hash hash, const char *fingerprint)
2465{
2466 char *tmp = ast_strdupa(fingerprint), *value;
2467 int pos = 0;
2468 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2469
2470 if (hash != AST_RTP_DTLS_HASH_SHA1 && hash != AST_RTP_DTLS_HASH_SHA256) {
2471 return;
2472 }
2473
2474 rtp->remote_hash = hash;
2475
2476 while ((value = strsep(&tmp, ":")) && (pos != (EVP_MAX_MD_SIZE - 1))) {
2477 sscanf(value, "%02hhx", &rtp->remote_fingerprint[pos++]);
2478 }
2479}
2480
2481/*! \pre instance is locked */
2482static enum ast_rtp_dtls_hash ast_rtp_dtls_get_fingerprint_hash(struct ast_rtp_instance *instance)
2483{
2484 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2485
2486 return rtp->local_hash;
2487}
2488
2489/*! \pre instance is locked */
2490static const char *ast_rtp_dtls_get_fingerprint(struct ast_rtp_instance *instance)
2491{
2492 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2493
2494 return rtp->local_fingerprint;
2495}
2496
2497/* DTLS RTP Engine interface declaration */
2498static struct ast_rtp_engine_dtls ast_rtp_dtls = {
2499 .set_configuration = ast_rtp_dtls_set_configuration,
2500 .active = ast_rtp_dtls_active,
2501 .stop = ast_rtp_dtls_stop,
2502 .reset = ast_rtp_dtls_reset,
2503 .get_connection = ast_rtp_dtls_get_connection,
2504 .get_setup = ast_rtp_dtls_get_setup,
2505 .set_setup = ast_rtp_dtls_set_setup,
2506 .set_fingerprint = ast_rtp_dtls_set_fingerprint,
2507 .get_fingerprint_hash = ast_rtp_dtls_get_fingerprint_hash,
2508 .get_fingerprint = ast_rtp_dtls_get_fingerprint,
2509};
2510
2511#endif
2512
2513#ifdef TEST_FRAMEWORK
2514static size_t get_recv_buffer_count(struct ast_rtp_instance *instance)
2515{
2516 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2517
2518 if (rtp && rtp->recv_buffer) {
2520 }
2521
2522 return 0;
2523}
2524
2525static size_t get_recv_buffer_max(struct ast_rtp_instance *instance)
2526{
2527 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2528
2529 if (rtp && rtp->recv_buffer) {
2530 return ast_data_buffer_max(rtp->recv_buffer);
2531 }
2532
2533 return 0;
2534}
2535
2536static size_t get_send_buffer_count(struct ast_rtp_instance *instance)
2537{
2538 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2539
2540 if (rtp && rtp->send_buffer) {
2542 }
2543
2544 return 0;
2545}
2546
2547static void set_rtp_rtcp_schedid(struct ast_rtp_instance *instance, int id)
2548{
2549 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2550
2551 if (rtp && rtp->rtcp) {
2552 rtp->rtcp->schedid = id;
2553 }
2554}
2555
2556static struct ast_rtp_engine_test ast_rtp_test = {
2557 .packets_to_drop = 0,
2558 .send_report = 0,
2559 .sdes_received = 0,
2560 .recv_buffer_count = get_recv_buffer_count,
2561 .recv_buffer_max = get_recv_buffer_max,
2562 .send_buffer_count = get_send_buffer_count,
2563 .set_schedid = set_rtp_rtcp_schedid,
2564};
2565#endif
2566
2567/* RTP Engine Declaration */
2569 .name = "asterisk",
2570 .new = ast_rtp_new,
2571 .destroy = ast_rtp_destroy,
2572 .dtmf_begin = ast_rtp_dtmf_begin,
2573 .dtmf_end = ast_rtp_dtmf_end,
2574 .dtmf_end_with_duration = ast_rtp_dtmf_end_with_duration,
2575 .dtmf_mode_set = ast_rtp_dtmf_mode_set,
2576 .dtmf_mode_get = ast_rtp_dtmf_mode_get,
2577 .update_source = ast_rtp_update_source,
2578 .change_source = ast_rtp_change_source,
2579 .write = ast_rtp_write,
2580 .read = ast_rtp_read,
2581 .prop_set = ast_rtp_prop_set,
2582 .fd = ast_rtp_fd,
2583 .remote_address_set = ast_rtp_remote_address_set,
2584 .red_init = rtp_red_init,
2585 .red_buffer = rtp_red_buffer,
2586 .local_bridge = ast_rtp_local_bridge,
2587 .get_stat = ast_rtp_get_stat,
2588 .dtmf_compatible = ast_rtp_dtmf_compatible,
2589 .stun_request = ast_rtp_stun_request,
2590 .stop = ast_rtp_stop,
2591 .qos = ast_rtp_qos_set,
2592 .sendcng = ast_rtp_sendcng,
2593#ifdef HAVE_PJPROJECT
2594 .ice = &ast_rtp_ice,
2595#endif
2596#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2597 .dtls = &ast_rtp_dtls,
2598 .activate = ast_rtp_activate,
2599#endif
2600 .ssrc_get = ast_rtp_get_ssrc,
2601 .cname_get = ast_rtp_get_cname,
2602 .set_remote_ssrc = ast_rtp_set_remote_ssrc,
2603 .set_stream_num = ast_rtp_set_stream_num,
2604 .extension_enable = ast_rtp_extension_enable,
2605 .bundle = ast_rtp_bundle,
2606#ifdef TEST_FRAMEWORK
2607 .test = &ast_rtp_test,
2608#endif
2609};
2610
2611#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2612/*! \pre instance is locked */
2613static void dtls_perform_handshake(struct ast_rtp_instance *instance, struct dtls_details *dtls, int rtcp)
2614{
2615 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2616
2617 ast_debug_dtls(3, "(%p) DTLS perform handshake - ssl = %p, setup = %d\n",
2618 rtp, dtls->ssl, dtls->dtls_setup);
2619
2620 /* If we are not acting as a client connecting to the remote side then
2621 * don't start the handshake as it will accomplish nothing and would conflict
2622 * with the handshake we receive from the remote side.
2623 */
2624 if (!dtls->ssl || (dtls->dtls_setup != AST_RTP_DTLS_SETUP_ACTIVE)) {
2625 return;
2626 }
2627
2628 SSL_do_handshake(dtls->ssl);
2629
2630 /*
2631 * A race condition is prevented between this function and __rtp_recvfrom()
2632 * because both functions have to get the instance lock before they can do
2633 * anything. Without holding the instance lock, this function could start
2634 * the SSL handshake above in one thread and the __rtp_recvfrom() function
2635 * called by the channel thread could read the response and stop the timeout
2636 * timer before we have a chance to even start it.
2637 */
2638 dtls_srtp_start_timeout_timer(instance, rtp, rtcp);
2639}
2640#endif
2641
2642#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2643static void dtls_perform_setup(struct dtls_details *dtls)
2644{
2645 if (!dtls->ssl || !SSL_is_init_finished(dtls->ssl)) {
2646 return;
2647 }
2648
2649 SSL_clear(dtls->ssl);
2650 if (dtls->dtls_setup == AST_RTP_DTLS_SETUP_PASSIVE) {
2651 SSL_set_accept_state(dtls->ssl);
2652 } else {
2653 SSL_set_connect_state(dtls->ssl);
2654 }
2655 dtls->connection = AST_RTP_DTLS_CONNECTION_NEW;
2656
2657 ast_debug_dtls(3, "DTLS perform setup - connection reset\n");
2658}
2659#endif
2660
2661#ifdef HAVE_PJPROJECT
2662static void rtp_learning_start(struct ast_rtp *rtp);
2663
2664/* Handles start of media during ICE negotiation or completion */
2665static void ast_rtp_ice_start_media(pj_ice_sess *ice, pj_status_t status)
2666{
2667 struct ast_rtp_instance *instance = ice->user_data;
2668 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2669
2670 ao2_lock(instance);
2671
2672 if (status == PJ_SUCCESS) {
2673 struct ast_sockaddr remote_address;
2674
2675 ast_sockaddr_setnull(&remote_address);
2676 update_address_with_ice_candidate(ice, AST_RTP_ICE_COMPONENT_RTP, &remote_address);
2677 if (!ast_sockaddr_isnull(&remote_address)) {
2678 /* Symmetric RTP must be disabled for the remote address to not get overwritten */
2680
2681 ast_rtp_instance_set_remote_address(instance, &remote_address);
2682 }
2683
2684 if (rtp->rtcp) {
2685 update_address_with_ice_candidate(ice, AST_RTP_ICE_COMPONENT_RTCP, &rtp->rtcp->them);
2686 }
2687 }
2688
2689#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2690 /* If we've already started media, no need to do all of this again */
2691 if (rtp->ice_media_started) {
2692 ao2_unlock(instance);
2693 return;
2694 }
2695
2697 "(%p) ICE starting media - perform DTLS - (%p)\n", instance, rtp);
2698
2699 /*
2700 * Seemingly no reason to call dtls_perform_setup here. Currently we'll do a full
2701 * protocol level renegotiation if things do change. And if bundled is being used
2702 * then ICE is reused when a stream is added.
2703 *
2704 * Note, if for some reason in the future dtls_perform_setup does need to done here
2705 * be aware that creates a race condition between the call here (on ice completion)
2706 * and potential DTLS handshaking when receiving RTP. What happens is the ssl object
2707 * can get cleared (SSL_clear) during that handshaking process (DTLS init). If that
2708 * happens then Asterisk won't complete DTLS initialization. RTP packets are still
2709 * sent/received but won't be encrypted/decrypted.
2710 */
2711 dtls_perform_handshake(instance, &rtp->dtls, 0);
2712
2713 if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
2714 dtls_perform_handshake(instance, &rtp->rtcp->dtls, 1);
2715 }
2716#endif
2717
2718 rtp->ice_media_started = 1;
2719
2720 if (!strictrtp) {
2721 ao2_unlock(instance);
2722 return;
2723 }
2724
2725 ast_verb(4, "%p -- Strict RTP learning after ICE completion\n", rtp);
2726 rtp_learning_start(rtp);
2727 ao2_unlock(instance);
2728}
2729
2730#ifdef HAVE_PJPROJECT_ON_VALID_ICE_PAIR_CALLBACK
2731/* PJPROJECT ICE optional callback */
2732static void ast_rtp_on_valid_pair(pj_ice_sess *ice)
2733{
2734 ast_debug_ice(2, "(%p) ICE valid pair, start media\n", ice->user_data);
2735 ast_rtp_ice_start_media(ice, PJ_SUCCESS);
2736}
2737#endif
2738
2739/* PJPROJECT ICE callback */
2740static void ast_rtp_on_ice_complete(pj_ice_sess *ice, pj_status_t status)
2741{
2742 ast_debug_ice(2, "(%p) ICE complete, start media\n", ice->user_data);
2743 ast_rtp_ice_start_media(ice, status);
2744}
2745
2746/* PJPROJECT ICE callback */
2747static void ast_rtp_on_ice_rx_data(pj_ice_sess *ice, unsigned comp_id, unsigned transport_id, void *pkt, pj_size_t size, const pj_sockaddr_t *src_addr, unsigned src_addr_len)
2748{
2749 struct ast_rtp_instance *instance = ice->user_data;
2750 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2751
2752 /* Instead of handling the packet here (which really doesn't work with our architecture) we set a bit to indicate that it should be handled after pj_ice_sess_on_rx_pkt
2753 * returns */
2754 if (transport_id == TRANSPORT_SOCKET_RTP || transport_id == TRANSPORT_SOCKET_RTCP) {
2755 rtp->passthrough = 1;
2756 } else if (transport_id == TRANSPORT_TURN_RTP) {
2757 rtp->rtp_passthrough = 1;
2758 } else if (transport_id == TRANSPORT_TURN_RTCP) {
2759 rtp->rtcp_passthrough = 1;
2760 }
2761}
2762
2763/* PJPROJECT ICE callback */
2764static pj_status_t ast_rtp_on_ice_tx_pkt(pj_ice_sess *ice, unsigned comp_id, unsigned transport_id, const void *pkt, pj_size_t size, const pj_sockaddr_t *dst_addr, unsigned dst_addr_len)
2765{
2766 struct ast_rtp_instance *instance = ice->user_data;
2767 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2768 pj_status_t status = PJ_EINVALIDOP;
2769 pj_ssize_t _size = (pj_ssize_t)size;
2770
2771 if (transport_id == TRANSPORT_SOCKET_RTP) {
2772 /* Traffic is destined to go right out the RTP socket we already have */
2773 status = pj_sock_sendto(rtp->s, pkt, &_size, 0, dst_addr, dst_addr_len);
2774 /* sendto on a connectionless socket should send all the data, or none at all */
2775 ast_assert(_size == size || status != PJ_SUCCESS);
2776 } else if (transport_id == TRANSPORT_SOCKET_RTCP) {
2777 /* Traffic is destined to go right out the RTCP socket we already have */
2778 if (rtp->rtcp) {
2779 status = pj_sock_sendto(rtp->rtcp->s, pkt, &_size, 0, dst_addr, dst_addr_len);
2780 /* sendto on a connectionless socket should send all the data, or none at all */
2781 ast_assert(_size == size || status != PJ_SUCCESS);
2782 } else {
2783 status = PJ_SUCCESS;
2784 }
2785 } else if (transport_id == TRANSPORT_TURN_RTP) {
2786 /* Traffic is going through the RTP TURN relay */
2787 if (rtp->turn_rtp) {
2788 status = pj_turn_sock_sendto(rtp->turn_rtp, pkt, size, dst_addr, dst_addr_len);
2789 }
2790 } else if (transport_id == TRANSPORT_TURN_RTCP) {
2791 /* Traffic is going through the RTCP TURN relay */
2792 if (rtp->turn_rtcp) {
2793 status = pj_turn_sock_sendto(rtp->turn_rtcp, pkt, size, dst_addr, dst_addr_len);
2794 }
2795 }
2796
2797 return status;
2798}
2799
2800/* ICE Session interface declaration */
2801static pj_ice_sess_cb ast_rtp_ice_sess_cb = {
2802#ifdef HAVE_PJPROJECT_ON_VALID_ICE_PAIR_CALLBACK
2803 .on_valid_pair = ast_rtp_on_valid_pair,
2804#endif
2805 .on_ice_complete = ast_rtp_on_ice_complete,
2806 .on_rx_data = ast_rtp_on_ice_rx_data,
2807 .on_tx_pkt = ast_rtp_on_ice_tx_pkt,
2808};
2809
2810/*! \brief Worker thread for timerheap */
2811static int timer_worker_thread(void *data)
2812{
2813 pj_ioqueue_t *ioqueue;
2814
2815 if (pj_ioqueue_create(pool, 1, &ioqueue) != PJ_SUCCESS) {
2816 return -1;
2817 }
2818
2819 while (!timer_terminate) {
2820 const pj_time_val delay = {0, 10};
2821
2822 pj_timer_heap_poll(timer_heap, NULL);
2823 pj_ioqueue_poll(ioqueue, &delay);
2824 }
2825
2826 return 0;
2827}
2828#endif
2829
2830static inline int rtp_debug_test_addr(struct ast_sockaddr *addr)
2831{
2833 return 0;
2834 }
2836 if (rtpdebugport) {
2837 return (ast_sockaddr_cmp(&rtpdebugaddr, addr) == 0); /* look for RTP packets from IP+Port */
2838 } else {
2839 return (ast_sockaddr_cmp_addr(&rtpdebugaddr, addr) == 0); /* only look for RTP packets from IP */
2840 }
2841 }
2842
2843 return 1;
2844}
2845
2846static inline int rtcp_debug_test_addr(struct ast_sockaddr *addr)
2847{
2849 return 0;
2850 }
2852 if (rtcpdebugport) {
2853 return (ast_sockaddr_cmp(&rtcpdebugaddr, addr) == 0); /* look for RTCP packets from IP+Port */
2854 } else {
2855 return (ast_sockaddr_cmp_addr(&rtcpdebugaddr, addr) == 0); /* only look for RTCP packets from IP */
2856 }
2857 }
2858
2859 return 1;
2860}
2861
2862#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2863/*!
2864 * \brief Handles DTLS timer expiration
2865 *
2866 * \param instance
2867 * \param timeout
2868 * \param rtcp
2869 *
2870 * If DTLSv1_get_timeout() returns 0, it's an error or no timeout was set.
2871 * We need to unref instance and stop the timer in this case. Otherwise,
2872 * new timeout may be a number of milliseconds or 0. If it's 0, OpenSSL
2873 * is telling us to call DTLSv1_handle_timeout() immediately so we'll set
2874 * timeout to 1ms so we get rescheduled almost immediately.
2875 *
2876 * \retval 0 - success
2877 * \retval -1 - failure
2878 */
2879static int dtls_srtp_handle_timeout(struct ast_rtp_instance *instance, int *timeout, int rtcp)
2880{
2881 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2882 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
2883 struct timeval dtls_timeout;
2884 int res = 0;
2885
2886 res = DTLSv1_handle_timeout(dtls->ssl);
2887 ast_debug_dtls(3, "(%p) DTLS srtp - handle timeout - rtcp=%d result: %d\n", instance, rtcp, res);
2888
2889 /* If a timeout can't be retrieved then this recurring scheduled item must stop */
2890 res = DTLSv1_get_timeout(dtls->ssl, &dtls_timeout);
2891 if (!res) {
2892 /* Make sure we don't try to stop the timer later if it's already been stopped */
2893 dtls->timeout_timer = -1;
2894 ao2_ref(instance, -1);
2895 *timeout = 0;
2896 ast_debug_dtls(3, "(%p) DTLS srtp - handle timeout - rtcp=%d get timeout failure\n", instance, rtcp);
2897 return -1;
2898 }
2899 *timeout = dtls_timeout.tv_sec * 1000 + dtls_timeout.tv_usec / 1000;
2900 if (*timeout == 0) {
2901 /*
2902 * If DTLSv1_get_timeout() succeeded with a timeout of 0, OpenSSL
2903 * is telling us to call DTLSv1_handle_timeout() again now HOWEVER...
2904 * Do NOT be tempted to call DTLSv1_handle_timeout() and
2905 * DTLSv1_get_timeout() in a loop while the timeout is 0. There is only
2906 * 1 thread running the scheduler for all PJSIP related RTP instances
2907 * so we don't want to delay here any more than necessary. It's also
2908 * possible that an OpenSSL bug or change in behavior could cause
2909 * DTLSv1_get_timeout() to return 0 forever. If that happens, we'll
2910 * be stuck here and no other RTP instances will get serviced.
2911 * This RTP instance is also locked while this callback runs so we
2912 * don't want to delay other threads that may need to lock this
2913 * RTP instance for their own purpose.
2914 *
2915 * Just set the timeout to 1ms and let the scheduler reschedule us
2916 * as quickly as possible.
2917 */
2918 *timeout = 1;
2919 }
2920 ast_debug_dtls(3, "(%p) DTLS srtp - handle timeout - rtcp=%d timeout=%d\n", instance, rtcp, *timeout);
2921
2922 return 0;
2923}
2924
2925/* Scheduler callback */
2926static int dtls_srtp_handle_rtp_timeout(const void *data)
2927{
2928 struct ast_rtp_instance *instance = (struct ast_rtp_instance *)data;
2929 int timeout = 0;
2930 int res = 0;
2931
2932 ao2_lock(instance);
2933 res = dtls_srtp_handle_timeout(instance, &timeout, 0);
2934 ao2_unlock(instance);
2935 if (res < 0) {
2936 /* Tells the scheduler to stop rescheduling */
2937 return 0;
2938 }
2939
2940 /* Reschedule based on the timeout value */
2941 return timeout;
2942}
2943
2944/* Scheduler callback */
2945static int dtls_srtp_handle_rtcp_timeout(const void *data)
2946{
2947 struct ast_rtp_instance *instance = (struct ast_rtp_instance *)data;
2948 int timeout = 0;
2949 int res = 0;
2950
2951 ao2_lock(instance);
2952 res = dtls_srtp_handle_timeout(instance, &timeout, 1);
2953 ao2_unlock(instance);
2954 if (res < 0) {
2955 /* Tells the scheduler to stop rescheduling */
2956 return 0;
2957 }
2958
2959 /* Reschedule based on the timeout value */
2960 return timeout;
2961}
2962
2963static void dtls_srtp_start_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp)
2964{
2965 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
2966 ast_sched_cb cb = !rtcp ? dtls_srtp_handle_rtp_timeout : dtls_srtp_handle_rtcp_timeout;
2967 struct timeval dtls_timeout;
2968 int res = 0;
2969 int timeout = 0;
2970
2971 ast_assert(dtls->timeout_timer == -1);
2972
2973 res = DTLSv1_get_timeout(dtls->ssl, &dtls_timeout);
2974 if (res == 0) {
2975 ast_debug_dtls(3, "(%p) DTLS srtp - DTLSv1_get_timeout return an error or there was no timeout set for %s\n",
2976 instance, rtcp ? "RTCP" : "RTP");
2977 return;
2978 }
2979
2980 timeout = dtls_timeout.tv_sec * 1000 + dtls_timeout.tv_usec / 1000;
2981
2982 ao2_ref(instance, +1);
2983 /*
2984 * We want the timer to fire again based on calling DTLSv1_get_timeout()
2985 * inside the callback, not at a fixed interval.
2986 */
2987 if ((dtls->timeout_timer = ast_sched_add_variable(rtp->sched, timeout, cb, instance, 1)) < 0) {
2988 ao2_ref(instance, -1);
2989 ast_log(LOG_WARNING, "Scheduling '%s' DTLS retransmission for RTP instance [%p] failed.\n",
2990 !rtcp ? "RTP" : "RTCP", instance);
2991 } else {
2992 ast_debug_dtls(3, "(%p) DTLS srtp - scheduled timeout timer for '%d' %s\n",
2993 instance, timeout, rtcp ? "RTCP" : "RTP");
2994 }
2995}
2996
2997/*! \pre Must not be called with the instance locked. */
2998static void dtls_srtp_stop_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp)
2999{
3000 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
3001
3002 AST_SCHED_DEL_UNREF(rtp->sched, dtls->timeout_timer, ao2_ref(instance, -1));
3003 ast_debug_dtls(3, "(%p) DTLS srtp - stopped timeout timer'\n", instance);
3004}
3005
3006/* Scheduler callback */
3007static int dtls_srtp_renegotiate(const void *data)
3008{
3009 struct ast_rtp_instance *instance = (struct ast_rtp_instance *)data;
3010 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3011
3012 ao2_lock(instance);
3013
3014 ast_debug_dtls(3, "(%p) DTLS srtp - renegotiate'\n", instance);
3015 SSL_renegotiate(rtp->dtls.ssl);
3016 SSL_do_handshake(rtp->dtls.ssl);
3017
3018 if (rtp->rtcp && rtp->rtcp->dtls.ssl && rtp->rtcp->dtls.ssl != rtp->dtls.ssl) {
3019 SSL_renegotiate(rtp->rtcp->dtls.ssl);
3020 SSL_do_handshake(rtp->rtcp->dtls.ssl);
3021 }
3022
3023 rtp->rekeyid = -1;
3024
3025 ao2_unlock(instance);
3026 ao2_ref(instance, -1);
3027
3028 return 0;
3029}
3030
3031static int dtls_srtp_add_local_ssrc(struct ast_rtp *rtp, struct ast_rtp_instance *instance, int rtcp, unsigned int ssrc, int set_remote_policy)
3032{
3033 unsigned char material[SRTP_MASTER_LEN * 2];
3034 unsigned char *local_key, *local_salt, *remote_key, *remote_salt;
3035 struct ast_srtp_policy *local_policy, *remote_policy = NULL;
3036 int res = -1;
3037 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
3038
3039 ast_debug_dtls(3, "(%p) DTLS srtp - add local ssrc - rtcp=%d, set_remote_policy=%d'\n",
3040 instance, rtcp, set_remote_policy);
3041
3042 /* Produce key information and set up SRTP */
3043 if (!SSL_export_keying_material(dtls->ssl, material, SRTP_MASTER_LEN * 2, "EXTRACTOR-dtls_srtp", 19, NULL, 0, 0)) {
3044 ast_log(LOG_WARNING, "Unable to extract SRTP keying material from DTLS-SRTP negotiation on RTP instance '%p'\n",
3045 instance);
3046 return -1;
3047 }
3048
3049 /* Whether we are acting as a server or client determines where the keys/salts are */
3050 if (rtp->dtls.dtls_setup == AST_RTP_DTLS_SETUP_ACTIVE) {
3051 local_key = material;
3052 remote_key = local_key + SRTP_MASTER_KEY_LEN;
3053 local_salt = remote_key + SRTP_MASTER_KEY_LEN;
3054 remote_salt = local_salt + SRTP_MASTER_SALT_LEN;
3055 } else {
3056 remote_key = material;
3057 local_key = remote_key + SRTP_MASTER_KEY_LEN;
3058 remote_salt = local_key + SRTP_MASTER_KEY_LEN;
3059 local_salt = remote_salt + SRTP_MASTER_SALT_LEN;
3060 }
3061
3062 if (!(local_policy = res_srtp_policy->alloc())) {
3063 return -1;
3064 }
3065
3066 if (res_srtp_policy->set_master_key(local_policy, local_key, SRTP_MASTER_KEY_LEN, local_salt, SRTP_MASTER_SALT_LEN) < 0) {
3067 ast_log(LOG_WARNING, "Could not set key/salt information on local policy of '%p' when setting up DTLS-SRTP\n", rtp);
3068 goto error;
3069 }
3070
3071 if (res_srtp_policy->set_suite(local_policy, rtp->suite)) {
3072 ast_log(LOG_WARNING, "Could not set suite to '%u' on local policy of '%p' when setting up DTLS-SRTP\n", rtp->suite, rtp);
3073 goto error;
3074 }
3075
3076 res_srtp_policy->set_ssrc(local_policy, ssrc, 0);
3077
3078 if (set_remote_policy) {
3079 if (!(remote_policy = res_srtp_policy->alloc())) {
3080 goto error;
3081 }
3082
3083 if (res_srtp_policy->set_master_key(remote_policy, remote_key, SRTP_MASTER_KEY_LEN, remote_salt, SRTP_MASTER_SALT_LEN) < 0) {
3084 ast_log(LOG_WARNING, "Could not set key/salt information on remote policy of '%p' when setting up DTLS-SRTP\n", rtp);
3085 goto error;
3086 }
3087
3088 if (res_srtp_policy->set_suite(remote_policy, rtp->suite)) {
3089 ast_log(LOG_WARNING, "Could not set suite to '%u' on remote policy of '%p' when setting up DTLS-SRTP\n", rtp->suite, rtp);
3090 goto error;
3091 }
3092
3093 res_srtp_policy->set_ssrc(remote_policy, 0, 1);
3094 }
3095
3096 if (ast_rtp_instance_add_srtp_policy(instance, remote_policy, local_policy, rtcp)) {
3097 ast_log(LOG_WARNING, "Could not set policies when setting up DTLS-SRTP on '%p'\n", rtp);
3098 goto error;
3099 }
3100
3101 res = 0;
3102
3103error:
3104 /* policy->destroy() called even on success to release local reference to these resources */
3105 res_srtp_policy->destroy(local_policy);
3106
3107 if (remote_policy) {
3108 res_srtp_policy->destroy(remote_policy);
3109 }
3110
3111 return res;
3112}
3113
3114static int dtls_srtp_setup(struct ast_rtp *rtp, struct ast_rtp_instance *instance, int rtcp)
3115{
3116 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
3117 int index;
3118
3119 ast_debug_dtls(3, "(%p) DTLS setup SRTP rtp=%p'\n", instance, rtp);
3120
3121 /* If a fingerprint is present in the SDP make sure that the peer certificate matches it */
3122 if (rtp->dtls_verify & AST_RTP_DTLS_VERIFY_FINGERPRINT) {
3123 X509 *certificate;
3124
3125 if (!(certificate = SSL_get_peer_certificate(dtls->ssl))) {
3126 ast_log(LOG_WARNING, "No certificate was provided by the peer on RTP instance '%p'\n", instance);
3127 return -1;
3128 }
3129
3130 /* If a fingerprint is present in the SDP make sure that the peer certificate matches it */
3131 if (rtp->remote_fingerprint[0]) {
3132 const EVP_MD *type;
3133 unsigned char fingerprint[EVP_MAX_MD_SIZE];
3134 unsigned int size;
3135
3136 if (rtp->remote_hash == AST_RTP_DTLS_HASH_SHA1) {
3137 type = EVP_sha1();
3138 } else if (rtp->remote_hash == AST_RTP_DTLS_HASH_SHA256) {
3139 type = EVP_sha256();
3140 } else {
3141 ast_log(LOG_WARNING, "Unsupported fingerprint hash type on RTP instance '%p'\n", instance);
3142 return -1;
3143 }
3144
3145 if (!X509_digest(certificate, type, fingerprint, &size) ||
3146 !size ||
3147 memcmp(fingerprint, rtp->remote_fingerprint, size)) {
3148 X509_free(certificate);
3149 ast_log(LOG_WARNING, "Fingerprint provided by remote party does not match that of peer certificate on RTP instance '%p'\n",
3150 instance);
3151 return -1;
3152 }
3153 }
3154
3155 X509_free(certificate);
3156 }
3157
3158 if (dtls_srtp_add_local_ssrc(rtp, instance, rtcp, ast_rtp_instance_get_ssrc(instance), 1)) {
3159 ast_log(LOG_ERROR, "Failed to add local source '%p'\n", rtp);
3160 return -1;
3161 }
3162
3163 for (index = 0; index < AST_VECTOR_SIZE(&rtp->ssrc_mapping); ++index) {
3164 struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&rtp->ssrc_mapping, index);
3165
3166 if (dtls_srtp_add_local_ssrc(rtp, instance, rtcp, ast_rtp_instance_get_ssrc(mapping->instance), 0)) {
3167 return -1;
3168 }
3169 }
3170
3171 if (rtp->rekey) {
3172 ao2_ref(instance, +1);
3173 if ((rtp->rekeyid = ast_sched_add(rtp->sched, rtp->rekey * 1000, dtls_srtp_renegotiate, instance)) < 0) {
3174 ao2_ref(instance, -1);
3175 return -1;
3176 }
3177 }
3178
3179 return 0;
3180}
3181#endif
3182
3183/*! \brief Helper function to compare an elem in a vector by value */
3184static int compare_by_value(int elem, int value)
3185{
3186 return elem - value;
3187}
3188
3189/*! \brief Helper function to find an elem in a vector by value */
3190static int find_by_value(int elem, int value)
3191{
3192 return elem == value;
3193}
3194
3195static int rtcp_mux(struct ast_rtp *rtp, const unsigned char *packet)
3196{
3197 uint8_t version;
3198 uint8_t pt;
3199 uint8_t m;
3200
3201 if (!rtp->rtcp || rtp->rtcp->type != AST_RTP_INSTANCE_RTCP_MUX) {
3202 return 0;
3203 }
3204
3205 version = (packet[0] & 0XC0) >> 6;
3206 if (version == 0) {
3207 /* version 0 indicates this is a STUN packet and shouldn't
3208 * be interpreted as a possible RTCP packet
3209 */
3210 return 0;
3211 }
3212
3213 /* The second octet of a packet will be one of the following:
3214 * For RTP: The marker bit (1 bit) and the RTP payload type (7 bits)
3215 * For RTCP: The payload type (8)
3216 *
3217 * RTP has a forbidden range of payload types (64-95) since these
3218 * will conflict with RTCP payload numbers if the marker bit is set.
3219 */
3220 m = packet[1] & 0x80;
3221 pt = packet[1] & 0x7F;
3222 if (m && pt >= 64 && pt <= 95) {
3223 return 1;
3224 }
3225 return 0;
3226}
3227
3228/*! \pre instance is locked */
3229static int __rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp)
3230{
3231 int len;
3232 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3233#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
3234 char *in = buf;
3235#endif
3236#ifdef HAVE_PJPROJECT
3237 struct ast_sockaddr *loop = rtcp ? &rtp->rtcp_loop : &rtp->rtp_loop;
3238#endif
3239#ifdef TEST_FRAMEWORK
3240 struct ast_rtp_engine_test *test = ast_rtp_instance_get_test(instance);
3241#endif
3242
3243 if ((len = ast_recvfrom(rtcp ? rtp->rtcp->s : rtp->s, buf, size, flags, sa)) < 0) {
3244 return len;
3245 }
3246
3247#ifdef TEST_FRAMEWORK
3248 if (test && test->packets_to_drop > 0) {
3249 test->packets_to_drop--;
3250 return 0;
3251 }
3252#endif
3253
3254#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
3255 /* If this is an SSL packet pass it to OpenSSL for processing. RFC section for first byte value:
3256 * https://tools.ietf.org/html/rfc5764#section-5.1.2 */
3257 if ((*in >= 20) && (*in <= 63)) {
3258 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
3259 int res = 0;
3260
3261 /* If no SSL session actually exists terminate things */
3262 if (!dtls->ssl) {
3263 ast_log(LOG_ERROR, "Received SSL traffic on RTP instance '%p' without an SSL session\n",
3264 instance);
3265 return -1;
3266 }
3267
3268 ast_debug_dtls(3, "(%p) DTLS - __rtp_recvfrom rtp=%p - Got SSL packet '%d'\n", instance, rtp, *in);
3269
3270 /*
3271 * If ICE is in use, we can prevent a possible DOS attack
3272 * by allowing DTLS protocol messages (client hello, etc)
3273 * only from sources that are in the active remote
3274 * candidates list.
3275 */
3276
3277#ifdef HAVE_PJPROJECT
3278 if (rtp->ice) {
3279 int pass_src_check = 0;
3280 int ix = 0;
3281
3282 /*
3283 * You'd think that this check would cause a "deadlock"
3284 * because ast_rtp_ice_start_media calls dtls_perform_handshake
3285 * before it sets ice_media_started = 1 so how can we do a
3286 * handshake if we're dropping packets before we send them
3287 * to openssl. Fortunately, dtls_perform_handshake just sets
3288 * up openssl to do the handshake and doesn't actually perform it
3289 * itself and the locking prevents __rtp_recvfrom from
3290 * running before the ice_media_started flag is set. So only
3291 * unexpected DTLS packets can get dropped here.
3292 */
3293 if (!rtp->ice_media_started) {
3294 ast_log(LOG_WARNING, "%s: DTLS packet from %s dropped. ICE not completed yet.\n",
3297 return 0;
3298 }
3299
3300 /*
3301 * If we got this far, then there have to be candidates.
3302 * We have to use pjproject's rcands because they may have
3303 * peer reflexive candidates that our ice_active_remote_candidates
3304 * won't.
3305 */
3306 for (ix = 0; ix < rtp->ice->real_ice->rcand_cnt; ix++) {
3307 pj_ice_sess_cand *rcand = &rtp->ice->real_ice->rcand[ix];
3308 if (ast_sockaddr_pj_sockaddr_cmp(sa, &rcand->addr) == 0) {
3309 pass_src_check = 1;
3310 break;
3311 }
3312 }
3313
3314 if (!pass_src_check) {
3315 ast_log(LOG_WARNING, "%s: DTLS packet from %s dropped. Source not in ICE active candidate list.\n",
3318 return 0;
3319 }
3320 }
3321#endif
3322
3323 /*
3324 * A race condition is prevented between dtls_perform_handshake()
3325 * and this function because both functions have to get the
3326 * instance lock before they can do anything. The
3327 * dtls_perform_handshake() function needs to start the timer
3328 * before we stop it below.
3329 */
3330
3331 /* Before we feed data into OpenSSL ensure that the timeout timer is either stopped or completed */
3332 ao2_unlock(instance);
3333 dtls_srtp_stop_timeout_timer(instance, rtp, rtcp);
3334 ao2_lock(instance);
3335
3336 /* If we don't yet know if we are active or passive and we receive a packet... we are obviously passive */
3337 if (dtls->dtls_setup == AST_RTP_DTLS_SETUP_ACTPASS) {
3338 dtls->dtls_setup = AST_RTP_DTLS_SETUP_PASSIVE;
3339 SSL_set_accept_state(dtls->ssl);
3340 }
3341
3342 BIO_write(dtls->read_bio, buf, len);
3343
3344 len = SSL_read(dtls->ssl, buf, len);
3345
3346 if ((len < 0) && (SSL_get_error(dtls->ssl, len) == SSL_ERROR_SSL)) {
3347 unsigned long error = ERR_get_error();
3348 ast_log(LOG_ERROR, "DTLS failure occurred on RTP instance '%p' due to reason '%s', terminating\n",
3349 instance, ERR_reason_error_string(error));
3350 return -1;
3351 }
3352
3353 if (SSL_is_init_finished(dtls->ssl)) {
3354 /* Any further connections will be existing since this is now established */
3355 dtls->connection = AST_RTP_DTLS_CONNECTION_EXISTING;
3356 /* Use the keying material to set up key/salt information */
3357 if ((res = dtls_srtp_setup(rtp, instance, rtcp))) {
3358 return res;
3359 }
3360 /* Notify that dtls has been established */
3362
3363 ast_debug_dtls(3, "(%p) DTLS - __rtp_recvfrom rtp=%p - established'\n", instance, rtp);
3364 } else {
3365 /* Since we've sent additional traffic start the timeout timer for retransmission */
3366 dtls_srtp_start_timeout_timer(instance, rtp, rtcp);
3367 }
3368
3369 return res;
3370 }
3371#endif
3372
3373#ifdef HAVE_PJPROJECT
3374 if (!ast_sockaddr_isnull(loop) && !ast_sockaddr_cmp(loop, sa)) {
3375 /* ICE traffic will have been handled in the TURN callback, so skip it but update the address
3376 * so it reflects the actual source and not the loopback
3377 */
3378 if (rtcp) {
3379 ast_sockaddr_copy(sa, &rtp->rtcp->them);
3380 } else {
3382 }
3383 } else if (rtp->ice) {
3384 pj_str_t combined = pj_str(ast_sockaddr_stringify(sa));
3385 pj_sockaddr address;
3386 pj_status_t status;
3387 struct ice_wrap *ice;
3388
3389 pj_thread_register_check();
3390
3391 pj_sockaddr_parse(pj_AF_UNSPEC(), 0, &combined, &address);
3392
3393 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
3394 ice = rtp->ice;
3395 ao2_ref(ice, +1);
3396 ao2_unlock(instance);
3397 status = pj_ice_sess_on_rx_pkt(ice->real_ice,
3400 pj_sockaddr_get_len(&address));
3401 ao2_ref(ice, -1);
3402 ao2_lock(instance);
3403 if (status != PJ_SUCCESS) {
3404 char err_buf[100];
3405
3406 pj_strerror(status, err_buf, sizeof(err_buf));
3407 ast_log(LOG_WARNING, "PJ ICE Rx error status code: %d '%s'.\n",
3408 (int)status, err_buf);
3409 return -1;
3410 }
3411 if (!rtp->passthrough) {
3412 /* If a unidirectional ICE negotiation occurs then lock on to the source of the
3413 * ICE traffic and use it as the target. This will occur if the remote side only
3414 * wants to receive media but never send to us.
3415 */
3416 if (!rtp->ice_active_remote_candidates && !rtp->ice_proposed_remote_candidates) {
3417 if (rtcp) {
3418 ast_sockaddr_copy(&rtp->rtcp->them, sa);
3419 } else {
3421 }
3422 }
3423 return 0;
3424 }
3425 rtp->passthrough = 0;
3426 }
3427#endif
3428
3429 return len;
3430}
3431
3432/*! \pre instance is locked */
3433static int rtcp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
3434{
3435 return __rtp_recvfrom(instance, buf, size, flags, sa, 1);
3436}
3437
3438/*! \pre instance is locked */
3439static int rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
3440{
3441 return __rtp_recvfrom(instance, buf, size, flags, sa, 0);
3442}
3443
3444/*! \pre instance is locked */
3445static int __rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp, int *via_ice, int use_srtp)
3446{
3447 int len = size;
3448 void *temp = buf;
3449 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3450 struct ast_rtp_instance *transport = rtp->bundled ? rtp->bundled : instance;
3451 struct ast_rtp *transport_rtp = ast_rtp_instance_get_data(transport);
3452 struct ast_srtp *srtp = ast_rtp_instance_get_srtp(transport, rtcp);
3453 int res;
3454
3455 *via_ice = 0;
3456
3457 if (use_srtp && res_srtp && srtp && res_srtp->protect(srtp, &temp, &len, rtcp) < 0) {
3458 return -1;
3459 }
3460
3461#ifdef HAVE_PJPROJECT
3462 if (transport_rtp->ice) {
3464 pj_status_t status;
3465 struct ice_wrap *ice;
3466
3467 /* If RTCP is sharing the same socket then use the same component */
3468 if (rtcp && rtp->rtcp->s == rtp->s) {
3469 component = AST_RTP_ICE_COMPONENT_RTP;
3470 }
3471
3472 pj_thread_register_check();
3473
3474 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
3475 ice = transport_rtp->ice;
3476 ao2_ref(ice, +1);
3477 if (instance == transport) {
3478 ao2_unlock(instance);
3479 }
3480 status = pj_ice_sess_send_data(ice->real_ice, component, temp, len);
3481 ao2_ref(ice, -1);
3482 if (instance == transport) {
3483 ao2_lock(instance);
3484 }
3485 if (status == PJ_SUCCESS) {
3486 *via_ice = 1;
3487 return len;
3488 }
3489 }
3490#endif
3491
3492 res = ast_sendto(rtcp ? transport_rtp->rtcp->s : transport_rtp->s, temp, len, flags, sa);
3493 if (res > 0) {
3494 ast_rtp_instance_set_last_tx(instance, time(NULL));
3495 }
3496
3497 return res;
3498}
3499
3500/*! \pre instance is locked */
3501static int rtcp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
3502{
3503 return __rtp_sendto(instance, buf, size, flags, sa, 1, ice, 1);
3504}
3505
3506/*! \pre instance is locked */
3507static int rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
3508{
3509 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3510 int hdrlen = 12;
3511 int res;
3512
3513 if ((res = __rtp_sendto(instance, buf, size, flags, sa, 0, ice, 1)) > 0) {
3514 rtp->txcount++;
3515 rtp->txoctetcount += (res - hdrlen);
3516 }
3517
3518 return res;
3519}
3520
3521static unsigned int ast_rtcp_calc_interval(struct ast_rtp *rtp)
3522{
3523 unsigned int interval;
3524 /*! \todo XXX Do a more reasonable calculation on this one
3525 * Look in RFC 3550 Section A.7 for an example*/
3526 interval = rtcpinterval;
3527 return interval;
3528}
3529
3530static void calc_mean_and_standard_deviation(double new_sample, double *mean, double *std_dev, unsigned int *count)
3531{
3532 double delta1;
3533 double delta2;
3534
3535 /* First convert the standard deviation back into a sum of squares. */
3536 double last_sum_of_squares = (*std_dev) * (*std_dev) * (*count ?: 1);
3537
3538 if (++(*count) == 0) {
3539 /* Avoid potential divide by zero on an overflow */
3540 *count = 1;
3541 }
3542
3543 /*
3544 * Below is an implementation of Welford's online algorithm [1] for calculating
3545 * mean and variance in a single pass.
3546 *
3547 * [1] https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
3548 */
3549
3550 delta1 = new_sample - *mean;
3551 *mean += (delta1 / *count);
3552 delta2 = new_sample - *mean;
3553
3554 /* Now calculate the new variance, and subsequent standard deviation */
3555 *std_dev = sqrt((last_sum_of_squares + (delta1 * delta2)) / *count);
3556}
3557
3558static int create_new_socket(const char *type, int af)
3559{
3560 int sock = ast_socket_nonblock(af, SOCK_DGRAM, 0);
3561
3562 if (sock < 0) {
3563 ast_log(LOG_WARNING, "Unable to allocate %s socket: %s\n", type, strerror(errno));
3564 return sock;
3565 }
3566
3567#ifdef SO_NO_CHECK
3568 if (nochecksums) {
3569 setsockopt(sock, SOL_SOCKET, SO_NO_CHECK, &nochecksums, sizeof(nochecksums));
3570 }
3571#endif
3572
3573 return sock;
3574}
3575
3576/*!
3577 * \internal
3578 * \brief Initializes sequence values and probation for learning mode.
3579 * \note This is an adaptation of pjmedia's pjmedia_rtp_seq_init function.
3580 *
3581 * \param info The learning information to track
3582 * \param seq sequence number read from the rtp header to initialize the information with
3583 */
3584static void rtp_learning_seq_init(struct rtp_learning_info *info, uint16_t seq)
3585{
3586 info->max_seq = seq;
3587 info->packets = learning_min_sequential;
3588 memset(&info->received, 0, sizeof(info->received));
3589}
3590
3591/*!
3592 * \internal
3593 * \brief Updates sequence information for learning mode and determines if probation/learning mode should remain in effect.
3594 * \note This function was adapted from pjmedia's pjmedia_rtp_seq_update function.
3595 *
3596 * \param info Structure tracking the learning progress of some address
3597 * \param seq sequence number read from the rtp header
3598 * \retval 0 if probation mode should exit for this address
3599 * \retval non-zero if probation mode should continue
3600 */
3602{
3603 if (seq == (uint16_t) (info->max_seq + 1)) {
3604 /* packet is in sequence */
3605 info->packets--;
3606 } else {
3607 /* Sequence discontinuity; reset */
3608 info->packets = learning_min_sequential - 1;
3609 info->received = ast_tvnow();
3610 }
3611
3612 /* Only check time if strictrtp is set to yes. Otherwise, we only needed to check seqno */
3613 if (strictrtp == STRICT_RTP_YES) {
3614 switch (info->stream_type) {
3617 /*
3618 * Protect against packet floods by checking that we
3619 * received the packet sequence in at least the minimum
3620 * allowed time.
3621 */
3622 if (ast_tvzero(info->received)) {
3623 info->received = ast_tvnow();
3624 } else if (!info->packets
3626 /* Packet flood; reset */
3627 info->packets = learning_min_sequential - 1;
3628 info->received = ast_tvnow();
3629 }
3630 break;
3634 case AST_MEDIA_TYPE_END:
3635 break;
3636 }
3637 }
3638
3639 info->max_seq = seq;
3640
3641 return info->packets;
3642}
3643
3644/*!
3645 * \brief Start the strictrtp learning mode.
3646 *
3647 * \param rtp RTP session description
3648 */
3649static void rtp_learning_start(struct ast_rtp *rtp)
3650{
3652 memset(&rtp->rtp_source_learn.proposed_address, 0,
3653 sizeof(rtp->rtp_source_learn.proposed_address));
3655 rtp_learning_seq_init(&rtp->rtp_source_learn, (uint16_t) rtp->lastrxseqno);
3656}
3657
3658#ifdef HAVE_PJPROJECT
3659static void acl_change_stasis_cb(void *data, struct stasis_subscription *sub, struct stasis_message *message);
3660
3661/*!
3662 * \internal
3663 * \brief Resets and ACL to empty state.
3664 */
3665static void rtp_unload_acl(ast_rwlock_t *lock, struct ast_acl_list **acl)
3666{
3670}
3671
3672/*!
3673 * \internal
3674 * \brief Checks an address against the ICE blacklist
3675 * \note If there is no ice_blacklist list, always returns 0
3676 *
3677 * \param address The address to consider
3678 * \retval 0 if address is not ICE blacklisted
3679 * \retval 1 if address is ICE blacklisted
3680 */
3681static int rtp_address_is_ice_blacklisted(const struct ast_sockaddr *address)
3682{
3683 int result = 0;
3684
3685 ast_rwlock_rdlock(&ice_acl_lock);
3687 ast_rwlock_unlock(&ice_acl_lock);
3688
3689 return result;
3690}
3691
3692/*!
3693 * \internal
3694 * \brief Checks an address against the STUN blacklist
3695 * \since 13.16.0
3696 *
3697 * \note If there is no stun_blacklist list, always returns 0
3698 *
3699 * \param addr The address to consider
3700 *
3701 * \retval 0 if address is not STUN blacklisted
3702 * \retval 1 if address is STUN blacklisted
3703 */
3704static int stun_address_is_blacklisted(const struct ast_sockaddr *addr)
3705{
3706 int result = 0;
3707
3708 ast_rwlock_rdlock(&stun_acl_lock);
3709 result |= ast_apply_acl_nolog(stun_acl, addr) == AST_SENSE_DENY;
3710 ast_rwlock_unlock(&stun_acl_lock);
3711
3712 return result;
3713}
3714
3715/*! \pre instance is locked */
3716static void rtp_add_candidates_to_ice(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_sockaddr *addr, int port, int component,
3717 int transport)
3718{
3719 unsigned int count = 0;
3720 struct ifaddrs *ifa, *ia;
3721 struct ast_sockaddr tmp;
3722 pj_sockaddr pjtmp;
3723 struct ast_ice_host_candidate *candidate;
3724 int af_inet_ok = 0, af_inet6_ok = 0;
3725 struct sockaddr_in stunaddr_copy;
3726
3727 if (ast_sockaddr_is_ipv4(addr)) {
3728 af_inet_ok = 1;
3729 } else if (ast_sockaddr_is_any(addr)) {
3730 af_inet_ok = af_inet6_ok = 1;
3731 } else {
3732 af_inet6_ok = 1;
3733 }
3734
3735 if (getifaddrs(&ifa) < 0) {
3736 /* If we can't get addresses, we can't load ICE candidates */
3737 ast_log(LOG_ERROR, "(%p) ICE Error obtaining list of local addresses: %s\n",
3738 instance, strerror(errno));
3739 } else {
3740 ast_debug_ice(2, "(%p) ICE add system candidates\n", instance);
3741 /* Iterate through the list of addresses obtained from the system,
3742 * until we've iterated through all of them, or accepted
3743 * PJ_ICE_MAX_CAND candidates */
3744 for (ia = ifa; ia && count < PJ_ICE_MAX_CAND; ia = ia->ifa_next) {
3745 /* Interface is either not UP or doesn't have an address assigned,
3746 * eg, a ppp that just completed LCP but no IPCP yet */
3747 if (!ia->ifa_addr || (ia->ifa_flags & IFF_UP) == 0) {
3748 continue;
3749 }
3750
3751 /* Filter out non-IPvX addresses, eg, link-layer */
3752 if (ia->ifa_addr->sa_family != AF_INET && ia->ifa_addr->sa_family != AF_INET6) {
3753 continue;
3754 }
3755
3756 ast_sockaddr_from_sockaddr(&tmp, ia->ifa_addr);
3757
3758 if (ia->ifa_addr->sa_family == AF_INET) {
3759 const struct sockaddr_in *sa_in = (struct sockaddr_in*)ia->ifa_addr;
3760 if (!af_inet_ok) {
3761 continue;
3762 }
3763
3764 /* Skip 127.0.0.0/8 (loopback) */
3765 /* Don't use IFF_LOOPBACK check since one could assign usable
3766 * publics to the loopback */
3767 if ((sa_in->sin_addr.s_addr & htonl(0xFF000000)) == htonl(0x7F000000)) {
3768 continue;
3769 }
3770
3771 /* Skip 0.0.0.0/8 based on RFC1122, and from pjproject */
3772 if ((sa_in->sin_addr.s_addr & htonl(0xFF000000)) == 0) {
3773 continue;
3774 }
3775 } else { /* ia->ifa_addr->sa_family == AF_INET6 */
3776 if (!af_inet6_ok) {
3777 continue;
3778 }
3779
3780 /* Filter ::1 */
3781 if (!ast_sockaddr_cmp_addr(&lo6, &tmp)) {
3782 continue;
3783 }
3784 }
3785
3786 /* Pull in the host candidates from [ice_host_candidates] */
3787 AST_RWLIST_RDLOCK(&host_candidates);
3788 AST_LIST_TRAVERSE(&host_candidates, candidate, next) {
3789 if (!ast_sockaddr_cmp(&candidate->local, &tmp)) {
3790 /* candidate->local matches actual assigned, so check if
3791 * advertised is blacklisted, if not, add it to the
3792 * advertised list. Not that it would make sense to remap
3793 * a local address to a blacklisted address, but honour it
3794 * anyway. */
3795 if (!rtp_address_is_ice_blacklisted(&candidate->advertised)) {
3796 ast_sockaddr_to_pj_sockaddr(&candidate->advertised, &pjtmp);
3797 pj_sockaddr_set_port(&pjtmp, port);
3798 ast_rtp_ice_add_cand(instance, rtp, component, transport,
3799 PJ_ICE_CAND_TYPE_HOST, 65535, &pjtmp, &pjtmp, NULL,
3800 pj_sockaddr_get_len(&pjtmp));
3801 ++count;
3802 }
3803
3804 if (!candidate->include_local) {
3805 /* We don't want to advertise the actual address */
3807 }
3808
3809 break;
3810 }
3811 }
3812 AST_RWLIST_UNLOCK(&host_candidates);
3813
3814 /* we had an entry in [ice_host_candidates] that matched, and
3815 * didn't have include_local_address set. Alternatively, adding
3816 * that match resulted in us going to PJ_ICE_MAX_CAND */
3817 if (ast_sockaddr_isnull(&tmp) || count == PJ_ICE_MAX_CAND) {
3818 continue;
3819 }
3820
3821 if (rtp_address_is_ice_blacklisted(&tmp)) {
3822 continue;
3823 }
3824
3825 ast_sockaddr_to_pj_sockaddr(&tmp, &pjtmp);
3826 pj_sockaddr_set_port(&pjtmp, port);
3827 ast_rtp_ice_add_cand(instance, rtp, component, transport,
3828 PJ_ICE_CAND_TYPE_HOST, 65535, &pjtmp, &pjtmp, NULL,
3829 pj_sockaddr_get_len(&pjtmp));
3830 ++count;
3831 }
3832 freeifaddrs(ifa);
3833 }
3834
3835 ast_rwlock_rdlock(&stunaddr_lock);
3836 memcpy(&stunaddr_copy, &stunaddr, sizeof(stunaddr));
3837 ast_rwlock_unlock(&stunaddr_lock);
3838
3839 /* If configured to use a STUN server to get our external mapped address do so */
3840 if (stunaddr_copy.sin_addr.s_addr && !stun_address_is_blacklisted(addr) &&
3841 (ast_sockaddr_is_ipv4(addr) || ast_sockaddr_is_any(addr)) &&
3842 count < PJ_ICE_MAX_CAND) {
3843 struct sockaddr_in answer;
3844 int rsp;
3845
3847 "(%p) ICE request STUN %s %s candidate\n", instance,
3848 transport == AST_TRANSPORT_UDP ? "UDP" : "TCP",
3849 component == AST_RTP_ICE_COMPONENT_RTP ? "RTP" : "RTCP");
3850
3851 /*
3852 * The instance should not be locked because we can block
3853 * waiting for a STUN respone.
3854 */
3855 ao2_unlock(instance);
3857 ? rtp->rtcp->s : rtp->s, &stunaddr_copy, NULL, &answer);
3858 ao2_lock(instance);
3859 if (!rsp) {
3860 struct ast_rtp_engine_ice_candidate *candidate;
3861 pj_sockaddr ext, base;
3862 pj_str_t mapped = pj_str(ast_strdupa(ast_inet_ntoa(answer.sin_addr)));
3863 int srflx = 1, baseset = 0;
3864 struct ao2_iterator i;
3865
3866 pj_sockaddr_init(pj_AF_INET(), &ext, &mapped, ntohs(answer.sin_port));
3867
3868 /*
3869 * If the returned address is the same as one of our host
3870 * candidates, don't send the srflx. At the same time,
3871 * we need to set the base address (raddr).
3872 */
3873 i = ao2_iterator_init(rtp->ice_local_candidates, 0);
3874 while (srflx && (candidate = ao2_iterator_next(&i))) {
3875 if (!baseset && ast_sockaddr_is_ipv4(&candidate->address)) {
3876 baseset = 1;
3877 ast_sockaddr_to_pj_sockaddr(&candidate->address, &base);
3878 }
3879
3880 if (!pj_sockaddr_cmp(&candidate->address, &ext)) {
3881 srflx = 0;
3882 }
3883
3884 ao2_ref(candidate, -1);
3885 }
3887
3888 if (srflx && baseset) {
3889 pj_sockaddr_set_port(&base, port);
3890 ast_rtp_ice_add_cand(instance, rtp, component, transport,
3891 PJ_ICE_CAND_TYPE_SRFLX, 65535, &ext, &base, &base,
3892 pj_sockaddr_get_len(&ext));
3893 }
3894 }
3895 }
3896
3897 /* If configured to use a TURN relay create a session and allocate */
3898 if (pj_strlen(&turnaddr)) {
3899 ast_rtp_ice_turn_request(instance, component, AST_TRANSPORT_TCP, pj_strbuf(&turnaddr), turnport,
3900 pj_strbuf(&turnusername), pj_strbuf(&turnpassword));
3901 }
3902}
3903#endif
3904
3905/*!
3906 * \internal
3907 * \brief Calculates the elapsed time from issue of the first tx packet in an
3908 * rtp session and a specified time
3909 *
3910 * \param rtp pointer to the rtp struct with the transmitted rtp packet
3911 * \param delivery time of delivery - if NULL or zero value, will be ast_tvnow()
3912 *
3913 * \return time elapsed in milliseconds
3914 */
3915static unsigned int calc_txstamp(struct ast_rtp *rtp, struct timeval *delivery)
3916{
3917 struct timeval t;
3918 long ms;
3919
3920 if (ast_tvzero(rtp->txcore)) {
3921 rtp->txcore = ast_tvnow();
3922 rtp->txcore.tv_usec -= rtp->txcore.tv_usec % 20000;
3923 }
3924
3925 t = (delivery && !ast_tvzero(*delivery)) ? *delivery : ast_tvnow();
3926 if ((ms = ast_tvdiff_ms(t, rtp->txcore)) < 0) {
3927 ms = 0;
3928 }
3929 rtp->txcore = t;
3930
3931 return (unsigned int) ms;
3932}
3933
3934#ifdef HAVE_PJPROJECT
3935/*!
3936 * \internal
3937 * \brief Creates an ICE session. Can be used to replace a destroyed ICE session.
3938 *
3939 * \param instance RTP instance for which the ICE session is being replaced
3940 * \param addr ast_sockaddr to use for adding RTP candidates to the ICE session
3941 * \param port port to use for adding RTP candidates to the ICE session
3942 * \param replace 0 when creating a new session, 1 when replacing a destroyed session
3943 *
3944 * \pre instance is locked
3945 *
3946 * \retval 0 on success
3947 * \retval -1 on failure
3948 */
3949static int ice_create(struct ast_rtp_instance *instance, struct ast_sockaddr *addr,
3950 int port, int replace)
3951{
3952 pj_stun_config stun_config;
3953 pj_str_t ufrag, passwd;
3954 pj_status_t status;
3955 struct ice_wrap *ice_old;
3956 struct ice_wrap *ice;
3957 pj_ice_sess *real_ice = NULL;
3958 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3959
3960 ao2_cleanup(rtp->ice_local_candidates);
3961 rtp->ice_local_candidates = NULL;
3962
3963 ast_debug_ice(2, "(%p) ICE create%s\n", instance, replace ? " and replace" : "");
3964
3965 ice = ao2_alloc_options(sizeof(*ice), ice_wrap_dtor, AO2_ALLOC_OPT_LOCK_NOLOCK);
3966 if (!ice) {
3967 ast_rtp_ice_stop(instance);
3968 return -1;
3969 }
3970
3971 pj_thread_register_check();
3972
3973 pj_stun_config_init(&stun_config, &cachingpool.factory, 0, NULL, timer_heap);
3974 if (!stun_software_attribute) {
3975 stun_config.software_name = pj_str(NULL);
3976 }
3977
3978 ufrag = pj_str(rtp->local_ufrag);
3979 passwd = pj_str(rtp->local_passwd);
3980
3981 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
3982 ao2_unlock(instance);
3983 /* Create an ICE session for ICE negotiation */
3984 status = pj_ice_sess_create(&stun_config, NULL, PJ_ICE_SESS_ROLE_UNKNOWN,
3985 rtp->ice_num_components, &ast_rtp_ice_sess_cb, &ufrag, &passwd, NULL, &real_ice);
3986 ao2_lock(instance);
3987 if (status == PJ_SUCCESS) {
3988 /* Safely complete linking the ICE session into the instance */
3989 real_ice->user_data = instance;
3990 ice->real_ice = real_ice;
3991 ice_old = rtp->ice;
3992 rtp->ice = ice;
3993 if (ice_old) {
3994 ao2_unlock(instance);
3995 ao2_ref(ice_old, -1);
3996 ao2_lock(instance);
3997 }
3998
3999 /* Add all of the available candidates to the ICE session */
4000 rtp_add_candidates_to_ice(instance, rtp, addr, port, AST_RTP_ICE_COMPONENT_RTP,
4002
4003 /* Only add the RTCP candidates to ICE when replacing the session and if
4004 * the ICE session contains more than just an RTP component. New sessions
4005 * handle this in a separate part of the setup phase */
4006 if (replace && rtp->rtcp && rtp->ice_num_components > 1) {
4007 rtp_add_candidates_to_ice(instance, rtp, &rtp->rtcp->us,
4010 }
4011
4012 return 0;
4013 }
4014
4015 /*
4016 * It is safe to unref this while instance is locked here.
4017 * It was not initialized with a real_ice pointer.
4018 */
4019 ao2_ref(ice, -1);
4020
4021 ast_rtp_ice_stop(instance);
4022 return -1;
4023
4024}
4025#endif
4026
4027static int rtp_allocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
4028{
4029 int x, startplace, i, maxloops;
4030
4032
4033 /* Create a new socket for us to listen on and use */
4034 if ((rtp->s =
4035 create_new_socket("RTP",
4036 ast_sockaddr_is_ipv4(&rtp->bind_address) ? AF_INET :
4037 ast_sockaddr_is_ipv6(&rtp->bind_address) ? AF_INET6 : -1)) < 0) {
4038 ast_log(LOG_WARNING, "Failed to create a new socket for RTP instance '%p'\n", instance);
4039 return -1;
4040 }
4041
4042 /* Now actually find a free RTP port to use */
4043 x = (ast_random() % (rtpend - rtpstart)) + rtpstart;
4044 x = x & ~1;
4045 startplace = x;
4046
4047 /* Protection against infinite loops in the case there is a potential case where the loop is not broken such as an odd
4048 start port sneaking in (even though this condition is checked at load.) */
4049 maxloops = rtpend - rtpstart;
4050 for (i = 0; i <= maxloops; i++) {
4052 /* Try to bind, this will tell us whether the port is available or not */
4053 if (!ast_bind(rtp->s, &rtp->bind_address)) {
4054 ast_debug_rtp(1, "(%p) RTP allocated port %d\n", instance, x);
4056 ast_test_suite_event_notify("RTP_PORT_ALLOCATED", "Port: %d", x);
4057 break;
4058 }
4059
4060 x += 2;
4061 if (x > rtpend) {
4062 x = (rtpstart + 1) & ~1;
4063 }
4064
4065 /* See if we ran out of ports or if the bind actually failed because of something other than the address being in use */
4066 if (x == startplace || (errno != EADDRINUSE && errno != EACCES)) {
4067 ast_log(LOG_ERROR, "Oh dear... we couldn't allocate a port for RTP instance '%p'\n", instance);
4068 close(rtp->s);
4069 rtp->s = -1;
4070 return -1;
4071 }
4072 }
4073
4074#ifdef HAVE_PJPROJECT
4075 /* Initialize synchronization aspects */
4076 ast_cond_init(&rtp->cond, NULL);
4077
4078 generate_random_string(rtp->local_ufrag, sizeof(rtp->local_ufrag));
4079 generate_random_string(rtp->local_passwd, sizeof(rtp->local_passwd));
4080
4081 /* Create an ICE session for ICE negotiation */
4082 if (icesupport) {
4083 rtp->ice_num_components = 2;
4084 ast_debug_ice(2, "(%p) ICE creating session %s (%d)\n", instance,
4086 if (ice_create(instance, &rtp->bind_address, x, 0)) {
4087 ast_log(LOG_NOTICE, "(%p) ICE failed to create session\n", instance);
4088 } else {
4089 rtp->ice_port = x;
4090 ast_sockaddr_copy(&rtp->ice_original_rtp_addr, &rtp->bind_address);
4091 }
4092 }
4093#endif
4094
4095#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
4096 rtp->rekeyid = -1;
4097 rtp->dtls.timeout_timer = -1;
4098#endif
4099
4100 return 0;
4101}
4102
4103static void rtp_deallocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
4104{
4105 int saved_rtp_s = rtp->s;
4106#ifdef HAVE_PJPROJECT
4107 struct timeval wait = ast_tvadd(ast_tvnow(), ast_samp2tv(TURN_STATE_WAIT_TIME, 1000));
4108 struct timespec ts = { .tv_sec = wait.tv_sec, .tv_nsec = wait.tv_usec * 1000, };
4109#endif
4110
4111#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
4112 ast_rtp_dtls_stop(instance);
4113#endif
4114
4115 /* Close our own socket so we no longer get packets */
4116 if (rtp->s > -1) {
4117 close(rtp->s);
4118 rtp->s = -1;
4119 }
4120
4121 /* Destroy RTCP if it was being used */
4122 if (rtp->rtcp && rtp->rtcp->s > -1) {
4123 if (saved_rtp_s != rtp->rtcp->s) {
4124 close(rtp->rtcp->s);
4125 }
4126 rtp->rtcp->s = -1;
4127 }
4128
4129#ifdef HAVE_PJPROJECT
4130 pj_thread_register_check();
4131
4132 /*
4133 * The instance lock is already held.
4134 *
4135 * Destroy the RTP TURN relay if being used
4136 */
4137 if (rtp->turn_rtp) {
4138 rtp->turn_state = PJ_TURN_STATE_NULL;
4139
4140 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
4141 ao2_unlock(instance);
4142 pj_turn_sock_destroy(rtp->turn_rtp);
4143 ao2_lock(instance);
4144 while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
4145 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
4146 }
4147 rtp->turn_rtp = NULL;
4148 }
4149
4150 /* Destroy the RTCP TURN relay if being used */
4151 if (rtp->turn_rtcp) {
4152 rtp->turn_state = PJ_TURN_STATE_NULL;
4153
4154 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
4155 ao2_unlock(instance);
4156 pj_turn_sock_destroy(rtp->turn_rtcp);
4157 ao2_lock(instance);
4158 while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
4159 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
4160 }
4161 rtp->turn_rtcp = NULL;
4162 }
4163
4164 ast_debug_ice(2, "(%p) ICE RTP transport deallocating\n", instance);
4165 /* Destroy any ICE session */
4166 ast_rtp_ice_stop(instance);
4167
4168 /* Destroy any candidates */
4169 if (rtp->ice_local_candidates) {
4170 ao2_ref(rtp->ice_local_candidates, -1);
4171 rtp->ice_local_candidates = NULL;
4172 }
4173
4174 if (rtp->ice_active_remote_candidates) {
4175 ao2_ref(rtp->ice_active_remote_candidates, -1);
4176 rtp->ice_active_remote_candidates = NULL;
4177 }
4178
4179 if (rtp->ice_proposed_remote_candidates) {
4180 ao2_ref(rtp->ice_proposed_remote_candidates, -1);
4181 rtp->ice_proposed_remote_candidates = NULL;
4182 }
4183
4184 if (rtp->ioqueue) {
4185 /*
4186 * We cannot hold the instance lock because we could wait
4187 * for the ioqueue thread to die and we might deadlock as
4188 * a result.
4189 */
4190 ao2_unlock(instance);
4191 rtp_ioqueue_thread_remove(rtp->ioqueue);
4192 ao2_lock(instance);
4193 rtp->ioqueue = NULL;
4194 }
4195#endif
4196}
4197
4198/*! \pre instance is locked */
4199static int ast_rtp_new(struct ast_rtp_instance *instance,
4200 struct ast_sched_context *sched, struct ast_sockaddr *addr,
4201 void *data)
4202{
4203 struct ast_rtp *rtp = NULL;
4204
4205 /* Create a new RTP structure to hold all of our data */
4206 if (!(rtp = ast_calloc(1, sizeof(*rtp)))) {
4207 return -1;
4208 }
4209 rtp->owner = instance;
4210 /* Set default parameters on the newly created RTP structure */
4211 rtp->ssrc = ast_random();
4212 ast_uuid_generate_str(rtp->cname, sizeof(rtp->cname));
4213 rtp->seqno = ast_random() & 0xffff;
4214 rtp->expectedrxseqno = -1;
4215 rtp->expectedseqno = -1;
4216 rtp->rxstart = -1;
4217 rtp->sched = sched;
4218 ast_sockaddr_copy(&rtp->bind_address, addr);
4219 /* Transport creation operations can grab the RTP data from the instance, so set it */
4220 ast_rtp_instance_set_data(instance, rtp);
4221
4222 if (rtp_allocate_transport(instance, rtp)) {
4223 return -1;
4224 }
4225
4226 if (AST_VECTOR_INIT(&rtp->ssrc_mapping, 1)) {
4227 return -1;
4228 }
4229
4231 return -1;
4232 }
4233 rtp->transport_wide_cc.schedid = -1;
4234
4238 rtp->stream_num = -1;
4239
4240 return 0;
4241}
4242
4243/*!
4244 * \brief SSRC mapping comparator for AST_VECTOR_REMOVE_CMP_UNORDERED()
4245 *
4246 * \param elem Element to compare against
4247 * \param value Value to compare with the vector element.
4248 *
4249 * \retval 0 if element does not match.
4250 * \retval Non-zero if element matches.
4251 */
4252#define SSRC_MAPPING_ELEM_CMP(elem, value) ((elem).instance == (value))
4253
4254/*! \pre instance is locked */
4255static int ast_rtp_destroy(struct ast_rtp_instance *instance)
4256{
4257 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4258
4259 if (rtp->bundled) {
4260 struct ast_rtp *bundled_rtp;
4261
4262 /* We can't hold our instance lock while removing ourselves from the parent */
4263 ao2_unlock(instance);
4264
4265 ao2_lock(rtp->bundled);
4266 bundled_rtp = ast_rtp_instance_get_data(rtp->bundled);
4268 ao2_unlock(rtp->bundled);
4269
4270 ao2_lock(instance);
4271 ao2_ref(rtp->bundled, -1);
4272 }
4273
4274 rtp_deallocate_transport(instance, rtp);
4275
4276 /* Destroy the smoother that was smoothing out audio if present */
4277 if (rtp->smoother) {
4279 }
4280
4281 /* Destroy RTCP if it was being used */
4282 if (rtp->rtcp) {
4283 /*
4284 * It is not possible for there to be an active RTCP scheduler
4285 * entry at this point since it holds a reference to the
4286 * RTP instance while it's active.
4287 */
4289 ast_free(rtp->rtcp);
4290 }
4291
4292 /* Destroy RED if it was being used */
4293 if (rtp->red) {
4294 ao2_unlock(instance);
4295 AST_SCHED_DEL(rtp->sched, rtp->red->schedid);
4296 ao2_lock(instance);
4297 ast_free(rtp->red);
4298 rtp->red = NULL;
4299 }
4300
4301 /* Destroy the send buffer if it was being used */
4302 if (rtp->send_buffer) {
4304 }
4305
4306 /* Destroy the recv buffer if it was being used */
4307 if (rtp->recv_buffer) {
4309 }
4310
4312
4318
4319 /* Finally destroy ourselves */
4320 rtp->owner = NULL;
4321 ast_free(rtp);
4322
4323 return 0;
4324}
4325
4326/*! \pre instance is locked */
4327static int ast_rtp_dtmf_mode_set(struct ast_rtp_instance *instance, enum ast_rtp_dtmf_mode dtmf_mode)
4328{
4329 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4330 rtp->dtmfmode = dtmf_mode;
4331 return 0;
4332}
4333
4334/*! \pre instance is locked */
4336{
4337 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4338 return rtp->dtmfmode;
4339}
4340
4341/*! \pre instance is locked */
4342static int ast_rtp_dtmf_begin(struct ast_rtp_instance *instance, char digit)
4343{
4344 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4345 struct ast_sockaddr remote_address = { {0,} };
4346 int hdrlen = 12, res = 0, i = 0, payload = -1, sample_rate = -1;
4347 char data[256];
4348 unsigned int *rtpheader = (unsigned int*)data;
4349 RAII_VAR(struct ast_format *, payload_format, NULL, ao2_cleanup);
4350
4351 ast_rtp_instance_get_remote_address(instance, &remote_address);
4352
4353 /* If we have no remote address information bail out now */
4354 if (ast_sockaddr_isnull(&remote_address)) {
4355 return -1;
4356 }
4357
4358 /* Convert given digit into what we want to transmit */
4359 if ((digit <= '9') && (digit >= '0')) {
4360 digit -= '0';
4361 } else if (digit == '*') {
4362 digit = 10;
4363 } else if (digit == '#') {
4364 digit = 11;
4365 } else if ((digit >= 'A') && (digit <= 'D')) {
4366 digit = digit - 'A' + 12;
4367 } else if ((digit >= 'a') && (digit <= 'd')) {
4368 digit = digit - 'a' + 12;
4369 } else {
4370 ast_log(LOG_WARNING, "Don't know how to represent '%c'\n", digit);
4371 return -1;
4372 }
4373
4374 if (rtp->lasttxformat == ast_format_none) {
4375 /* No audio frames have been written yet so we have to lookup both the preferred payload type and bitrate. */
4377 if (payload_format) {
4378 /* If we have a preferred type, use that. Otherwise default to 8K. */
4379 sample_rate = ast_format_get_sample_rate(payload_format);
4380 }
4381 } else {
4382 sample_rate = ast_format_get_sample_rate(rtp->lasttxformat);
4383 }
4384
4385 if (sample_rate != -1) {
4387 }
4388
4389 if (payload == -1 ||
4392 /* Fall back to the preferred DTMF payload type and sample rate as either we couldn't find an audio codec to try and match
4393 sample rates with or we could, but a telephone-event matching that audio codec's sample rate was not included in the
4394 sdp negotiated by the far end. */
4397 }
4398
4399 /* The sdp negotiation has not yeilded a usable RFC 2833/4733 format. Try a default-rate one as a last resort. */
4400 if (payload == -1 || sample_rate == -1) {
4401 sample_rate = DEFAULT_DTMF_SAMPLE_RATE_MS;
4403 }
4404 /* Even trying a default payload has failed. We are trying to send a digit outside of what was negotiated for. */
4405 if (payload == -1) {
4406 return -1;
4407 }
4408
4409 ast_test_suite_event_notify("DTMF_BEGIN", "Digit: %d\r\nPayload: %d\r\nRate: %d\r\n", digit, payload, sample_rate);
4410 ast_debug(1, "Sending digit '%d' at rate %d with payload %d\n", digit, sample_rate, payload);
4411
4412 rtp->dtmfmute = ast_tvadd(ast_tvnow(), ast_tv(0, 500000));
4413 rtp->send_duration = 160;
4414 rtp->dtmf_samplerate_ms = (sample_rate / 1000);
4415 rtp->lastts += calc_txstamp(rtp, NULL) * rtp->dtmf_samplerate_ms;
4416 rtp->lastdigitts = rtp->lastts + rtp->send_duration;
4417
4418 /* Create the actual packet that we will be sending */
4419 rtpheader[0] = htonl((2 << 30) | (1 << 23) | (payload << 16) | (rtp->seqno));
4420 rtpheader[1] = htonl(rtp->lastdigitts);
4421 rtpheader[2] = htonl(rtp->ssrc);
4422
4423 /* Actually send the packet */
4424 for (i = 0; i < 2; i++) {
4425 int ice;
4426
4427 rtpheader[3] = htonl((digit << 24) | (0xa << 16) | (rtp->send_duration));
4428 res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 4, 0, &remote_address, &ice);
4429 if (res < 0) {
4430 ast_log(LOG_ERROR, "RTP Transmission error to %s: %s\n",
4431 ast_sockaddr_stringify(&remote_address),
4432 strerror(errno));
4433 }
4434 if (rtp_debug_test_addr(&remote_address)) {
4435 ast_verbose("Sent RTP DTMF packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
4436 ast_sockaddr_stringify(&remote_address),
4437 ice ? " (via ICE)" : "",
4438 payload, rtp->seqno, rtp->lastdigitts, res - hdrlen);
4439 }
4440 rtp->seqno++;
4441 rtp->send_duration += 160;
4442 rtpheader[0] = htonl((2 << 30) | (payload << 16) | (rtp->seqno));
4443 }
4444
4445 /* Record that we are in the process of sending a digit and information needed to continue doing so */
4446 rtp->sending_digit = 1;
4447 rtp->send_digit = digit;
4448 rtp->send_payload = payload;
4449
4450 return 0;
4451}
4452
4453/*! \pre instance is locked */
4455{
4456 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4457 struct ast_sockaddr remote_address = { {0,} };
4458 int hdrlen = 12, res = 0;
4459 char data[256];
4460 unsigned int *rtpheader = (unsigned int*)data;
4461 int ice;
4462
4463 ast_rtp_instance_get_remote_address(instance, &remote_address);
4464
4465 /* Make sure we know where the other side is so we can send them the packet */
4466 if (ast_sockaddr_isnull(&remote_address)) {
4467 return -1;
4468 }
4469
4470 /* Actually create the packet we will be sending */
4471 rtpheader[0] = htonl((2 << 30) | (rtp->send_payload << 16) | (rtp->seqno));
4472 rtpheader[1] = htonl(rtp->lastdigitts);
4473 rtpheader[2] = htonl(rtp->ssrc);
4474 rtpheader[3] = htonl((rtp->send_digit << 24) | (0xa << 16) | (rtp->send_duration));
4475
4476 /* Boom, send it on out */
4477 res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 4, 0, &remote_address, &ice);
4478 if (res < 0) {
4479 ast_log(LOG_ERROR, "RTP Transmission error to %s: %s\n",
4480 ast_sockaddr_stringify(&remote_address),
4481 strerror(errno));
4482 }
4483
4484 if (rtp_debug_test_addr(&remote_address)) {
4485 ast_verbose("Sent RTP DTMF packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
4486 ast_sockaddr_stringify(&remote_address),
4487 ice ? " (via ICE)" : "",
4488 rtp->send_payload, rtp->seqno, rtp->lastdigitts, res - hdrlen);
4489 }
4490
4491 /* And now we increment some values for the next time we swing by */
4492 rtp->seqno++;
4493 rtp->send_duration += 160;
4494 rtp->lastts += calc_txstamp(rtp, NULL) * rtp->dtmf_samplerate_ms;
4495
4496 return 0;
4497}
4498
4499/*! \pre instance is locked */
4500static int ast_rtp_dtmf_end_with_duration(struct ast_rtp_instance *instance, char digit, unsigned int duration)
4501{
4502 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4503 struct ast_sockaddr remote_address = { {0,} };
4504 int hdrlen = 12, res = -1, i = 0;
4505 char data[256];
4506 unsigned int *rtpheader = (unsigned int*)data;
4507 unsigned int measured_samples;
4508
4509 ast_rtp_instance_get_remote_address(instance, &remote_address);
4510
4511 /* Make sure we know where the remote side is so we can send them the packet we construct */
4512 if (ast_sockaddr_isnull(&remote_address)) {
4513 goto cleanup;
4514 }
4515
4516 /* Convert the given digit to the one we are going to send */
4517 if ((digit <= '9') && (digit >= '0')) {
4518 digit -= '0';
4519 } else if (digit == '*') {
4520 digit = 10;
4521 } else if (digit == '#') {
4522 digit = 11;
4523 } else if ((digit >= 'A') && (digit <= 'D')) {
4524 digit = digit - 'A' + 12;
4525 } else if ((digit >= 'a') && (digit <= 'd')) {
4526 digit = digit - 'a' + 12;
4527 } else {
4528 ast_log(LOG_WARNING, "Don't know how to represent '%c'\n", digit);
4529 goto cleanup;
4530 }
4531
4532 rtp->dtmfmute = ast_tvadd(ast_tvnow(), ast_tv(0, 500000));
4533
4534 if (duration > 0 && (measured_samples = duration * ast_rtp_get_rate(rtp->f.subclass.format) / 1000) > rtp->send_duration) {
4535 ast_debug_rtp(2, "(%p) RTP adjusting final end duration from %d to %u\n",
4536 instance, rtp->send_duration, measured_samples);
4537 rtp->send_duration = measured_samples;
4538 }
4539
4540 /* Construct the packet we are going to send */
4541 rtpheader[1] = htonl(rtp->lastdigitts);
4542 rtpheader[2] = htonl(rtp->ssrc);
4543 rtpheader[3] = htonl((digit << 24) | (0xa << 16) | (rtp->send_duration));
4544 rtpheader[3] |= htonl((1 << 23));
4545
4546 /* Send it 3 times, that's the magical number */
4547 for (i = 0; i < 3; i++) {
4548 int ice;
4549
4550 rtpheader[0] = htonl((2 << 30) | (rtp->send_payload << 16) | (rtp->seqno));
4551
4552 res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 4, 0, &remote_address, &ice);
4553
4554 if (res < 0) {
4555 ast_log(LOG_ERROR, "RTP Transmission error to %s: %s\n",
4556 ast_sockaddr_stringify(&remote_address),
4557 strerror(errno));
4558 }
4559
4560 if (rtp_debug_test_addr(&remote_address)) {
4561 ast_verbose("Sent RTP DTMF packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
4562 ast_sockaddr_stringify(&remote_address),
4563 ice ? " (via ICE)" : "",
4564 rtp->send_payload, rtp->seqno, rtp->lastdigitts, res - hdrlen);
4565 }
4566
4567 rtp->seqno++;
4568 }
4569 res = 0;
4570
4571 /* Oh and we can't forget to turn off the stuff that says we are sending DTMF */
4572 rtp->lastts += calc_txstamp(rtp, NULL) * rtp->dtmf_samplerate_ms;
4573
4574 /* Reset the smoother as the delivery time stored in it is now out of date */
4575 if (rtp->smoother) {
4577 rtp->smoother = NULL;
4578 }
4579cleanup:
4580 rtp->sending_digit = 0;
4581 rtp->send_digit = 0;
4582
4583 /* Re-Learn expected seqno */
4584 rtp->expectedseqno = -1;
4585
4586 return res;
4587}
4588
4589/*! \pre instance is locked */
4590static int ast_rtp_dtmf_end(struct ast_rtp_instance *instance, char digit)
4591{
4592 return ast_rtp_dtmf_end_with_duration(instance, digit, 0);
4593}
4594
4595/*! \pre instance is locked */
4596static void ast_rtp_update_source(struct ast_rtp_instance *instance)
4597{
4598 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4599
4600 /* We simply set this bit so that the next packet sent will have the marker bit turned on */
4602 ast_debug_rtp(3, "(%p) RTP setting the marker bit due to a source update\n", instance);
4603
4604 return;
4605}
4606
4607/*! \pre instance is locked */
4608static void ast_rtp_change_source(struct ast_rtp_instance *instance)
4609{
4610 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4611 struct ast_srtp *srtp = ast_rtp_instance_get_srtp(instance, 0);
4612 struct ast_srtp *rtcp_srtp = ast_rtp_instance_get_srtp(instance, 1);
4613 unsigned int ssrc = ast_random();
4614
4615 if (rtp->lastts) {
4616 /* We simply set this bit so that the next packet sent will have the marker bit turned on */
4618 }
4619
4620 ast_debug_rtp(3, "(%p) RTP changing ssrc from %u to %u due to a source change\n",
4621 instance, rtp->ssrc, ssrc);
4622
4623 if (srtp) {
4624 ast_debug_rtp(3, "(%p) RTP changing ssrc for SRTP from %u to %u\n",
4625 instance, rtp->ssrc, ssrc);
4626 res_srtp->change_source(srtp, rtp->ssrc, ssrc);
4627 if (rtcp_srtp != srtp) {
4628 res_srtp->change_source(rtcp_srtp, rtp->ssrc, ssrc);
4629 }
4630 }
4631
4632 rtp->ssrc = ssrc;
4633
4634 /* Since the source is changing, we don't know what sequence number to expect next */
4635 rtp->expectedrxseqno = -1;
4636
4637 return;
4638}
4639
4640static void timeval2ntp(struct timeval tv, unsigned int *msw, unsigned int *lsw)
4641{
4642 unsigned int sec, usec, frac;
4643 sec = tv.tv_sec + 2208988800u; /* Sec between 1900 and 1970 */
4644 usec = tv.tv_usec;
4645 /*
4646 * Convert usec to 0.32 bit fixed point without overflow.
4647 *
4648 * = usec * 2^32 / 10^6
4649 * = usec * 2^32 / (2^6 * 5^6)
4650 * = usec * 2^26 / 5^6
4651 *
4652 * The usec value needs 20 bits to represent 999999 usec. So
4653 * splitting the 2^26 to get the most precision using 32 bit
4654 * values gives:
4655 *
4656 * = ((usec * 2^12) / 5^6) * 2^14
4657 *
4658 * Splitting the division into two stages preserves all the
4659 * available significant bits of usec over doing the division
4660 * all at once.
4661 *
4662 * = ((((usec * 2^12) / 5^3) * 2^7) / 5^3) * 2^7
4663 */
4664 frac = ((((usec << 12) / 125) << 7) / 125) << 7;
4665 *msw = sec;
4666 *lsw = frac;
4667}
4668
4669static void ntp2timeval(unsigned int msw, unsigned int lsw, struct timeval *tv)
4670{
4671 tv->tv_sec = msw - 2208988800u;
4672 /* Reverse the sequence in timeval2ntp() */
4673 tv->tv_usec = ((((lsw >> 7) * 125) >> 7) * 125) >> 12;
4674}
4675
4677 unsigned int *lost_packets,
4678 int *fraction_lost)
4679{
4680 unsigned int extended_seq_no;
4681 unsigned int expected_packets;
4682 unsigned int expected_interval;
4683 unsigned int received_interval;
4684 int lost_interval;
4685
4686 /* Compute statistics */
4687 extended_seq_no = rtp->cycles + rtp->lastrxseqno;
4688 expected_packets = extended_seq_no - rtp->seedrxseqno + 1;
4689 if (rtp->rxcount > expected_packets) {
4690 expected_packets += rtp->rxcount - expected_packets;
4691 }
4692 *lost_packets = expected_packets - rtp->rxcount;
4693 expected_interval = expected_packets - rtp->rtcp->expected_prior;
4694 received_interval = rtp->rxcount - rtp->rtcp->received_prior;
4695 if (received_interval > expected_interval) {
4696 /* If we receive some late packets it is possible for the packets
4697 * we received in this interval to exceed the number we expected.
4698 * We update the expected so that the packet loss calculations
4699 * show that no packets are lost.
4700 */
4701 expected_interval = received_interval;
4702 }
4703 lost_interval = expected_interval - received_interval;
4704 if (expected_interval == 0 || lost_interval <= 0) {
4705 *fraction_lost = 0;
4706 } else {
4707 *fraction_lost = (lost_interval << 8) / expected_interval;
4708 }
4709
4710 /* Update RTCP statistics */
4711 rtp->rtcp->received_prior = rtp->rxcount;
4712 rtp->rtcp->expected_prior = expected_packets;
4713
4714 /*
4715 * While rxlost represents the number of packets lost since the last report was sent, for
4716 * the calculations below it should be thought of as a single sample. Thus min/max are the
4717 * lowest/highest sample value seen, and the mean is the average number of packets lost
4718 * between each report. As such rxlost_count only needs to be incremented per report.
4719 */
4720 if (lost_interval <= 0) {
4721 rtp->rtcp->rxlost = 0;
4722 } else {
4723 rtp->rtcp->rxlost = lost_interval;
4724 }
4725 if (rtp->rtcp->rxlost_count == 0) {
4726 rtp->rtcp->minrxlost = rtp->rtcp->rxlost;
4727 }
4728 if (lost_interval && lost_interval < rtp->rtcp->minrxlost) {
4729 rtp->rtcp->minrxlost = rtp->rtcp->rxlost;
4730 }
4731 if (lost_interval > rtp->rtcp->maxrxlost) {
4732 rtp->rtcp->maxrxlost = rtp->rtcp->rxlost;
4733 }
4734
4735 calc_mean_and_standard_deviation(rtp->rtcp->rxlost, &rtp->rtcp->normdev_rxlost,
4736 &rtp->rtcp->stdev_rxlost, &rtp->rtcp->rxlost_count);
4737}
4738
4739static int ast_rtcp_generate_report(struct ast_rtp_instance *instance, unsigned char *rtcpheader,
4740 struct ast_rtp_rtcp_report *rtcp_report, int *sr)
4741{
4742 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4743 int len = 0;
4744 struct timeval now;
4745 unsigned int now_lsw;
4746 unsigned int now_msw;
4747 unsigned int lost_packets;
4748 int fraction_lost;
4749 struct timeval dlsr = { 0, };
4750 struct ast_rtp_rtcp_report_block *report_block = NULL;
4751
4752 if (!rtp || !rtp->rtcp) {
4753 return 0;
4754 }
4755
4756 if (ast_sockaddr_isnull(&rtp->rtcp->them)) { /* This'll stop rtcp for this rtp session */
4757 /* RTCP was stopped. */
4758 return 0;
4759 }
4760
4761 if (!rtcp_report) {
4762 return 1;
4763 }
4764
4765 *sr = rtp->txcount > rtp->rtcp->lastsrtxcount ? 1 : 0;
4766
4767 /* Compute statistics */
4768 calculate_lost_packet_statistics(rtp, &lost_packets, &fraction_lost);
4769 /*
4770 * update_local_mes_stats must be called AFTER
4771 * calculate_lost_packet_statistics
4772 */
4774
4775 gettimeofday(&now, NULL);
4776 rtcp_report->reception_report_count = rtp->themssrc_valid ? 1 : 0;
4777 rtcp_report->ssrc = rtp->ssrc;
4778 rtcp_report->type = *sr ? RTCP_PT_SR : RTCP_PT_RR;
4779 if (*sr) {
4780 rtcp_report->sender_information.ntp_timestamp = now;
4781 rtcp_report->sender_information.rtp_timestamp = rtp->lastts;
4782 rtcp_report->sender_information.packet_count = rtp->txcount;
4783 rtcp_report->sender_information.octet_count = rtp->txoctetcount;
4784 }
4785
4786 if (rtp->themssrc_valid) {
4787 report_block = ast_calloc(1, sizeof(*report_block));
4788 if (!report_block) {
4789 return 1;
4790 }
4791
4792 rtcp_report->report_block[0] = report_block;
4793 report_block->source_ssrc = rtp->themssrc;
4794 report_block->lost_count.fraction = (fraction_lost & 0xff);
4795 report_block->lost_count.packets = (lost_packets & 0xffffff);
4796 report_block->highest_seq_no = (rtp->cycles | (rtp->lastrxseqno & 0xffff));
4797 report_block->ia_jitter = (unsigned int)rtp->rxjitter_samples;
4798 report_block->lsr = rtp->rtcp->themrxlsr;
4799 /* If we haven't received an SR report, DLSR should be 0 */
4800 if (!ast_tvzero(rtp->rtcp->rxlsr)) {
4801 timersub(&now, &rtp->rtcp->rxlsr, &dlsr);
4802 report_block->dlsr = (((dlsr.tv_sec * 1000) + (dlsr.tv_usec / 1000)) * 65536) / 1000;
4803 }
4804 }
4805 timeval2ntp(rtcp_report->sender_information.ntp_timestamp, &now_msw, &now_lsw);
4806 put_unaligned_uint32(rtcpheader + 4, htonl(rtcp_report->ssrc)); /* Our SSRC */
4807 len += 8;
4808 if (*sr) {
4809 put_unaligned_uint32(rtcpheader + len, htonl(now_msw)); /* now, MSW. gettimeofday() + SEC_BETWEEN_1900_AND_1970 */
4810 put_unaligned_uint32(rtcpheader + len + 4, htonl(now_lsw)); /* now, LSW */
4811 put_unaligned_uint32(rtcpheader + len + 8, htonl(rtcp_report->sender_information.rtp_timestamp));
4812 put_unaligned_uint32(rtcpheader + len + 12, htonl(rtcp_report->sender_information.packet_count));
4813 put_unaligned_uint32(rtcpheader + len + 16, htonl(rtcp_report->sender_information.octet_count));
4814 len += 20;
4815 }
4816 if (report_block) {
4817 put_unaligned_uint32(rtcpheader + len, htonl(report_block->source_ssrc)); /* Their SSRC */
4818 put_unaligned_uint32(rtcpheader + len + 4, htonl((report_block->lost_count.fraction << 24) | report_block->lost_count.packets));
4819 put_unaligned_uint32(rtcpheader + len + 8, htonl(report_block->highest_seq_no));
4820 put_unaligned_uint32(rtcpheader + len + 12, htonl(report_block->ia_jitter));
4821 put_unaligned_uint32(rtcpheader + len + 16, htonl(report_block->lsr));
4822 put_unaligned_uint32(rtcpheader + len + 20, htonl(report_block->dlsr));
4823 len += 24;
4824 }
4825
4826 put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (rtcp_report->reception_report_count << 24)
4827 | ((*sr ? RTCP_PT_SR : RTCP_PT_RR) << 16) | ((len/4)-1)));
4828
4829 return len;
4830}
4831
4833 struct ast_rtp_rtcp_report *rtcp_report, struct ast_sockaddr remote_address, int ice, int sr)
4834{
4835 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4836 struct ast_rtp_rtcp_report_block *report_block = NULL;
4837 RAII_VAR(struct ast_json *, message_blob, NULL, ast_json_unref);
4838
4839 if (!rtp || !rtp->rtcp) {
4840 return 0;
4841 }
4842
4843 if (ast_sockaddr_isnull(&rtp->rtcp->them)) {
4844 return 0;
4845 }
4846
4847 if (!rtcp_report) {
4848 return -1;
4849 }
4850
4851 report_block = rtcp_report->report_block[0];
4852
4853 if (sr) {
4854 rtp->rtcp->txlsr = rtcp_report->sender_information.ntp_timestamp;
4855 rtp->rtcp->sr_count++;
4856 rtp->rtcp->lastsrtxcount = rtp->txcount;
4857 } else {
4858 rtp->rtcp->rr_count++;
4859 }
4860
4861 if (rtcp_debug_test_addr(&rtp->rtcp->them)) {
4862 ast_verbose("* Sent RTCP %s to %s%s\n", sr ? "SR" : "RR",
4863 ast_sockaddr_stringify(&remote_address), ice ? " (via ICE)" : "");
4864 ast_verbose(" Our SSRC: %u\n", rtcp_report->ssrc);
4865 if (sr) {
4866 ast_verbose(" Sent(NTP): %u.%06u\n",
4867 (unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_sec,
4868 (unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_usec);
4869 ast_verbose(" Sent(RTP): %u\n", rtcp_report->sender_information.rtp_timestamp);
4870 ast_verbose(" Sent packets: %u\n", rtcp_report->sender_information.packet_count);
4871 ast_verbose(" Sent octets: %u\n", rtcp_report->sender_information.octet_count);
4872 }
4873 if (report_block) {
4874 int rate = ast_rtp_get_rate(rtp->f.subclass.format);
4875 ast_verbose(" Report block:\n");
4876 ast_verbose(" Their SSRC: %u\n", report_block->source_ssrc);
4877 ast_verbose(" Fraction lost: %d\n", report_block->lost_count.fraction);
4878 ast_verbose(" Cumulative loss: %u\n", report_block->lost_count.packets);
4879 ast_verbose(" Highest seq no: %u\n", report_block->highest_seq_no);
4880 ast_verbose(" IA jitter (samp): %u\n", report_block->ia_jitter);
4881 ast_verbose(" IA jitter (secs): %.6f\n", ast_samp2sec(report_block->ia_jitter, rate));
4882 ast_verbose(" Their last SR: %u\n", report_block->lsr);
4883 ast_verbose(" DLSR: %4.4f (sec)\n\n", (double)(report_block->dlsr / 65536.0));
4884 }
4885 }
4886
4887 message_blob = ast_json_pack("{s: s, s: s, s: f}",
4888 "to", ast_sockaddr_stringify(&remote_address),
4889 "from", rtp->rtcp->local_addr_str,
4890 "mes", rtp->rxmes);
4891
4893 rtcp_report, message_blob);
4894
4895 return 1;
4896}
4897
4898static int ast_rtcp_generate_sdes(struct ast_rtp_instance *instance, unsigned char *rtcpheader,
4899 struct ast_rtp_rtcp_report *rtcp_report)
4900{
4901 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4902 int len = 0;
4903 uint16_t sdes_packet_len_bytes;
4904 uint16_t sdes_packet_len_rounded;
4905
4906 if (!rtp || !rtp->rtcp) {
4907 return 0;
4908 }
4909
4910 if (ast_sockaddr_isnull(&rtp->rtcp->them)) {
4911 return 0;
4912 }
4913
4914 if (!rtcp_report) {
4915 return -1;
4916 }
4917
4918 sdes_packet_len_bytes =
4919 4 + /* RTCP Header */
4920 4 + /* SSRC */
4921 1 + /* Type (CNAME) */
4922 1 + /* Text Length */
4923 AST_UUID_STR_LEN /* Text and NULL terminator */
4924 ;
4925
4926 /* Round to 32 bit boundary */
4927 sdes_packet_len_rounded = (sdes_packet_len_bytes + 3) & ~0x3;
4928
4929 put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (1 << 24) | (RTCP_PT_SDES << 16) | ((sdes_packet_len_rounded / 4) - 1)));
4930 put_unaligned_uint32(rtcpheader + 4, htonl(rtcp_report->ssrc));
4931 rtcpheader[8] = 0x01; /* CNAME */
4932 rtcpheader[9] = AST_UUID_STR_LEN - 1; /* Number of bytes of text */
4933 memcpy(rtcpheader + 10, rtp->cname, AST_UUID_STR_LEN);
4934 len += 10 + AST_UUID_STR_LEN;
4935
4936 /* Padding - Note that we don't set the padded bit on the packet. From
4937 * RFC 3550 Section 6.5:
4938 *
4939 * No length octet follows the null item type octet, but additional null
4940 * octets MUST be included if needd to pad until the next 32-bit
4941 * boundary. Note that this padding is separate from that indicated by
4942 * the P bit in the RTCP header.
4943 *
4944 * These bytes will already be zeroed out during array initialization.
4945 */
4946 len += (sdes_packet_len_rounded - sdes_packet_len_bytes);
4947
4948 return len;
4949}
4950
4951/* Lock instance before calling this if it isn't already
4952 *
4953 * If successful, the overall packet length is returned
4954 * If not, then 0 is returned
4955 */
4956static int ast_rtcp_generate_compound_prefix(struct ast_rtp_instance *instance, unsigned char *rtcpheader,
4957 struct ast_rtp_rtcp_report *report, int *sr)
4958{
4959 int packet_len = 0;
4960 int res;
4961
4962 /* Every RTCP packet needs to be sent out with a SR/RR and SDES prefixing it.
4963 * At the end of this function, rtcpheader should contain both of those packets,
4964 * and will return the length of the overall packet. This can be used to determine
4965 * where further packets can be inserted in the compound packet.
4966 */
4967 res = ast_rtcp_generate_report(instance, rtcpheader, report, sr);
4968
4969 if (res == 0 || res == 1) {
4970 ast_debug_rtcp(1, "(%p) RTCP failed to generate %s report!\n", instance, sr ? "SR" : "RR");
4971 return 0;
4972 }
4973
4974 packet_len += res;
4975
4976 res = ast_rtcp_generate_sdes(instance, rtcpheader + packet_len, report);
4977
4978 if (res == 0 || res == 1) {
4979 ast_debug_rtcp(1, "(%p) RTCP failed to generate SDES!\n", instance);
4980 return 0;
4981 }
4982
4983 return packet_len + res;
4984}
4985
4986static int ast_rtcp_generate_nack(struct ast_rtp_instance *instance, unsigned char *rtcpheader)
4987{
4988 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4989 int packet_len;
4990 int blp_index = -1;
4991 int current_seqno;
4992 unsigned int fci = 0;
4993 size_t remaining_missing_seqno;
4994
4995 if (!rtp || !rtp->rtcp) {
4996 return 0;
4997 }
4998
4999 if (ast_sockaddr_isnull(&rtp->rtcp->them)) {
5000 return 0;
5001 }
5002
5003 current_seqno = rtp->expectedrxseqno;
5004 remaining_missing_seqno = AST_VECTOR_SIZE(&rtp->missing_seqno);
5005 packet_len = 12; /* The header length is 12 (version line, packet source SSRC, media source SSRC) */
5006
5007 /* If there are no missing sequence numbers then don't bother sending a NACK needlessly */
5008 if (!remaining_missing_seqno) {
5009 return 0;
5010 }
5011
5012 /* This iterates through the possible forward sequence numbers seeing which ones we
5013 * have no packet for, adding it to the NACK until we are out of missing packets.
5014 */
5015 while (remaining_missing_seqno) {
5016 int *missing_seqno;
5017
5018 /* On the first entry to this loop blp_index will be -1, so this will become 0
5019 * and the sequence number will be placed into the packet as the PID.
5020 */
5021 blp_index++;
5022
5023 missing_seqno = AST_VECTOR_GET_CMP(&rtp->missing_seqno, current_seqno,
5025 if (missing_seqno) {
5026 /* We hit the max blp size, reset */
5027 if (blp_index >= 17) {
5028 put_unaligned_uint32(rtcpheader + packet_len, htonl(fci));
5029 fci = 0;
5030 blp_index = 0;
5031 packet_len += 4;
5032 }
5033
5034 if (blp_index == 0) {
5035 fci |= (current_seqno << 16);
5036 } else {
5037 fci |= (1 << (blp_index - 1));
5038 }
5039
5040 /* Since we've used a missing sequence number, we're down one */
5041 remaining_missing_seqno--;
5042 }
5043
5044 /* Handle cycling of the sequence number */
5045 current_seqno++;
5046 if (current_seqno == SEQNO_CYCLE_OVER) {
5047 current_seqno = 0;
5048 }
5049 }
5050
5051 put_unaligned_uint32(rtcpheader + packet_len, htonl(fci));
5052 packet_len += 4;
5053
5054 /* Length MUST be 2+n, where n is the number of NACKs. Same as length in words minus 1 */
5055 put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (AST_RTP_RTCP_FMT_NACK << 24)
5056 | (AST_RTP_RTCP_RTPFB << 16) | ((packet_len / 4) - 1)));
5057 put_unaligned_uint32(rtcpheader + 4, htonl(rtp->ssrc));
5058 put_unaligned_uint32(rtcpheader + 8, htonl(rtp->themssrc));
5059
5060 return packet_len;
5061}
5062
5063/*!
5064 * \brief Write a RTCP packet to the far end
5065 *
5066 * \note Decide if we are going to send an SR (with Reception Block) or RR
5067 * RR is sent if we have not sent any rtp packets in the previous interval
5068 *
5069 * Scheduler callback
5070 */
5071static int ast_rtcp_write(const void *data)
5072{
5073 struct ast_rtp_instance *instance = (struct ast_rtp_instance *) data;
5074 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5075 int res;
5076 int sr = 0;
5077 int packet_len = 0;
5078 int ice;
5079 struct ast_sockaddr remote_address = { { 0, } };
5080 unsigned char *rtcpheader;
5081 unsigned char bdata[AST_UUID_STR_LEN + 128] = ""; /* More than enough */
5082 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report, NULL, ao2_cleanup);
5083
5084 if (!rtp || !rtp->rtcp || rtp->rtcp->schedid == -1) {
5085 ao2_ref(instance, -1);
5086 return 0;
5087 }
5088
5089 ao2_lock(instance);
5090 rtcpheader = bdata;
5091 rtcp_report = ast_rtp_rtcp_report_alloc(rtp->themssrc_valid ? 1 : 0);
5092 res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
5093
5094 if (res == 0 || res == 1) {
5095 goto cleanup;
5096 }
5097
5098 packet_len += res;
5099
5100 if (rtp->bundled) {
5101 ast_rtp_instance_get_remote_address(instance, &remote_address);
5102 } else {
5103 ast_sockaddr_copy(&remote_address, &rtp->rtcp->them);
5104 }
5105
5106 res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len, 0, &remote_address, &ice);
5107 if (res < 0) {
5108 ast_log(LOG_ERROR, "RTCP %s transmission error to %s, rtcp halted %s\n",
5109 sr ? "SR" : "RR",
5111 strerror(errno));
5112 res = 0;
5113 } else {
5114 ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, remote_address, ice, sr);
5115 }
5116
5117cleanup:
5118 ao2_unlock(instance);
5119
5120 if (!res) {
5121 /*
5122 * Not being rescheduled.
5123 */
5124 rtp->rtcp->schedid = -1;
5125 ao2_ref(instance, -1);
5126 }
5127
5128 return res;
5129}
5130
5131static void put_unaligned_time24(void *p, uint32_t time_msw, uint32_t time_lsw)
5132{
5133 unsigned char *cp = p;
5134 uint32_t datum;
5135
5136 /* Convert the time to 6.18 format */
5137 datum = (time_msw << 18) & 0x00fc0000;
5138 datum |= (time_lsw >> 14) & 0x0003ffff;
5139
5140 cp[0] = datum >> 16;
5141 cp[1] = datum >> 8;
5142 cp[2] = datum;
5143}
5144
5145/*! \pre instance is locked */
5146static int rtp_raw_write(struct ast_rtp_instance *instance, struct ast_frame *frame, int codec)
5147{
5148 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5149 int pred, mark = 0;
5150 unsigned int ms = calc_txstamp(rtp, &frame->delivery);
5151 struct ast_sockaddr remote_address = { {0,} };
5152 int rate = ast_rtp_get_rate(frame->subclass.format) / 1000;
5153 unsigned int seqno;
5154#ifdef TEST_FRAMEWORK
5155 struct ast_rtp_engine_test *test = ast_rtp_instance_get_test(instance);
5156#endif
5157
5159 frame->samples /= 2;
5160 }
5161
5162 if (rtp->sending_digit) {
5163 return 0;
5164 }
5165
5166#ifdef TEST_FRAMEWORK
5167 if (test && test->send_report) {
5168 test->send_report = 0;
5169 ast_rtcp_write(instance);
5170 return 0;
5171 }
5172#endif
5173
5174 if (frame->frametype == AST_FRAME_VOICE) {
5175 pred = rtp->lastts + frame->samples;
5176
5177 /* Re-calculate last TS */
5178 rtp->lastts = rtp->lastts + ms * rate;
5179 if (ast_tvzero(frame->delivery)) {
5180 /* If this isn't an absolute delivery time, Check if it is close to our prediction,
5181 and if so, go with our prediction */
5182 if (abs((int)rtp->lastts - pred) < MAX_TIMESTAMP_SKEW) {
5183 rtp->lastts = pred;
5184 } else {
5185 ast_debug_rtp(3, "(%p) RTP audio difference is %d, ms is %u\n",
5186 instance, abs((int)rtp->lastts - pred), ms);
5187 mark = 1;
5188 }
5189 }
5190 } else if (frame->frametype == AST_FRAME_VIDEO) {
5191 mark = frame->subclass.frame_ending;
5192 pred = rtp->lastovidtimestamp + frame->samples;
5193 /* Re-calculate last TS */
5194 rtp->lastts = rtp->lastts + ms * 90;
5195 /* If it's close to our prediction, go for it */
5196 if (ast_tvzero(frame->delivery)) {
5197 if (abs((int)rtp->lastts - pred) < 7200) {
5198 rtp->lastts = pred;
5199 rtp->lastovidtimestamp += frame->samples;
5200 } else {
5201 ast_debug_rtp(3, "(%p) RTP video difference is %d, ms is %u (%u), pred/ts/samples %u/%d/%d\n",
5202 instance, abs((int)rtp->lastts - pred), ms, ms * 90, rtp->lastts, pred, frame->samples);
5203 rtp->lastovidtimestamp = rtp->lastts;
5204 }
5205 }
5206 } else {
5207 pred = rtp->lastotexttimestamp + frame->samples;
5208 /* Re-calculate last TS */
5209 rtp->lastts = rtp->lastts + ms;
5210 /* If it's close to our prediction, go for it */
5211 if (ast_tvzero(frame->delivery)) {
5212 if (abs((int)rtp->lastts - pred) < 7200) {
5213 rtp->lastts = pred;
5214 rtp->lastotexttimestamp += frame->samples;
5215 } else {
5216 ast_debug_rtp(3, "(%p) RTP other difference is %d, ms is %u, pred/ts/samples %u/%d/%d\n",
5217 instance, abs((int)rtp->lastts - pred), ms, rtp->lastts, pred, frame->samples);
5218 rtp->lastotexttimestamp = rtp->lastts;
5219 }
5220 }
5221 }
5222
5223 /* If we have been explicitly told to set the marker bit then do so */
5225 mark = 1;
5227 }
5228
5229 /* If the timestamp for non-digt packets has moved beyond the timestamp for digits, update the digit timestamp */
5230 if (rtp->lastts > rtp->lastdigitts) {
5231 rtp->lastdigitts = rtp->lastts;
5232 }
5233
5234 /* Assume that the sequence number we expect to use is what will be used until proven otherwise */
5235 seqno = rtp->seqno;
5236
5237 /* If the frame contains sequence number information use it to influence our sequence number */
5239 if (rtp->expectedseqno != -1) {
5240 /* Determine where the frame from the core is in relation to where we expected */
5241 int difference = frame->seqno - rtp->expectedseqno;
5242
5243 /* If there is a substantial difference then we've either got packets really out
5244 * of order, or the source is RTP and it has cycled. If this happens we resync
5245 * the sequence number adjustments to this frame. If we also have packet loss
5246 * things won't be reflected correctly but it will sort itself out after a bit.
5247 */
5248 if (abs(difference) > 100) {
5249 difference = 0;
5250 }
5251
5252 /* Adjust the sequence number being used for this packet accordingly */
5253 seqno += difference;
5254
5255 if (difference >= 0) {
5256 /* This frame is on time or in the future */
5257 rtp->expectedseqno = frame->seqno + 1;
5258 rtp->seqno += difference;
5259 }
5260 } else {
5261 /* This is the first frame with sequence number we've seen, so start keeping track */
5262 rtp->expectedseqno = frame->seqno + 1;
5263 }
5264 } else {
5265 rtp->expectedseqno = -1;
5266 }
5267
5269 rtp->lastts = frame->ts * rate;
5270 }
5271
5272 ast_rtp_instance_get_remote_address(instance, &remote_address);
5273
5274 /* If we know the remote address construct a packet and send it out */
5275 if (!ast_sockaddr_isnull(&remote_address)) {
5276 int hdrlen = 12;
5277 int res;
5278 int ice;
5279 int ext = 0;
5280 int abs_send_time_id;
5281 int packet_len;
5282 unsigned char *rtpheader;
5283
5284 /* If the abs-send-time extension has been negotiated determine how much space we need */
5286 if (abs_send_time_id != -1) {
5287 /* 4 bytes for the shared information, 1 byte for identifier, 3 bytes for abs-send-time */
5288 hdrlen += 8;
5289 ext = 1;
5290 }
5291
5292 packet_len = frame->datalen + hdrlen;
5293 rtpheader = (unsigned char *)(frame->data.ptr - hdrlen);
5294
5295 put_unaligned_uint32(rtpheader, htonl((2 << 30) | (ext << 28) | (codec << 16) | (seqno) | (mark << 23)));
5296 put_unaligned_uint32(rtpheader + 4, htonl(rtp->lastts));
5297 put_unaligned_uint32(rtpheader + 8, htonl(rtp->ssrc));
5298
5299 /* We assume right now that we will only ever have the abs-send-time extension in the packet
5300 * which simplifies things a bit.
5301 */
5302 if (abs_send_time_id != -1) {
5303 unsigned int now_msw;
5304 unsigned int now_lsw;
5305
5306 /* This happens before being placed into the retransmission buffer so that when we
5307 * retransmit we only have to update the timestamp, not everything else.
5308 */
5309 put_unaligned_uint32(rtpheader + 12, htonl((0xBEDE << 16) | 1));
5310 rtpheader[16] = (abs_send_time_id << 4) | 2;
5311
5312 timeval2ntp(ast_tvnow(), &now_msw, &now_lsw);
5313 put_unaligned_time24(rtpheader + 17, now_msw, now_lsw);
5314 }
5315
5316 /* If retransmissions are enabled, we need to store this packet for future use */
5317 if (rtp->send_buffer) {
5318 struct ast_rtp_rtcp_nack_payload *payload;
5319
5320 payload = ast_malloc(sizeof(*payload) + packet_len);
5321 if (payload) {
5322 payload->size = packet_len;
5323 memcpy(payload->buf, rtpheader, packet_len);
5324 if (ast_data_buffer_put(rtp->send_buffer, rtp->seqno, payload) == -1) {
5325 ast_free(payload);
5326 }
5327 }
5328 }
5329
5330 res = rtp_sendto(instance, (void *)rtpheader, packet_len, 0, &remote_address, &ice);
5331 if (res < 0) {
5333 ast_debug_rtp(1, "(%p) RTP transmission error of packet %d to %s: %s\n",
5334 instance, rtp->seqno,
5335 ast_sockaddr_stringify(&remote_address),
5336 strerror(errno));
5338 /* Only give this error message once if we are not RTP debugging */
5340 ast_debug(0, "(%p) RTP NAT: Can't write RTP to private address %s, waiting for other end to send audio...\n",
5341 instance, ast_sockaddr_stringify(&remote_address));
5343 }
5344 } else {
5345 if (rtp->rtcp && rtp->rtcp->schedid < 0) {
5346 ast_debug_rtcp(2, "(%s) RTCP starting transmission in %u ms\n",
5348 ao2_ref(instance, +1);
5350 if (rtp->rtcp->schedid < 0) {
5351 ao2_ref(instance, -1);
5352 ast_log(LOG_WARNING, "scheduling RTCP transmission failed.\n");
5353 }
5354 }
5355 }
5356
5357 if (rtp_debug_test_addr(&remote_address)) {
5358 ast_verbose("Sent RTP packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
5359 ast_sockaddr_stringify(&remote_address),
5360 ice ? " (via ICE)" : "",
5361 codec, rtp->seqno, rtp->lastts, res - hdrlen);
5362 }
5363 }
5364
5365 /* If the sequence number that has been used doesn't match what we expected then this is an out of
5366 * order late packet, so we don't need to increment as we haven't yet gotten the expected frame from
5367 * the core.
5368 */
5369 if (seqno == rtp->seqno) {
5370 rtp->seqno++;
5371 }
5372
5373 return 0;
5374}
5375
5376static struct ast_frame *red_t140_to_red(struct rtp_red *red)
5377{
5378 unsigned char *data = red->t140red.data.ptr;
5379 int len = 0;
5380 int i;
5381
5382 /* replace most aged generation */
5383 if (red->len[0]) {
5384 for (i = 1; i < red->num_gen+1; i++)
5385 len += red->len[i];
5386
5387 memmove(&data[red->hdrlen], &data[red->hdrlen+red->len[0]], len);
5388 }
5389
5390 /* Store length of each generation and primary data length*/
5391 for (i = 0; i < red->num_gen; i++)
5392 red->len[i] = red->len[i+1];
5393 red->len[i] = red->t140.datalen;
5394
5395 /* write each generation length in red header */
5396 len = red->hdrlen;
5397 for (i = 0; i < red->num_gen; i++) {
5398 len += data[i*4+3] = red->len[i];
5399 }
5400
5401 /* add primary data to buffer */
5402 memcpy(&data[len], red->t140.data.ptr, red->t140.datalen);
5403 red->t140red.datalen = len + red->t140.datalen;
5404
5405 /* no primary data and no generations to send */
5406 if (len == red->hdrlen && !red->t140.datalen) {
5407 return NULL;
5408 }
5409
5410 /* reset t.140 buffer */
5411 red->t140.datalen = 0;
5412
5413 return &red->t140red;
5414}
5415
5416static void rtp_write_rtcp_fir(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_sockaddr *remote_address)
5417{
5418 unsigned char *rtcpheader;
5419 unsigned char bdata[1024];
5420 int packet_len = 0;
5421 int fir_len = 20;
5422 int ice;
5423 int res;
5424 int sr;
5425 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report, NULL, ao2_cleanup);
5426
5427 if (!rtp || !rtp->rtcp) {
5428 return;
5429 }
5430
5431 if (ast_sockaddr_isnull(&rtp->rtcp->them) || rtp->rtcp->schedid < 0) {
5432 /*
5433 * RTCP was stopped.
5434 */
5435 return;
5436 }
5437
5438 if (!rtp->themssrc_valid) {
5439 /* We don't know their SSRC value so we don't know who to update. */
5440 return;
5441 }
5442
5443 /* Prepare RTCP FIR (PT=206, FMT=4) */
5444 rtp->rtcp->firseq++;
5445 if(rtp->rtcp->firseq == 256) {
5446 rtp->rtcp->firseq = 0;
5447 }
5448
5449 rtcpheader = bdata;
5450
5451 ao2_lock(instance);
5452 rtcp_report = ast_rtp_rtcp_report_alloc(rtp->themssrc_valid ? 1 : 0);
5453 res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
5454
5455 if (res == 0 || res == 1) {
5456 ao2_unlock(instance);
5457 return;
5458 }
5459
5460 packet_len += res;
5461
5462 put_unaligned_uint32(rtcpheader + packet_len + 0, htonl((2 << 30) | (4 << 24) | (RTCP_PT_PSFB << 16) | ((fir_len/4)-1)));
5463 put_unaligned_uint32(rtcpheader + packet_len + 4, htonl(rtp->ssrc));
5464 put_unaligned_uint32(rtcpheader + packet_len + 8, htonl(rtp->themssrc));
5465 put_unaligned_uint32(rtcpheader + packet_len + 12, htonl(rtp->themssrc)); /* FCI: SSRC */
5466 put_unaligned_uint32(rtcpheader + packet_len + 16, htonl(rtp->rtcp->firseq << 24)); /* FCI: Sequence number */
5467 res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len + fir_len, 0, rtp->bundled ? remote_address : &rtp->rtcp->them, &ice);
5468 if (res < 0) {
5469 ast_log(LOG_ERROR, "RTCP FIR transmission error: %s\n", strerror(errno));
5470 } else {
5471 ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, rtp->bundled ? *remote_address : rtp->rtcp->them, ice, sr);
5472 }
5473
5474 ao2_unlock(instance);
5475}
5476
5477static void rtp_write_rtcp_psfb(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_frame *frame, struct ast_sockaddr *remote_address)
5478{
5479 struct ast_rtp_rtcp_feedback *feedback = frame->data.ptr;
5480 unsigned char *rtcpheader;
5481 unsigned char bdata[1024];
5482 int remb_len = 24;
5483 int ice;
5484 int res;
5485 int sr = 0;
5486 int packet_len = 0;
5487 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report, NULL, ao2_cleanup);
5488
5489 if (feedback->fmt != AST_RTP_RTCP_FMT_REMB) {
5490 ast_debug_rtcp(1, "(%p) RTCP provided feedback frame of format %d to write, but only REMB is supported\n",
5491 instance, feedback->fmt);
5492 return;
5493 }
5494
5495 if (!rtp || !rtp->rtcp) {
5496 return;
5497 }
5498
5499 /* If REMB support is not enabled don't send this RTCP packet */
5501 ast_debug_rtcp(1, "(%p) RTCP provided feedback REMB report to write, but REMB support not enabled\n",
5502 instance);
5503 return;
5504 }
5505
5506 if (ast_sockaddr_isnull(&rtp->rtcp->them) || rtp->rtcp->schedid < 0) {
5507 /*
5508 * RTCP was stopped.
5509 */
5510 return;
5511 }
5512
5513 rtcpheader = bdata;
5514
5515 ao2_lock(instance);
5516 rtcp_report = ast_rtp_rtcp_report_alloc(rtp->themssrc_valid ? 1 : 0);
5517 res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
5518
5519 if (res == 0 || res == 1) {
5520 ao2_unlock(instance);
5521 return;
5522 }
5523
5524 packet_len += res;
5525
5526 put_unaligned_uint32(rtcpheader + packet_len + 0, htonl((2 << 30) | (AST_RTP_RTCP_FMT_REMB << 24) | (RTCP_PT_PSFB << 16) | ((remb_len/4)-1)));
5527 put_unaligned_uint32(rtcpheader + packet_len + 4, htonl(rtp->ssrc));
5528 put_unaligned_uint32(rtcpheader + packet_len + 8, htonl(0)); /* Per the draft, this should always be 0 */
5529 put_unaligned_uint32(rtcpheader + packet_len + 12, htonl(('R' << 24) | ('E' << 16) | ('M' << 8) | ('B'))); /* Unique identifier 'R' 'E' 'M' 'B' */
5530 put_unaligned_uint32(rtcpheader + packet_len + 16, htonl((1 << 24) | (feedback->remb.br_exp << 18) | (feedback->remb.br_mantissa))); /* Number of SSRCs / BR Exp / BR Mantissa */
5531 put_unaligned_uint32(rtcpheader + packet_len + 20, htonl(rtp->ssrc)); /* The SSRC this feedback message applies to */
5532 res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len + remb_len, 0, rtp->bundled ? remote_address : &rtp->rtcp->them, &ice);
5533 if (res < 0) {
5534 ast_log(LOG_ERROR, "RTCP PSFB transmission error: %s\n", strerror(errno));
5535 } else {
5536 ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, rtp->bundled ? *remote_address : rtp->rtcp->them, ice, sr);
5537 }
5538
5539 ao2_unlock(instance);
5540}
5541
5542/*! \pre instance is locked */
5543static int ast_rtp_write(struct ast_rtp_instance *instance, struct ast_frame *frame)
5544{
5545 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5546 struct ast_sockaddr remote_address = { {0,} };
5547 struct ast_format *format;
5548 int codec;
5549
5550 ast_rtp_instance_get_remote_address(instance, &remote_address);
5551
5552 /* If we don't actually know the remote address don't even bother doing anything */
5553 if (ast_sockaddr_isnull(&remote_address)) {
5554 ast_debug_rtp(1, "(%p) RTP no remote address on instance, so dropping frame\n", instance);
5555 return 0;
5556 }
5557
5558 /* VP8: is this a request to send a RTCP FIR? */
5560 rtp_write_rtcp_fir(instance, rtp, &remote_address);
5561 return 0;
5562 } else if (frame->frametype == AST_FRAME_RTCP) {
5563 if (frame->subclass.integer == AST_RTP_RTCP_PSFB) {
5564 rtp_write_rtcp_psfb(instance, rtp, frame, &remote_address);
5565 }
5566 return 0;
5567 }
5568
5569 /* If there is no data length we can't very well send the packet */
5570 if (!frame->datalen) {
5571 ast_debug_rtp(1, "(%p) RTP received frame with no data for instance, so dropping frame\n", instance);
5572 return 0;
5573 }
5574
5575 /* If the packet is not one our RTP stack supports bail out */
5576 if (frame->frametype != AST_FRAME_VOICE && frame->frametype != AST_FRAME_VIDEO && frame->frametype != AST_FRAME_TEXT) {
5577 ast_log(LOG_WARNING, "RTP can only send voice, video, and text\n");
5578 return -1;
5579 }
5580
5581 if (rtp->red) {
5582 /* return 0; */
5583 /* no primary data or generations to send */
5584 if ((frame = red_t140_to_red(rtp->red)) == NULL)
5585 return 0;
5586 }
5587
5588 /* Grab the subclass and look up the payload we are going to use */
5590 1, frame->subclass.format, 0);
5591 if (codec < 0) {
5592 ast_log(LOG_WARNING, "Don't know how to send format %s packets with RTP\n",
5594 return -1;
5595 }
5596
5597 /* Note that we do not increase the ref count here as this pointer
5598 * will not be held by any thing explicitly. The format variable is
5599 * merely a convenience reference to frame->subclass.format */
5600 format = frame->subclass.format;
5602 /* Oh dear, if the format changed we will have to set up a new smoother */
5603 ast_debug_rtp(1, "(%s) RTP ooh, format changed from %s to %s\n",
5607 ao2_replace(rtp->lasttxformat, format);
5608 if (rtp->smoother) {
5610 rtp->smoother = NULL;
5611 }
5612 }
5613
5614 /* If no smoother is present see if we have to set one up */
5615 if (!rtp->smoother && ast_format_can_be_smoothed(format)) {
5616 unsigned int smoother_flags = ast_format_get_smoother_flags(format);
5617 unsigned int framing_ms = ast_rtp_codecs_get_framing(ast_rtp_instance_get_codecs(instance));
5618
5619 if (!framing_ms && (smoother_flags & AST_SMOOTHER_FLAG_FORCED)) {
5620 framing_ms = ast_format_get_default_ms(format);
5621 }
5622
5623 if (framing_ms) {
5625 if (!rtp->smoother) {
5626 ast_log(LOG_WARNING, "Unable to create smoother: format %s ms: %u len: %u\n",
5627 ast_format_get_name(format), framing_ms, ast_format_get_minimum_bytes(format));
5628 return -1;
5629 }
5630 ast_smoother_set_flags(rtp->smoother, smoother_flags);
5631 }
5632 }
5633
5634 /* Feed audio frames into the actual function that will create a frame and send it */
5635 if (rtp->smoother) {
5636 struct ast_frame *f;
5637
5639 ast_smoother_feed_be(rtp->smoother, frame);
5640 } else {
5641 ast_smoother_feed(rtp->smoother, frame);
5642 }
5643
5644 while ((f = ast_smoother_read(rtp->smoother)) && (f->data.ptr)) {
5645 rtp_raw_write(instance, f, codec);
5646 }
5647 } else {
5648 int hdrlen = 12;
5649 struct ast_frame *f = NULL;
5650
5651 if (frame->offset < hdrlen) {
5652 f = ast_frdup(frame);
5653 } else {
5654 f = frame;
5655 }
5656 if (f->data.ptr) {
5657 rtp_raw_write(instance, f, codec);
5658 }
5659 if (f != frame) {
5660 ast_frfree(f);
5661 }
5662
5663 }
5664
5665 return 0;
5666}
5667
5668static void calc_rxstamp_and_jitter(struct timeval *tv,
5669 struct ast_rtp *rtp, unsigned int rx_rtp_ts,
5670 int mark)
5671{
5672 int rate = ast_rtp_get_rate(rtp->f.subclass.format);
5673
5674 double jitter = 0.0;
5675 double prev_jitter = 0.0;
5676 struct timeval now;
5677 struct timeval tmp;
5678 double rxnow;
5679 double arrival_sec;
5680 unsigned int arrival;
5681 int transit;
5682 int d;
5683
5684 gettimeofday(&now,NULL);
5685
5686 if (rtp->rxcount == 1 || mark) {
5687 rtp->rxstart = ast_tv2double(&now);
5688 rtp->remote_seed_rx_rtp_ts = rx_rtp_ts;
5689
5690 /*
5691 * "tv" is placed in the received frame's
5692 * "delivered" field and when this frame is
5693 * sent out again on the other side, it's
5694 * used to calculate the timestamp on the
5695 * outgoing RTP packets.
5696 *
5697 * NOTE: We need to do integer math here
5698 * because double math rounding issues can
5699 * generate incorrect timestamps.
5700 */
5701 rtp->rxcore = now;
5702 tmp = ast_samp2tv(rx_rtp_ts, rate);
5703 rtp->rxcore = ast_tvsub(rtp->rxcore, tmp);
5704 rtp->rxcore.tv_usec -= rtp->rxcore.tv_usec % 100;
5705 *tv = ast_tvadd(rtp->rxcore, tmp);
5706
5707 ast_debug_rtcp(3, "%s: "
5708 "Seed ts: %u current time: %f\n",
5710 , rx_rtp_ts
5711 , rtp->rxstart
5712 );
5713
5714 return;
5715 }
5716
5717 tmp = ast_samp2tv(rx_rtp_ts, rate);
5718 /* See the comment about "tv" above. Even if
5719 * we don't use this received packet for jitter
5720 * calculations, we still need to set tv so the
5721 * timestamp will be correct when this packet is
5722 * sent out again.
5723 */
5724 *tv = ast_tvadd(rtp->rxcore, tmp);
5725
5726 /*
5727 * The first few packets are generally unstable so let's
5728 * not use them in the calculations.
5729 */
5731 ast_debug_rtcp(3, "%s: Packet %d < %d. Ignoring\n",
5733 , rtp->rxcount
5735 );
5736
5737 return;
5738 }
5739
5740 /*
5741 * First good packet. Capture the start time and timestamp
5742 * but don't actually use this packet for calculation.
5743 */
5745 rtp->rxstart_stable = ast_tv2double(&now);
5746 rtp->remote_seed_rx_rtp_ts_stable = rx_rtp_ts;
5747 rtp->last_transit_time_samples = -rx_rtp_ts;
5748
5749 ast_debug_rtcp(3, "%s: "
5750 "pkt: %5u Stable Seed ts: %u current time: %f\n",
5752 , rtp->rxcount
5753 , rx_rtp_ts
5754 , rtp->rxstart_stable
5755 );
5756
5757 return;
5758 }
5759
5760 /*
5761 * If the current packet isn't in sequence, don't
5762 * use it in any calculations as remote_current_rx_rtp_ts
5763 * is not going to be correct.
5764 */
5765 if (rtp->lastrxseqno != rtp->prevrxseqno + 1) {
5766 ast_debug_rtcp(3, "%s: Current packet seq %d != last packet seq %d + 1. Ignoring\n",
5768 , rtp->lastrxseqno
5769 , rtp->prevrxseqno
5770 );
5771
5772 return;
5773 }
5774
5775 /*
5776 * The following calculations are taken from
5777 * https://www.rfc-editor.org/rfc/rfc3550#appendix-A.8
5778 *
5779 * The received rtp timestamp is the random "seed"
5780 * timestamp chosen by the sender when they sent the
5781 * first packet, plus the number of samples since then.
5782 *
5783 * To get our arrival time in the same units, we
5784 * calculate the time difference in seconds between
5785 * when we received the first packet and when we
5786 * received this packet and convert that to samples.
5787 */
5788 rxnow = ast_tv2double(&now);
5789 arrival_sec = rxnow - rtp->rxstart_stable;
5790 arrival = ast_sec2samp(arrival_sec, rate);
5791
5792 /*
5793 * Now we can use the exact formula in
5794 * https://www.rfc-editor.org/rfc/rfc3550#appendix-A.8 :
5795 *
5796 * int transit = arrival - r->ts;
5797 * int d = transit - s->transit;
5798 * s->transit = transit;
5799 * if (d < 0) d = -d;
5800 * s->jitter += (1./16.) * ((double)d - s->jitter);
5801 *
5802 * Our rx_rtp_ts is their r->ts.
5803 * Our rtp->last_transit_time_samples is their s->transit.
5804 * Our rtp->rxjitter is their s->jitter.
5805 */
5806 transit = arrival - rx_rtp_ts;
5807 d = transit - rtp->last_transit_time_samples;
5808
5809 if (d < 0) {
5810 d = -d;
5811 }
5812
5813 prev_jitter = rtp->rxjitter_samples;
5814 jitter = (1.0/16.0) * (((double)d) - prev_jitter);
5815 rtp->rxjitter_samples = prev_jitter + jitter;
5816
5817 /*
5818 * We need to hang on to jitter in both samples and seconds.
5819 */
5820 rtp->rxjitter = ast_samp2sec(rtp->rxjitter_samples, rate);
5821
5822 ast_debug_rtcp(3, "%s: pkt: %5u "
5823 "Arrival sec: %7.3f Arrival ts: %10u RX ts: %10u "
5824 "Transit samp: %6d Last transit samp: %6d d: %4d "
5825 "Curr jitter: %7.0f(%7.3f) Prev Jitter: %7.0f(%7.3f) New Jitter: %7.0f(%7.3f)\n",
5827 , rtp->rxcount
5828 , arrival_sec
5829 , arrival
5830 , rx_rtp_ts
5831 , transit
5833 , d
5834 , jitter
5835 , ast_samp2sec(jitter, rate)
5836 , prev_jitter
5837 , ast_samp2sec(prev_jitter, rate)
5838 , rtp->rxjitter_samples
5839 , rtp->rxjitter
5840 );
5841
5842 rtp->last_transit_time_samples = transit;
5843
5844 /*
5845 * Update all the stats.
5846 */
5847 if (rtp->rtcp) {
5848 if (rtp->rxjitter > rtp->rtcp->maxrxjitter)
5849 rtp->rtcp->maxrxjitter = rtp->rxjitter;
5850 if (rtp->rtcp->rxjitter_count == 1)
5851 rtp->rtcp->minrxjitter = rtp->rxjitter;
5852 if (rtp->rtcp && rtp->rxjitter < rtp->rtcp->minrxjitter)
5853 rtp->rtcp->minrxjitter = rtp->rxjitter;
5854
5857 &rtp->rtcp->rxjitter_count);
5858 }
5859
5860 return;
5861}
5862
5863static struct ast_frame *create_dtmf_frame(struct ast_rtp_instance *instance, enum ast_frame_type type, int compensate)
5864{
5865 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5866 struct ast_sockaddr remote_address = { {0,} };
5867
5868 ast_rtp_instance_get_remote_address(instance, &remote_address);
5869
5870 if (((compensate && type == AST_FRAME_DTMF_END) || (type == AST_FRAME_DTMF_BEGIN)) && ast_tvcmp(ast_tvnow(), rtp->dtmfmute) < 0) {
5871 ast_debug_rtp(1, "(%p) RTP ignore potential DTMF echo from '%s'\n",
5872 instance, ast_sockaddr_stringify(&remote_address));
5873 rtp->resp = 0;
5874 rtp->dtmfsamples = 0;
5875 return &ast_null_frame;
5876 } else if (type == AST_FRAME_DTMF_BEGIN && rtp->resp == 'X') {
5877 ast_debug_rtp(1, "(%p) RTP ignore flash begin from '%s'\n",
5878 instance, ast_sockaddr_stringify(&remote_address));
5879 rtp->resp = 0;
5880 rtp->dtmfsamples = 0;
5881 return &ast_null_frame;
5882 }
5883
5884 if (rtp->resp == 'X') {
5885 ast_debug_rtp(1, "(%p) RTP creating flash Frame at %s\n",
5886 instance, ast_sockaddr_stringify(&remote_address));
5889 } else {
5890 ast_debug_rtp(1, "(%p) RTP creating %s DTMF Frame: %d (%c), at %s\n",
5891 instance, type == AST_FRAME_DTMF_END ? "END" : "BEGIN",
5892 rtp->resp, rtp->resp,
5893 ast_sockaddr_stringify(&remote_address));
5894 rtp->f.frametype = type;
5895 rtp->f.subclass.integer = rtp->resp;
5896 }
5897 rtp->f.datalen = 0;
5898 rtp->f.samples = 0;
5899 rtp->f.mallocd = 0;
5900 rtp->f.src = "RTP";
5901 AST_LIST_NEXT(&rtp->f, frame_list) = NULL;
5902
5903 return &rtp->f;
5904}
5905
5906static void process_dtmf_rfc2833(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark, struct frame_list *frames)
5907{
5908 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5909 struct ast_sockaddr remote_address = { {0,} };
5910 unsigned int event, event_end, samples;
5911 char resp = 0;
5912 struct ast_frame *f = NULL;
5913
5914 ast_rtp_instance_get_remote_address(instance, &remote_address);
5915
5916 /* Figure out event, event end, and samples */
5917 event = ntohl(*((unsigned int *)(data)));
5918 event >>= 24;
5919 event_end = ntohl(*((unsigned int *)(data)));
5920 event_end <<= 8;
5921 event_end >>= 24;
5922 samples = ntohl(*((unsigned int *)(data)));
5923 samples &= 0xFFFF;
5924
5925 if (rtp_debug_test_addr(&remote_address)) {
5926 ast_verbose("Got RTP RFC2833 from %s (type %-2.2d, seq %-6.6u, ts %-6.6u, len %-6.6d, mark %d, event %08x, end %d, duration %-5.5u) \n",
5927 ast_sockaddr_stringify(&remote_address),
5928 payloadtype, seqno, timestamp, len, (mark?1:0), event, ((event_end & 0x80)?1:0), samples);
5929 }
5930
5931 /* Print out debug if turned on */
5933 ast_debug(0, "- RTP 2833 Event: %08x (len = %d)\n", event, len);
5934
5935 /* Figure out what digit was pressed */
5936 if (event < 10) {
5937 resp = '0' + event;
5938 } else if (event < 11) {
5939 resp = '*';
5940 } else if (event < 12) {
5941 resp = '#';
5942 } else if (event < 16) {
5943 resp = 'A' + (event - 12);
5944 } else if (event < 17) { /* Event 16: Hook flash */
5945 resp = 'X';
5946 } else {
5947 /* Not a supported event */
5948 ast_debug_rtp(1, "(%p) RTP ignoring RTP 2833 Event: %08x. Not a DTMF Digit.\n", instance, event);
5949 return;
5950 }
5951
5953 if (!rtp->last_end_timestamp.is_set || rtp->last_end_timestamp.ts != timestamp || (rtp->resp && rtp->resp != resp)) {
5954 rtp->resp = resp;
5955 rtp->dtmf_timeout = 0;
5957 f->len = 0;
5958 rtp->last_end_timestamp.ts = timestamp;
5959 rtp->last_end_timestamp.is_set = 1;
5961 }
5962 } else {
5963 /* The duration parameter measures the complete
5964 duration of the event (from the beginning) - RFC2833.
5965 Account for the fact that duration is only 16 bits long
5966 (about 8 seconds at 8000 Hz) and can wrap is digit
5967 is hold for too long. */
5968 unsigned int new_duration = rtp->dtmf_duration;
5969 unsigned int last_duration = new_duration & 0xFFFF;
5970
5971 if (last_duration > 64000 && samples < last_duration) {
5972 new_duration += 0xFFFF + 1;
5973 }
5974 new_duration = (new_duration & ~0xFFFF) | samples;
5975
5976 if (event_end & 0x80) {
5977 /* End event */
5978 if (rtp->last_seqno != seqno && (!rtp->last_end_timestamp.is_set || timestamp > rtp->last_end_timestamp.ts)) {
5979 rtp->last_end_timestamp.ts = timestamp;
5980 rtp->last_end_timestamp.is_set = 1;
5981 rtp->dtmf_duration = new_duration;
5982 rtp->resp = resp;
5985 rtp->resp = 0;
5986 rtp->dtmf_duration = rtp->dtmf_timeout = 0;
5989 ast_debug_rtp(1, "(%p) RTP dropping duplicate or out of order DTMF END frame (seqno: %u, ts %u, digit %c)\n",
5990 instance, seqno, timestamp, resp);
5991 }
5992 } else {
5993 /* Begin/continuation */
5994
5995 /* The second portion of the seqno check is to not mistakenly
5996 * stop accepting DTMF if the seqno rolls over beyond
5997 * 65535.
5998 */
5999 if ((rtp->last_seqno > seqno && rtp->last_seqno - seqno < 50)
6000 || (rtp->last_end_timestamp.is_set
6001 && timestamp <= rtp->last_end_timestamp.ts)) {
6002 /* Out of order frame. Processing this can cause us to
6003 * improperly duplicate incoming DTMF, so just drop
6004 * this.
6005 */
6007 ast_debug(0, "Dropping out of order DTMF frame (seqno %u, ts %u, digit %c)\n",
6008 seqno, timestamp, resp);
6009 }
6010 return;
6011 }
6012
6013 if (rtp->resp && rtp->resp != resp) {
6014 /* Another digit already began. End it */
6017 rtp->resp = 0;
6018 rtp->dtmf_duration = rtp->dtmf_timeout = 0;
6020 }
6021
6022 if (rtp->resp) {
6023 /* Digit continues */
6024 rtp->dtmf_duration = new_duration;
6025 } else {
6026 /* New digit began */
6027 rtp->resp = resp;
6029 rtp->dtmf_duration = samples;
6031 }
6032
6033 rtp->dtmf_timeout = timestamp + rtp->dtmf_duration + dtmftimeout;
6034 }
6035
6036 rtp->last_seqno = seqno;
6037 }
6038
6039 rtp->dtmfsamples = samples;
6040
6041 return;
6042}
6043
6044static struct ast_frame *process_dtmf_cisco(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
6045{
6046 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
6047 unsigned int event, flags, power;
6048 char resp = 0;
6049 unsigned char seq;
6050 struct ast_frame *f = NULL;
6051
6052 if (len < 4) {
6053 return NULL;
6054 }
6055
6056 /* The format of Cisco RTP DTMF packet looks like next:
6057 +0 - sequence number of DTMF RTP packet (begins from 1,
6058 wrapped to 0)
6059 +1 - set of flags
6060 +1 (bit 0) - flaps by different DTMF digits delimited by audio
6061 or repeated digit without audio???
6062 +2 (+4,+6,...) - power level? (rises from 0 to 32 at begin of tone
6063 then falls to 0 at its end)
6064 +3 (+5,+7,...) - detected DTMF digit (0..9,*,#,A-D,...)
6065 Repeated DTMF information (bytes 4/5, 6/7) is history shifted right
6066 by each new packet and thus provides some redundancy.
6067
6068 Sample of Cisco RTP DTMF packet is (all data in hex):
6069 19 07 00 02 12 02 20 02
6070 showing end of DTMF digit '2'.
6071
6072 The packets
6073 27 07 00 02 0A 02 20 02
6074 28 06 20 02 00 02 0A 02
6075 shows begin of new digit '2' with very short pause (20 ms) after
6076 previous digit '2'. Bit +1.0 flips at begin of new digit.
6077
6078 Cisco RTP DTMF packets comes as replacement of audio RTP packets
6079 so its uses the same sequencing and timestamping rules as replaced
6080 audio packets. Repeat interval of DTMF packets is 20 ms and not rely
6081 on audio framing parameters. Marker bit isn't used within stream of
6082 DTMFs nor audio stream coming immediately after DTMF stream. Timestamps
6083 are not sequential at borders between DTMF and audio streams,
6084 */
6085
6086 seq = data[0];
6087 flags = data[1];
6088 power = data[2];
6089 event = data[3] & 0x1f;
6090
6092 ast_debug(0, "Cisco DTMF Digit: %02x (len=%d, seq=%d, flags=%02x, power=%u, history count=%d)\n", event, len, seq, flags, power, (len - 4) / 2);
6093 if (event < 10) {
6094 resp = '0' + event;
6095 } else if (event < 11) {
6096 resp = '*';
6097 } else if (event < 12) {
6098 resp = '#';
6099 } else if (event < 16) {
6100 resp = 'A' + (event - 12);
6101 } else if (event < 17) {
6102 resp = 'X';
6103 }
6104 if ((!rtp->resp && power) || (rtp->resp && (rtp->resp != resp))) {
6105 rtp->resp = resp;
6106 /* Why we should care on DTMF compensation at reception? */
6108 f = create_dtmf_frame(instance, AST_FRAME_DTMF_BEGIN, 0);
6109 rtp->dtmfsamples = 0;
6110 }
6111 } else if ((rtp->resp == resp) && !power) {
6113 f->samples = rtp->dtmfsamples * (ast_rtp_get_rate(rtp->lastrxformat) / 1000);
6114 rtp->resp = 0;
6115 } else if (rtp->resp == resp) {
6116 rtp->dtmfsamples += 20 * (ast_rtp_get_rate(rtp->lastrxformat) / 1000);
6117 }
6118
6119 rtp->dtmf_timeout = 0;
6120
6121 return f;
6122}
6123
6124static struct ast_frame *process_cn_rfc3389(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
6125{
6126 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
6127
6128 /* Convert comfort noise into audio with various codecs. Unfortunately this doesn't
6129 totally help us out because we don't have an engine to keep it going and we are not
6130 guaranteed to have it every 20ms or anything */
6132 ast_debug(0, "- RTP 3389 Comfort noise event: Format %s (len = %d)\n",
6134 }
6135
6136 if (!ast_test_flag(rtp, FLAG_3389_WARNING)) {
6137 struct ast_sockaddr remote_address = { {0,} };
6138
6139 ast_rtp_instance_get_remote_address(instance, &remote_address);
6140
6141 ast_log(LOG_NOTICE, "Comfort noise support incomplete in Asterisk (RFC 3389). Please turn off on client if possible. Client address: %s\n",
6142 ast_sockaddr_stringify(&remote_address));
6144 }
6145
6146 /* Must have at least one byte */
6147 if (!len) {
6148 return NULL;
6149 }
6150 if (len < 24) {
6151 rtp->f.data.ptr = rtp->rawdata + AST_FRIENDLY_OFFSET;
6152 rtp->f.datalen = len - 1;
6154 memcpy(rtp->f.data.ptr, data + 1, len - 1);
6155 } else {
6156 rtp->f.data.ptr = NULL;
6157 rtp->f.offset = 0;
6158 rtp->f.datalen = 0;
6159 }
6160 rtp->f.frametype = AST_FRAME_CNG;
6161 rtp->f.subclass.integer = data[0] & 0x7f;
6162 rtp->f.samples = 0;
6163 rtp->f.delivery.tv_usec = rtp->f.delivery.tv_sec = 0;
6164
6165 return &rtp->f;
6166}
6167
6168static int update_rtt_stats(struct ast_rtp *rtp, unsigned int lsr, unsigned int dlsr)
6169{
6170 struct timeval now;
6171 struct timeval rtt_tv;
6172 unsigned int msw;
6173 unsigned int lsw;
6174 unsigned int rtt_msw;
6175 unsigned int rtt_lsw;
6176 unsigned int lsr_a;
6177 unsigned int rtt;
6178
6179 gettimeofday(&now, NULL);
6180 timeval2ntp(now, &msw, &lsw);
6181
6182 lsr_a = ((msw & 0x0000ffff) << 16) | ((lsw & 0xffff0000) >> 16);
6183 rtt = lsr_a - lsr - dlsr;
6184 rtt_msw = (rtt & 0xffff0000) >> 16;
6185 rtt_lsw = (rtt & 0x0000ffff);
6186 rtt_tv.tv_sec = rtt_msw;
6187 /*
6188 * Convert 16.16 fixed point rtt_lsw to usec without
6189 * overflow.
6190 *
6191 * = rtt_lsw * 10^6 / 2^16
6192 * = rtt_lsw * (2^6 * 5^6) / 2^16
6193 * = rtt_lsw * 5^6 / 2^10
6194 *
6195 * The rtt_lsw value is in 16.16 fixed point format and 5^6
6196 * requires 14 bits to represent. We have enough space to
6197 * directly do the conversion because there is no integer
6198 * component in rtt_lsw.
6199 */
6200 rtt_tv.tv_usec = (rtt_lsw * 15625) >> 10;
6201 rtp->rtcp->rtt = (double)rtt_tv.tv_sec + ((double)rtt_tv.tv_usec / 1000000);
6202 if (lsr_a - dlsr < lsr) {
6203 return 1;
6204 }
6205
6206 rtp->rtcp->accumulated_transit += rtp->rtcp->rtt;
6207 if (rtp->rtcp->rtt_count == 0 || rtp->rtcp->minrtt > rtp->rtcp->rtt) {
6208 rtp->rtcp->minrtt = rtp->rtcp->rtt;
6209 }
6210 if (rtp->rtcp->maxrtt < rtp->rtcp->rtt) {
6211 rtp->rtcp->maxrtt = rtp->rtcp->rtt;
6212 }
6213
6215 &rtp->rtcp->stdevrtt, &rtp->rtcp->rtt_count);
6216
6217 return 0;
6218}
6219
6220/*!
6221 * \internal
6222 * \brief Update RTCP interarrival jitter stats
6223 */
6224static void update_jitter_stats(struct ast_rtp *rtp, unsigned int ia_jitter)
6225{
6226 int rate = ast_rtp_get_rate(rtp->f.subclass.format);
6227
6228 rtp->rtcp->reported_jitter = ast_samp2sec(ia_jitter, rate);
6229
6230 if (rtp->rtcp->reported_jitter_count == 0) {
6232 }
6233 if (rtp->rtcp->reported_jitter < rtp->rtcp->reported_minjitter) {
6235 }
6236 if (rtp->rtcp->reported_jitter > rtp->rtcp->reported_maxjitter) {
6238 }
6239
6243}
6244
6245/*!
6246 * \internal
6247 * \brief Update RTCP lost packet stats
6248 */
6249static void update_lost_stats(struct ast_rtp *rtp, unsigned int lost_packets)
6250{
6251 double reported_lost;
6252
6253 rtp->rtcp->reported_lost = lost_packets;
6254 reported_lost = (double)rtp->rtcp->reported_lost;
6255 if (rtp->rtcp->reported_lost_count == 0) {
6256 rtp->rtcp->reported_minlost = reported_lost;
6257 }
6258 if (reported_lost < rtp->rtcp->reported_minlost) {
6259 rtp->rtcp->reported_minlost = reported_lost;
6260 }
6261 if (reported_lost > rtp->rtcp->reported_maxlost) {
6262 rtp->rtcp->reported_maxlost = reported_lost;
6263 }
6264
6267}
6268
6269#define RESCALE(in, inmin, inmax, outmin, outmax) ((((in - inmin)/(inmax-inmin))*(outmax-outmin))+outmin)
6270/*!
6271 * \brief Calculate a "media experience score" based on given data
6272 *
6273 * Technically, a mean opinion score (MOS) cannot be calculated without the involvement
6274 * of human eyes (video) and ears (audio). Thus instead we'll approximate an opinion
6275 * using the given parameters, and call it a media experience score.
6276 *
6277 * The tallied score is based upon recommendations and formulas from ITU-T G.107,
6278 * ITU-T G.109, ITU-T G.113, and other various internet sources.
6279 *
6280 * \param instance RTP instance
6281 * \param normdevrtt The average round trip time
6282 * \param normdev_rxjitter The smoothed jitter
6283 * \param stdev_rxjitter The jitter standard deviation value
6284 * \param normdev_rxlost The average number of packets lost since last check
6285 *
6286 * \return A media experience score.
6287 *
6288 * \note The calculations in this function could probably be simplified
6289 * but calculating a MOS using the information available publicly,
6290 * then re-scaling it to 0.0 -> 100.0 makes the process clearer and
6291 * easier to troubleshoot or change.
6292 */
6293static double calc_media_experience_score(struct ast_rtp_instance *instance,
6294 double normdevrtt, double normdev_rxjitter, double stdev_rxjitter,
6295 double normdev_rxlost)
6296{
6297 double r_value;
6298 double pseudo_mos;
6299 double mes = 0;
6300
6301 /*
6302 * While the media itself might be okay, a significant enough delay could make
6303 * for an unpleasant user experience.
6304 *
6305 * Calculate the effective latency by using the given round trip time, and adding
6306 * jitter scaled according to its standard deviation. The scaling is done in order
6307 * to increase jitter's weight since a higher deviation can result in poorer overall
6308 * quality.
6309 */
6310 double effective_latency = (normdevrtt * 1000)
6311 + ((normdev_rxjitter * 2) * (stdev_rxjitter / 3))
6312 + 10;
6313
6314 /*
6315 * Using the defaults for the standard transmission rating factor ("R" value)
6316 * one arrives at 93.2 (see ITU-T G.107 for more details), so we'll use that
6317 * as the starting value and subtract deficiencies that could affect quality.
6318 *
6319 * Calculate the impact of the effective latency. Influence increases with
6320 * values over 160 as the significant "lag" can degrade user experience.
6321 */
6322 if (effective_latency < 160) {
6323 r_value = 93.2 - (effective_latency / 40);
6324 } else {
6325 r_value = 93.2 - (effective_latency - 120) / 10;
6326 }
6327
6328 /* Next evaluate the impact of lost packets */
6329 r_value = r_value - (normdev_rxlost * 2.0);
6330
6331 /*
6332 * Finally convert the "R" value into a opinion/quality score between 1 (really anything
6333 * below 3 should be considered poor) and 4.5 (the highest achievable for VOIP).
6334 */
6335 if (r_value < 0) {
6336 pseudo_mos = 1.0;
6337 } else if (r_value > 100) {
6338 pseudo_mos = 4.5;
6339 } else {
6340 pseudo_mos = 1 + (0.035 * r_value) + (r_value * (r_value - 60) * (100 - r_value) * 0.000007);
6341 }
6342
6343 /*
6344 * We're going to rescale the 0.0->5.0 pseudo_mos to the 0.0->100.0 MES.
6345 * For those ranges, we could actually just multiply the pseudo_mos
6346 * by 20 but we may want to change the scale later.
6347 */
6348 mes = RESCALE(pseudo_mos, 0.0, 5.0, 0.0, 100.0);
6349
6350 return mes;
6351}
6352
6353/*!
6354 * \internal
6355 * \brief Update MES stats based on info received in an SR or RR.
6356 * This is RTP we sent and they received.
6357 */
6358static void update_reported_mes_stats(struct ast_rtp *rtp)
6359{
6360 double mes = calc_media_experience_score(rtp->owner,
6361 rtp->rtcp->normdevrtt,
6362 rtp->rtcp->reported_jitter,
6365
6366 rtp->rtcp->reported_mes = mes;
6367 if (rtp->rtcp->reported_mes_count == 0) {
6368 rtp->rtcp->reported_minmes = mes;
6369 }
6370 if (mes < rtp->rtcp->reported_minmes) {
6371 rtp->rtcp->reported_minmes = mes;
6372 }
6373 if (mes > rtp->rtcp->reported_maxmes) {
6374 rtp->rtcp->reported_maxmes = mes;
6375 }
6376
6379
6380 ast_debug_rtcp(2, "%s: rtt: %.9f j: %.9f sjh: %.9f lost: %.9f mes: %4.1f\n",
6382 rtp->rtcp->normdevrtt,
6383 rtp->rtcp->reported_jitter,
6385 rtp->rtcp->reported_normdev_lost, mes);
6386}
6387
6388/*!
6389 * \internal
6390 * \brief Update MES stats based on info we will send in an SR or RR.
6391 * This is RTP they sent and we received.
6392 */
6393static void update_local_mes_stats(struct ast_rtp *rtp)
6394{
6396 rtp->rtcp->normdevrtt,
6397 rtp->rxjitter,
6398 rtp->rtcp->stdev_rxjitter,
6399 rtp->rtcp->normdev_rxlost);
6400
6401 if (rtp->rtcp->rxmes_count == 0) {
6402 rtp->rtcp->minrxmes = rtp->rxmes;
6403 }
6404 if (rtp->rxmes < rtp->rtcp->minrxmes) {
6405 rtp->rtcp->minrxmes = rtp->rxmes;
6406 }
6407 if (rtp->rxmes > rtp->rtcp->maxrxmes) {
6408 rtp->rtcp->maxrxmes = rtp->rxmes;
6409 }
6410
6412 &rtp->rtcp->stdev_rxmes, &rtp->rtcp->rxmes_count);
6413
6414 ast_debug_rtcp(2, " %s: rtt: %.9f j: %.9f sjh: %.9f lost: %.9f mes: %4.1f\n",
6416 rtp->rtcp->normdevrtt,
6417 rtp->rxjitter,
6418 rtp->rtcp->stdev_rxjitter,
6419 rtp->rtcp->normdev_rxlost, rtp->rxmes);
6420}
6421
6422/*! \pre instance is locked */
6424 struct ast_rtp *rtp, unsigned int ssrc, int source)
6425{
6426 int index;
6427
6428 if (!AST_VECTOR_SIZE(&rtp->ssrc_mapping)) {
6429 /* This instance is not bundled */
6430 return instance;
6431 }
6432
6433 /* Find the bundled child instance */
6434 for (index = 0; index < AST_VECTOR_SIZE(&rtp->ssrc_mapping); ++index) {
6435 struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&rtp->ssrc_mapping, index);
6436 unsigned int mapping_ssrc = source ? ast_rtp_get_ssrc(mapping->instance) : mapping->ssrc;
6437
6438 if (mapping->ssrc_valid && mapping_ssrc == ssrc) {
6439 return mapping->instance;
6440 }
6441 }
6442
6443 /* Does the SSRC match the bundled parent? */
6444 if (rtp->themssrc_valid && rtp->themssrc == ssrc) {
6445 return instance;
6446 }
6447 return NULL;
6448}
6449
6450/*! \pre instance is locked */
6452 struct ast_rtp *rtp, unsigned int ssrc)
6453{
6454 return __rtp_find_instance_by_ssrc(instance, rtp, ssrc, 0);
6455}
6456
6457/*! \pre instance is locked */
6459 struct ast_rtp *rtp, unsigned int ssrc)
6460{
6461 return __rtp_find_instance_by_ssrc(instance, rtp, ssrc, 1);
6462}
6463
6464static const char *rtcp_payload_type2str(unsigned int pt)
6465{
6466 const char *str;
6467
6468 switch (pt) {
6469 case RTCP_PT_SR:
6470 str = "Sender Report";
6471 break;
6472 case RTCP_PT_RR:
6473 str = "Receiver Report";
6474 break;
6475 case RTCP_PT_FUR:
6476 /* Full INTRA-frame Request / Fast Update Request */
6477 str = "H.261 FUR";
6478 break;
6479 case RTCP_PT_PSFB:
6480 /* Payload Specific Feed Back */
6481 str = "PSFB";
6482 break;
6483 case RTCP_PT_SDES:
6484 str = "Source Description";
6485 break;
6486 case RTCP_PT_BYE:
6487 str = "BYE";
6488 break;
6489 default:
6490 str = "Unknown";
6491 break;
6492 }
6493 return str;
6494}
6495
6496static const char *rtcp_payload_subtype2str(unsigned int pt, unsigned int subtype)
6497{
6498 switch (pt) {
6499 case AST_RTP_RTCP_RTPFB:
6500 if (subtype == AST_RTP_RTCP_FMT_NACK) {
6501 return "NACK";
6502 }
6503 break;
6504 case RTCP_PT_PSFB:
6505 if (subtype == AST_RTP_RTCP_FMT_REMB) {
6506 return "REMB";
6507 }
6508 break;
6509 default:
6510 break;
6511 }
6512
6513 return NULL;
6514}
6515
6516/*! \pre instance is locked */
6517static int ast_rtp_rtcp_handle_nack(struct ast_rtp_instance *instance, unsigned int *nackdata, unsigned int position,
6518 unsigned int length)
6519{
6520 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
6521 int res = 0;
6522 int blp_index;
6523 int packet_index;
6524 int ice;
6525 struct ast_rtp_rtcp_nack_payload *payload;
6526 unsigned int current_word;
6527 unsigned int pid; /* Packet ID which refers to seqno of lost packet */
6528 unsigned int blp; /* Bitmask of following lost packets */
6529 struct ast_sockaddr remote_address = { {0,} };
6530 int abs_send_time_id;
6531 unsigned int now_msw = 0;
6532 unsigned int now_lsw = 0;
6533 unsigned int packets_not_found = 0;
6534
6535 if (!rtp->send_buffer) {
6536 ast_debug_rtcp(1, "(%p) RTCP tried to handle NACK request, "
6537 "but we don't have a RTP packet storage!\n", instance);
6538 return res;
6539 }
6540
6542 if (abs_send_time_id != -1) {
6543 timeval2ntp(ast_tvnow(), &now_msw, &now_lsw);
6544 }
6545
6546 ast_rtp_instance_get_remote_address(instance, &remote_address);
6547
6548 /*
6549 * We use index 3 because with feedback messages, the FCI (Feedback Control Information)
6550 * does not begin until after the version, packet SSRC, and media SSRC words.
6551 */
6552 for (packet_index = 3; packet_index < length; packet_index++) {
6553 current_word = ntohl(nackdata[position + packet_index]);
6554 pid = current_word >> 16;
6555 /* We know the remote end is missing this packet. Go ahead and send it if we still have it. */
6556 payload = (struct ast_rtp_rtcp_nack_payload *)ast_data_buffer_get(rtp->send_buffer, pid);
6557 if (payload) {
6558 if (abs_send_time_id != -1) {
6559 /* On retransmission we need to update the timestamp within the packet, as it
6560 * is supposed to contain when the packet was actually sent.
6561 */
6562 put_unaligned_time24(payload->buf + 17, now_msw, now_lsw);
6563 }
6564 res += rtp_sendto(instance, payload->buf, payload->size, 0, &remote_address, &ice);
6565 } else {
6566 ast_debug_rtcp(1, "(%p) RTCP received NACK request for RTP packet with seqno %d, "
6567 "but we don't have it\n", instance, pid);
6568 packets_not_found++;
6569 }
6570 /*
6571 * The bitmask. Denoting the least significant bit as 1 and its most significant bit
6572 * as 16, then bit i of the bitmask is set to 1 if the receiver has not received RTP
6573 * packet (pid+i)(modulo 2^16). Otherwise, it is set to 0. We cannot assume bits set
6574 * to 0 after a bit set to 1 have actually been received.
6575 */
6576 blp = current_word & 0xffff;
6577 blp_index = 1;
6578 while (blp) {
6579 if (blp & 1) {
6580 /* Packet (pid + i)(modulo 2^16) is missing too. */
6581 unsigned int seqno = (pid + blp_index) % 65536;
6582 payload = (struct ast_rtp_rtcp_nack_payload *)ast_data_buffer_get(rtp->send_buffer, seqno);
6583 if (payload) {
6584 if (abs_send_time_id != -1) {
6585 put_unaligned_time24(payload->buf + 17, now_msw, now_lsw);
6586 }
6587 res += rtp_sendto(instance, payload->buf, payload->size, 0, &remote_address, &ice);
6588 } else {
6589 ast_debug_rtcp(1, "(%p) RTCP remote end also requested RTP packet with seqno %d, "
6590 "but we don't have it\n", instance, seqno);
6591 packets_not_found++;
6592 }
6593 }
6594 blp >>= 1;
6595 blp_index++;
6596 }
6597 }
6598
6599 if (packets_not_found) {
6600 /* Grow the send buffer based on how many packets were not found in the buffer, but
6601 * enforce a maximum.
6602 */
6604 ast_data_buffer_max(rtp->send_buffer) + packets_not_found));
6605 ast_debug_rtcp(2, "(%p) RTCP send buffer on RTP instance is now at maximum of %zu\n",
6606 instance, ast_data_buffer_max(rtp->send_buffer));
6607 }
6608
6609 return res;
6610}
6611
6612/*
6613 * Unshifted RTCP header bit field masks
6614 */
6615#define RTCP_LENGTH_MASK 0xFFFF
6616#define RTCP_PAYLOAD_TYPE_MASK 0xFF
6617#define RTCP_REPORT_COUNT_MASK 0x1F
6618#define RTCP_PADDING_MASK 0x01
6619#define RTCP_VERSION_MASK 0x03
6620
6621/*
6622 * RTCP header bit field shift offsets
6623 */
6624#define RTCP_LENGTH_SHIFT 0
6625#define RTCP_PAYLOAD_TYPE_SHIFT 16
6626#define RTCP_REPORT_COUNT_SHIFT 24
6627#define RTCP_PADDING_SHIFT 29
6628#define RTCP_VERSION_SHIFT 30
6629
6630#define RTCP_VERSION 2U
6631#define RTCP_VERSION_SHIFTED (RTCP_VERSION << RTCP_VERSION_SHIFT)
6632#define RTCP_VERSION_MASK_SHIFTED (RTCP_VERSION_MASK << RTCP_VERSION_SHIFT)
6633
6634/*
6635 * RTCP first packet record validity header mask and value.
6636 *
6637 * RFC3550 intentionally defines the encoding of RTCP_PT_SR and RTCP_PT_RR
6638 * such that they differ in the least significant bit. Either of these two
6639 * payload types MUST be the first RTCP packet record in a compound packet.
6640 *
6641 * RFC3550 checks the padding bit in the algorithm they use to check the
6642 * RTCP packet for validity. However, we aren't masking the padding bit
6643 * to check since we don't know if it is a compound RTCP packet or not.
6644 */
6645#define RTCP_VALID_MASK (RTCP_VERSION_MASK_SHIFTED | (((RTCP_PAYLOAD_TYPE_MASK & ~0x1)) << RTCP_PAYLOAD_TYPE_SHIFT))
6646#define RTCP_VALID_VALUE (RTCP_VERSION_SHIFTED | (RTCP_PT_SR << RTCP_PAYLOAD_TYPE_SHIFT))
6647
6648#define RTCP_SR_BLOCK_WORD_LENGTH 5
6649#define RTCP_RR_BLOCK_WORD_LENGTH 6
6650#define RTCP_HEADER_SSRC_LENGTH 2
6651#define RTCP_FB_REMB_BLOCK_WORD_LENGTH 4
6652#define RTCP_FB_NACK_BLOCK_WORD_LENGTH 2
6653
6654static struct ast_frame *ast_rtcp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp,
6655 const unsigned char *rtcpdata, size_t size, struct ast_sockaddr *addr)
6656{
6657 struct ast_rtp_instance *transport = instance;
6658 struct ast_rtp *transport_rtp = ast_rtp_instance_get_data(instance);
6659 int len = size;
6660 unsigned int *rtcpheader = (unsigned int *)(rtcpdata);
6661 unsigned int packetwords;
6662 unsigned int position;
6663 unsigned int first_word;
6664 /*! True if we have seen an acceptable SSRC to learn the remote RTCP address */
6665 unsigned int ssrc_seen;
6666 struct ast_rtp_rtcp_report_block *report_block;
6667 struct ast_frame *f = &ast_null_frame;
6668#ifdef TEST_FRAMEWORK
6669 struct ast_rtp_engine_test *test_engine;
6670#endif
6671
6672 /* If this is encrypted then decrypt the payload */
6673 if ((*rtcpheader & 0xC0) && res_srtp && srtp && res_srtp->unprotect(
6674 srtp, rtcpheader, &len, 1 | (srtp_replay_protection << 1)) < 0) {
6675 return &ast_null_frame;
6676 }
6677
6678 packetwords = len / 4;
6679
6680 ast_debug_rtcp(2, "(%s) RTCP got report of %d bytes from %s\n",
6683
6684 /*
6685 * Validate the RTCP packet according to an adapted and slightly
6686 * modified RFC3550 validation algorithm.
6687 */
6688 if (packetwords < RTCP_HEADER_SSRC_LENGTH) {
6689 ast_debug_rtcp(2, "(%s) RTCP %p -- from %s: Frame size (%u words) is too short\n",
6691 transport_rtp, ast_sockaddr_stringify(addr), packetwords);
6692 return &ast_null_frame;
6693 }
6694 position = 0;
6695 first_word = ntohl(rtcpheader[position]);
6696 if ((first_word & RTCP_VALID_MASK) != RTCP_VALID_VALUE) {
6697 ast_debug_rtcp(2, "(%s) RTCP %p -- from %s: Failed first packet validity check\n",
6699 transport_rtp, ast_sockaddr_stringify(addr));
6700 return &ast_null_frame;
6701 }
6702 do {
6703 position += ((first_word >> RTCP_LENGTH_SHIFT) & RTCP_LENGTH_MASK) + 1;
6704 if (packetwords <= position) {
6705 break;
6706 }
6707 first_word = ntohl(rtcpheader[position]);
6708 } while ((first_word & RTCP_VERSION_MASK_SHIFTED) == RTCP_VERSION_SHIFTED);
6709 if (position != packetwords) {
6710 ast_debug_rtcp(2, "(%s) RTCP %p -- from %s: Failed packet version or length check\n",
6712 transport_rtp, ast_sockaddr_stringify(addr));
6713 return &ast_null_frame;
6714 }
6715
6716 /*
6717 * Note: RFC3605 points out that true NAT (vs NAPT) can cause RTCP
6718 * to have a different IP address and port than RTP. Otherwise, when
6719 * strictrtp is enabled we could reject RTCP packets not coming from
6720 * the learned RTP IP address if it is available.
6721 */
6722
6723 /*
6724 * strictrtp safety needs SSRC to match before we use the
6725 * sender's address for symmetrical RTP to send our RTCP
6726 * reports.
6727 *
6728 * If strictrtp is not enabled then claim to have already seen
6729 * a matching SSRC so we'll accept this packet's address for
6730 * symmetrical RTP.
6731 */
6732 ssrc_seen = transport_rtp->strict_rtp_state == STRICT_RTP_OPEN;
6733
6734 position = 0;
6735 while (position < packetwords) {
6736 unsigned int i;
6737 unsigned int pt;
6738 unsigned int rc;
6739 unsigned int ssrc;
6740 /*! True if the ssrc value we have is valid and not garbage because it doesn't exist. */
6741 unsigned int ssrc_valid;
6742 unsigned int length;
6743 unsigned int min_length;
6744 /*! Always use packet source SSRC to find the rtp instance unless explicitly told not to. */
6745 unsigned int use_packet_source = 1;
6746
6747 struct ast_json *message_blob;
6748 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report, NULL, ao2_cleanup);
6749 struct ast_rtp_instance *child;
6750 struct ast_rtp *rtp;
6751 struct ast_rtp_rtcp_feedback *feedback;
6752
6753 i = position;
6754 first_word = ntohl(rtcpheader[i]);
6755 pt = (first_word >> RTCP_PAYLOAD_TYPE_SHIFT) & RTCP_PAYLOAD_TYPE_MASK;
6756 rc = (first_word >> RTCP_REPORT_COUNT_SHIFT) & RTCP_REPORT_COUNT_MASK;
6757 /* RFC3550 says 'length' is the number of words in the packet - 1 */
6758 length = ((first_word >> RTCP_LENGTH_SHIFT) & RTCP_LENGTH_MASK) + 1;
6759
6760 /* Check expected RTCP packet record length */
6761 min_length = RTCP_HEADER_SSRC_LENGTH;
6762 switch (pt) {
6763 case RTCP_PT_SR:
6764 min_length += RTCP_SR_BLOCK_WORD_LENGTH;
6765 /* fall through */
6766 case RTCP_PT_RR:
6767 min_length += (rc * RTCP_RR_BLOCK_WORD_LENGTH);
6768 use_packet_source = 0;
6769 break;
6770 case RTCP_PT_FUR:
6771 break;
6772 case AST_RTP_RTCP_RTPFB:
6773 switch (rc) {
6775 min_length += RTCP_FB_NACK_BLOCK_WORD_LENGTH;
6776 break;
6777 default:
6778 break;
6779 }
6780 use_packet_source = 0;
6781 break;
6782 case RTCP_PT_PSFB:
6783 switch (rc) {
6785 min_length += RTCP_FB_REMB_BLOCK_WORD_LENGTH;
6786 break;
6787 default:
6788 break;
6789 }
6790 break;
6791 case RTCP_PT_SDES:
6792 case RTCP_PT_BYE:
6793 /*
6794 * There may not be a SSRC/CSRC present. The packet is
6795 * useless but still valid if it isn't present.
6796 *
6797 * We don't know what min_length should be so disable the check
6798 */
6799 min_length = length;
6800 break;
6801 default:
6802 ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: %u(%s) skipping record\n",
6803 instance, transport_rtp, ast_sockaddr_stringify(addr), pt, rtcp_payload_type2str(pt));
6804 if (rtcp_debug_test_addr(addr)) {
6805 ast_verbose("\n");
6806 ast_verbose("RTCP from %s: %u(%s) skipping record\n",
6808 }
6809 position += length;
6810 continue;
6811 }
6812 if (length < min_length) {
6813 ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: %u(%s) length field less than expected minimum. Min:%u Got:%u\n",
6814 instance, transport_rtp, ast_sockaddr_stringify(addr), pt, rtcp_payload_type2str(pt),
6815 min_length - 1, length - 1);
6816 return &ast_null_frame;
6817 }
6818
6819 /* Get the RTCP record SSRC if defined for the record */
6820 ssrc_valid = 1;
6821 switch (pt) {
6822 case RTCP_PT_SR:
6823 case RTCP_PT_RR:
6824 rtcp_report = ast_rtp_rtcp_report_alloc(rc);
6825 if (!rtcp_report) {
6826 return &ast_null_frame;
6827 }
6828 rtcp_report->reception_report_count = rc;
6829
6830 ssrc = ntohl(rtcpheader[i + 2]);
6831 rtcp_report->ssrc = ssrc;
6832 break;
6833 case RTCP_PT_FUR:
6834 case RTCP_PT_PSFB:
6835 ssrc = ntohl(rtcpheader[i + 1]);
6836 break;
6837 case AST_RTP_RTCP_RTPFB:
6838 ssrc = ntohl(rtcpheader[i + 2]);
6839 break;
6840 case RTCP_PT_SDES:
6841 case RTCP_PT_BYE:
6842 default:
6843 ssrc = 0;
6844 ssrc_valid = 0;
6845 break;
6846 }
6847
6848 if (rtcp_debug_test_addr(addr)) {
6849 const char *subtype = rtcp_payload_subtype2str(pt, rc);
6850
6851 ast_verbose("\n");
6852 ast_verbose("RTCP from %s\n", ast_sockaddr_stringify(addr));
6853 ast_verbose("PT: %u (%s)\n", pt, rtcp_payload_type2str(pt));
6854 if (subtype) {
6855 ast_verbose("Packet Subtype: %u (%s)\n", rc, subtype);
6856 } else {
6857 ast_verbose("Reception reports: %u\n", rc);
6858 }
6859 ast_verbose("SSRC of sender: %u\n", ssrc);
6860 }
6861
6862 /* Determine the appropriate instance for this */
6863 if (ssrc_valid) {
6864 /*
6865 * Depending on the payload type, either the packet source or media source
6866 * SSRC is used.
6867 */
6868 if (use_packet_source) {
6869 child = rtp_find_instance_by_packet_source_ssrc(transport, transport_rtp, ssrc);
6870 } else {
6871 child = rtp_find_instance_by_media_source_ssrc(transport, transport_rtp, ssrc);
6872 }
6873 if (child && child != transport) {
6874 /*
6875 * It is safe to hold the child lock while holding the parent lock.
6876 * We guarantee that the locking order is always parent->child or
6877 * that the child lock is not held when acquiring the parent lock.
6878 */
6879 ao2_lock(child);
6880 instance = child;
6881 rtp = ast_rtp_instance_get_data(instance);
6882 } else {
6883 /* The child is the parent! We don't need to unlock it. */
6884 child = NULL;
6885 rtp = transport_rtp;
6886 }
6887 } else {
6888 child = NULL;
6889 rtp = transport_rtp;
6890 }
6891
6892 if (ssrc_valid && rtp->themssrc_valid) {
6893 /*
6894 * If the SSRC is 1, we still need to handle RTCP since this could be a
6895 * special case. For example, if we have a unidirectional video stream, the
6896 * SSRC may be set to 1 by the browser (in the case of chromium), and requests
6897 * will still need to be processed so that video can flow as expected. This
6898 * should only be done for PLI and FUR, since there is not a way to get the
6899 * appropriate rtp instance when the SSRC is 1.
6900 */
6901 int exception = (ssrc == 1 && !((pt == RTCP_PT_PSFB && rc == AST_RTP_RTCP_FMT_PLI) || pt == RTCP_PT_FUR));
6902 if ((ssrc != rtp->themssrc && use_packet_source && ssrc != 1)
6903 || exception) {
6904 /*
6905 * Skip over this RTCP record as it does not contain the
6906 * correct SSRC. We should not act upon RTCP records
6907 * for a different stream.
6908 */
6909 position += length;
6910 ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: Skipping record, received SSRC '%u' != expected '%u'\n",
6911 instance, rtp, ast_sockaddr_stringify(addr), ssrc, rtp->themssrc);
6912 if (child) {
6913 ao2_unlock(child);
6914 }
6915 continue;
6916 }
6917 ssrc_seen = 1;
6918 }
6919
6920 if (ssrc_seen && ast_rtp_instance_get_prop(instance, AST_RTP_PROPERTY_NAT)) {
6921 /* Send to whoever sent to us */
6922 if (ast_sockaddr_cmp(&rtp->rtcp->them, addr)) {
6923 ast_sockaddr_copy(&rtp->rtcp->them, addr);
6925 ast_debug(0, "(%p) RTCP NAT: Got RTCP from other end. Now sending to address %s\n",
6926 instance, ast_sockaddr_stringify(addr));
6927 }
6928 }
6929 }
6930
6931 i += RTCP_HEADER_SSRC_LENGTH; /* Advance past header and ssrc */
6932 switch (pt) {
6933 case RTCP_PT_SR:
6934 gettimeofday(&rtp->rtcp->rxlsr, NULL);
6935 rtp->rtcp->themrxlsr = ((ntohl(rtcpheader[i]) & 0x0000ffff) << 16) | ((ntohl(rtcpheader[i + 1]) & 0xffff0000) >> 16);
6936 rtp->rtcp->spc = ntohl(rtcpheader[i + 3]);
6937 rtp->rtcp->soc = ntohl(rtcpheader[i + 4]);
6938
6939 rtcp_report->type = RTCP_PT_SR;
6940 rtcp_report->sender_information.packet_count = rtp->rtcp->spc;
6941 rtcp_report->sender_information.octet_count = rtp->rtcp->soc;
6942 ntp2timeval((unsigned int)ntohl(rtcpheader[i]),
6943 (unsigned int)ntohl(rtcpheader[i + 1]),
6944 &rtcp_report->sender_information.ntp_timestamp);
6945 rtcp_report->sender_information.rtp_timestamp = ntohl(rtcpheader[i + 2]);
6946 if (rtcp_debug_test_addr(addr)) {
6947 ast_verbose("NTP timestamp: %u.%06u\n",
6948 (unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_sec,
6949 (unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_usec);
6950 ast_verbose("RTP timestamp: %u\n", rtcp_report->sender_information.rtp_timestamp);
6951 ast_verbose("SPC: %u\tSOC: %u\n",
6952 rtcp_report->sender_information.packet_count,
6953 rtcp_report->sender_information.octet_count);
6954 }
6956 /* Intentional fall through */
6957 case RTCP_PT_RR:
6958 if (rtcp_report->type != RTCP_PT_SR) {
6959 rtcp_report->type = RTCP_PT_RR;
6960 }
6961
6962 if (rc > 0) {
6963 /* Don't handle multiple reception reports (rc > 1) yet */
6964 report_block = ast_calloc(1, sizeof(*report_block));
6965 if (!report_block) {
6966 if (child) {
6967 ao2_unlock(child);
6968 }
6969 return &ast_null_frame;
6970 }
6971 rtcp_report->report_block[0] = report_block;
6972 report_block->source_ssrc = ntohl(rtcpheader[i]);
6973 report_block->lost_count.packets = ntohl(rtcpheader[i + 1]) & 0x00ffffff;
6974 report_block->lost_count.fraction = ((ntohl(rtcpheader[i + 1]) & 0xff000000) >> 24);
6975 report_block->highest_seq_no = ntohl(rtcpheader[i + 2]);
6976 report_block->ia_jitter = ntohl(rtcpheader[i + 3]);
6977 report_block->lsr = ntohl(rtcpheader[i + 4]);
6978 report_block->dlsr = ntohl(rtcpheader[i + 5]);
6979 if (report_block->lsr) {
6980 int skewed = update_rtt_stats(rtp, report_block->lsr, report_block->dlsr);
6981 if (skewed && rtcp_debug_test_addr(addr)) {
6982 struct timeval now;
6983 unsigned int lsr_now, lsw, msw;
6984 gettimeofday(&now, NULL);
6985 timeval2ntp(now, &msw, &lsw);
6986 lsr_now = (((msw & 0xffff) << 16) | ((lsw & 0xffff0000) >> 16));
6987 ast_verbose("Internal RTCP NTP clock skew detected: "
6988 "lsr=%u, now=%u, dlsr=%u (%u:%03ums), "
6989 "diff=%u\n",
6990 report_block->lsr, lsr_now, report_block->dlsr, report_block->dlsr / 65536,
6991 (report_block->dlsr % 65536) * 1000 / 65536,
6992 report_block->dlsr - (lsr_now - report_block->lsr));
6993 }
6994 }
6995 update_jitter_stats(rtp, report_block->ia_jitter);
6996 update_lost_stats(rtp, report_block->lost_count.packets);
6997 /*
6998 * update_reported_mes_stats must be called AFTER
6999 * update_rtt_stats, update_jitter_stats and
7000 * update_lost_stats.
7001 */
7003
7004 if (rtcp_debug_test_addr(addr)) {
7005 int rate = ast_rtp_get_rate(rtp->f.subclass.format);
7006
7007 ast_verbose(" Fraction lost: %d\n", report_block->lost_count.fraction);
7008 ast_verbose(" Packets lost so far: %u\n", report_block->lost_count.packets);
7009 ast_verbose(" Highest sequence number: %u\n", report_block->highest_seq_no & 0x0000ffff);
7010 ast_verbose(" Sequence number cycles: %u\n", report_block->highest_seq_no >> 16);
7011 ast_verbose(" Interarrival jitter (samp): %u\n", report_block->ia_jitter);
7012 ast_verbose(" Interarrival jitter (secs): %.6f\n", ast_samp2sec(report_block->ia_jitter, rate));
7013 ast_verbose(" Last SR(our NTP): %lu.%010lu\n",(unsigned long)(report_block->lsr) >> 16,((unsigned long)(report_block->lsr) << 16) * 4096);
7014 ast_verbose(" DLSR: %4.4f (sec)\n",(double)report_block->dlsr / 65536.0);
7015 ast_verbose(" RTT: %4.4f(sec)\n", rtp->rtcp->rtt);
7016 ast_verbose(" MES: %4.1f\n", rtp->rtcp->reported_mes);
7017 }
7018 }
7019 /* If and when we handle more than one report block, this should occur outside
7020 * this loop.
7021 */
7022
7023 message_blob = ast_json_pack("{s: s, s: s, s: f, s: f}",
7024 "from", ast_sockaddr_stringify(addr),
7025 "to", transport_rtp->rtcp->local_addr_str,
7026 "rtt", rtp->rtcp->rtt,
7027 "mes", rtp->rtcp->reported_mes);
7029 rtcp_report,
7030 message_blob);
7031 ast_json_unref(message_blob);
7032
7033 /* Return an AST_FRAME_RTCP frame with the ast_rtp_rtcp_report
7034 * object as a its data */
7035 transport_rtp->f.frametype = AST_FRAME_RTCP;
7036 transport_rtp->f.subclass.integer = pt;
7037 transport_rtp->f.data.ptr = rtp->rtcp->frame_buf + AST_FRIENDLY_OFFSET;
7038 memcpy(transport_rtp->f.data.ptr, rtcp_report, sizeof(struct ast_rtp_rtcp_report));
7039 transport_rtp->f.datalen = sizeof(struct ast_rtp_rtcp_report);
7040 if (rc > 0) {
7041 /* There's always a single report block stored, here */
7042 struct ast_rtp_rtcp_report *rtcp_report2;
7043 report_block = transport_rtp->f.data.ptr + transport_rtp->f.datalen + sizeof(struct ast_rtp_rtcp_report_block *);
7044 memcpy(report_block, rtcp_report->report_block[0], sizeof(struct ast_rtp_rtcp_report_block));
7045 rtcp_report2 = (struct ast_rtp_rtcp_report *)transport_rtp->f.data.ptr;
7046 rtcp_report2->report_block[0] = report_block;
7047 transport_rtp->f.datalen += sizeof(struct ast_rtp_rtcp_report_block);
7048 }
7049 transport_rtp->f.offset = AST_FRIENDLY_OFFSET;
7050 transport_rtp->f.samples = 0;
7051 transport_rtp->f.mallocd = 0;
7052 transport_rtp->f.delivery.tv_sec = 0;
7053 transport_rtp->f.delivery.tv_usec = 0;
7054 transport_rtp->f.src = "RTP";
7055 transport_rtp->f.stream_num = rtp->stream_num;
7056 f = &transport_rtp->f;
7057 break;
7058 case AST_RTP_RTCP_RTPFB:
7059 switch (rc) {
7061 /* If retransmissions are not enabled ignore this message */
7062 if (!rtp->send_buffer) {
7063 break;
7064 }
7065
7066 if (rtcp_debug_test_addr(addr)) {
7067 ast_verbose("Received generic RTCP NACK message\n");
7068 }
7069
7070 ast_rtp_rtcp_handle_nack(instance, rtcpheader, position, length);
7071 break;
7072 default:
7073 break;
7074 }
7075 break;
7076 case RTCP_PT_FUR:
7077 /* Handle RTCP FUR as FIR by setting the format to 4 */
7079 case RTCP_PT_PSFB:
7080 switch (rc) {
7083 if (rtcp_debug_test_addr(addr)) {
7084 ast_verbose("Received an RTCP Fast Update Request\n");
7085 }
7086 transport_rtp->f.frametype = AST_FRAME_CONTROL;
7087 transport_rtp->f.subclass.integer = AST_CONTROL_VIDUPDATE;
7088 transport_rtp->f.datalen = 0;
7089 transport_rtp->f.samples = 0;
7090 transport_rtp->f.mallocd = 0;
7091 transport_rtp->f.src = "RTP";
7092 f = &transport_rtp->f;
7093 break;
7095 /* If REMB support is not enabled ignore this message */
7097 break;
7098 }
7099
7100 if (rtcp_debug_test_addr(addr)) {
7101 ast_verbose("Received REMB report\n");
7102 }
7103 transport_rtp->f.frametype = AST_FRAME_RTCP;
7104 transport_rtp->f.subclass.integer = pt;
7105 transport_rtp->f.stream_num = rtp->stream_num;
7106 transport_rtp->f.data.ptr = rtp->rtcp->frame_buf + AST_FRIENDLY_OFFSET;
7107 feedback = transport_rtp->f.data.ptr;
7108 feedback->fmt = rc;
7109
7110 /* We don't actually care about the SSRC information in the feedback message */
7111 first_word = ntohl(rtcpheader[i + 2]);
7112 feedback->remb.br_exp = (first_word >> 18) & ((1 << 6) - 1);
7113 feedback->remb.br_mantissa = first_word & ((1 << 18) - 1);
7114
7115 transport_rtp->f.datalen = sizeof(struct ast_rtp_rtcp_feedback);
7116 transport_rtp->f.offset = AST_FRIENDLY_OFFSET;
7117 transport_rtp->f.samples = 0;
7118 transport_rtp->f.mallocd = 0;
7119 transport_rtp->f.delivery.tv_sec = 0;
7120 transport_rtp->f.delivery.tv_usec = 0;
7121 transport_rtp->f.src = "RTP";
7122 f = &transport_rtp->f;
7123 break;
7124 default:
7125 break;
7126 }
7127 break;
7128 case RTCP_PT_SDES:
7129 if (rtcp_debug_test_addr(addr)) {
7130 ast_verbose("Received an SDES from %s\n",
7132 }
7133#ifdef TEST_FRAMEWORK
7134 if ((test_engine = ast_rtp_instance_get_test(instance))) {
7135 test_engine->sdes_received = 1;
7136 }
7137#endif
7138 break;
7139 case RTCP_PT_BYE:
7140 if (rtcp_debug_test_addr(addr)) {
7141 ast_verbose("Received a BYE from %s\n",
7143 }
7144 break;
7145 default:
7146 break;
7147 }
7148 position += length;
7149 rtp->rtcp->rtcp_info = 1;
7150
7151 if (child) {
7152 ao2_unlock(child);
7153 }
7154 }
7155
7156 return f;
7157}
7158
7159/*! \pre instance is locked */
7160static struct ast_frame *ast_rtcp_read(struct ast_rtp_instance *instance)
7161{
7162 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
7163 struct ast_srtp *srtp = ast_rtp_instance_get_srtp(instance, 1);
7164 struct ast_sockaddr addr;
7165 unsigned char rtcpdata[8192 + AST_FRIENDLY_OFFSET];
7166 unsigned char *read_area = rtcpdata + AST_FRIENDLY_OFFSET;
7167 size_t read_area_size = sizeof(rtcpdata) - AST_FRIENDLY_OFFSET;
7168 int res;
7169
7170 /* Read in RTCP data from the socket */
7171 if ((res = rtcp_recvfrom(instance, read_area, read_area_size,
7172 0, &addr)) < 0) {
7173 if (res == RTP_DTLS_ESTABLISHED) {
7176 return &rtp->f;
7177 }
7178
7179 ast_assert(errno != EBADF);
7180 if (errno != EAGAIN) {
7181 ast_log(LOG_WARNING, "RTCP Read error: %s. Hanging up.\n",
7182 (errno) ? strerror(errno) : "Unspecified");
7183 return NULL;
7184 }
7185 return &ast_null_frame;
7186 }
7187
7188 /* If this was handled by the ICE session don't do anything further */
7189 if (!res) {
7190 return &ast_null_frame;
7191 }
7192
7193 if (!*read_area) {
7194 struct sockaddr_in addr_tmp;
7195 struct ast_sockaddr addr_v4;
7196
7197 if (ast_sockaddr_is_ipv4(&addr)) {
7198 ast_sockaddr_to_sin(&addr, &addr_tmp);
7199 } else if (ast_sockaddr_ipv4_mapped(&addr, &addr_v4)) {
7200 ast_debug_stun(2, "(%p) STUN using IPv6 mapped address %s\n",
7201 instance, ast_sockaddr_stringify(&addr));
7202 ast_sockaddr_to_sin(&addr_v4, &addr_tmp);
7203 } else {
7204 ast_debug_stun(2, "(%p) STUN cannot do for non IPv4 address %s\n",
7205 instance, ast_sockaddr_stringify(&addr));
7206 return &ast_null_frame;
7207 }
7208 if ((ast_stun_handle_packet(rtp->rtcp->s, &addr_tmp, read_area, res, NULL, NULL) == AST_STUN_ACCEPT)) {
7209 ast_sockaddr_from_sin(&addr, &addr_tmp);
7210 ast_sockaddr_copy(&rtp->rtcp->them, &addr);
7211 }
7212 return &ast_null_frame;
7213 }
7214
7215 return ast_rtcp_interpret(instance, srtp, read_area, res, &addr);
7216}
7217
7218/*! \pre instance is locked */
7219static int bridge_p2p_rtp_write(struct ast_rtp_instance *instance,
7220 struct ast_rtp_instance *instance1, unsigned int *rtpheader, int len, int hdrlen)
7221{
7222 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
7223 struct ast_rtp *bridged;
7224 int res = 0, payload = 0, bridged_payload = 0, mark;
7225 RAII_VAR(struct ast_rtp_payload_type *, payload_type, NULL, ao2_cleanup);
7226 int reconstruct = ntohl(rtpheader[0]);
7227 struct ast_sockaddr remote_address = { {0,} };
7228 int ice;
7229 unsigned int timestamp = ntohl(rtpheader[1]);
7230
7231 /* Get fields from packet */
7232 payload = (reconstruct & 0x7f0000) >> 16;
7233 mark = (reconstruct & 0x800000) >> 23;
7234
7235 /* Check what the payload value should be */
7236 payload_type = ast_rtp_codecs_get_payload(ast_rtp_instance_get_codecs(instance), payload);
7237 if (!payload_type) {
7238 return -1;
7239 }
7240
7241 /* Otherwise adjust bridged payload to match */
7243 payload_type->asterisk_format, payload_type->format, payload_type->rtp_code, payload_type->sample_rate);
7244
7245 /* If no codec could be matched between instance and instance1, then somehow things were made incompatible while we were still bridged. Bail. */
7246 if (bridged_payload < 0) {
7247 return -1;
7248 }
7249
7250 /* If the payload coming in is not one of the negotiated ones then send it to the core, this will cause formats to change and the bridge to break */
7251 if (ast_rtp_codecs_find_payload_code(ast_rtp_instance_get_codecs(instance1), bridged_payload) == -1) {
7252 ast_debug_rtp(1, "(%p, %p) RTP unsupported payload type received\n", instance, instance1);
7253 return -1;
7254 }
7255
7256 /*
7257 * Even if we are no longer in dtmf, we could still be receiving
7258 * re-transmissions of the last dtmf end still. Feed those to the
7259 * core so they can be filtered accordingly.
7260 */
7261 if (rtp->last_end_timestamp.is_set && rtp->last_end_timestamp.ts == timestamp) {
7262 ast_debug_rtp(1, "(%p, %p) RTP feeding packet with duplicate timestamp to core\n", instance, instance1);
7263 return -1;
7264 }
7265
7266 if (payload_type->asterisk_format) {
7267 ao2_replace(rtp->lastrxformat, payload_type->format);
7268 }
7269
7270 /*
7271 * We have now determined that we need to send the RTP packet
7272 * out the bridged instance to do local bridging so we must unlock
7273 * the receiving instance to prevent deadlock with the bridged
7274 * instance.
7275 *
7276 * Technically we should grab a ref to instance1 so it won't go
7277 * away on us. However, we should be safe because the bridged
7278 * instance won't change without both channels involved being
7279 * locked and we currently have the channel lock for the receiving
7280 * instance.
7281 */
7282 ao2_unlock(instance);
7283 ao2_lock(instance1);
7284
7285 /*
7286 * Get the peer rtp pointer now to emphasize that using it
7287 * must happen while instance1 is locked.
7288 */
7289 bridged = ast_rtp_instance_get_data(instance1);
7290
7291
7292 /* If bridged peer is in dtmf, feed all packets to core until it finishes to avoid infinite dtmf */
7293 if (bridged->sending_digit) {
7294 ast_debug_rtp(1, "(%p, %p) RTP Feeding packet to core until DTMF finishes\n", instance, instance1);
7295 ao2_unlock(instance1);
7296 ao2_lock(instance);
7297 return -1;
7298 }
7299
7300 if (payload_type->asterisk_format) {
7301 /*
7302 * If bridged peer has already received rtp, perform the asymmetric codec check
7303 * if that feature has been activated
7304 */
7305 if (!bridged->asymmetric_codec
7306 && bridged->lastrxformat != ast_format_none
7307 && ast_format_cmp(payload_type->format, bridged->lastrxformat) == AST_FORMAT_CMP_NOT_EQUAL) {
7308 ast_debug_rtp(1, "(%p, %p) RTP asymmetric RTP codecs detected (TX: %s, RX: %s) sending frame to core\n",
7309 instance, instance1, ast_format_get_name(payload_type->format),
7311 ao2_unlock(instance1);
7312 ao2_lock(instance);
7313 return -1;
7314 }
7315
7316 ao2_replace(bridged->lasttxformat, payload_type->format);
7317 }
7318
7319 ast_rtp_instance_get_remote_address(instance1, &remote_address);
7320
7321 if (ast_sockaddr_isnull(&remote_address)) {
7322 ast_debug_rtp(5, "(%p, %p) RTP remote address is null, most likely RTP has been stopped\n",
7323 instance, instance1);
7324 ao2_unlock(instance1);
7325 ao2_lock(instance);
7326 return 0;
7327 }
7328
7329 /* If the marker bit has been explicitly set turn it on */
7330 if (ast_test_flag(bridged, FLAG_NEED_MARKER_BIT)) {
7331 mark = 1;
7333 }
7334
7335 /* Set the marker bit for the first local bridged packet which has the first bridged peer's SSRC. */
7337 mark = 1;
7339 }
7340
7341 /* Reconstruct part of the packet */
7342 reconstruct &= 0xFF80FFFF;
7343 reconstruct |= (bridged_payload << 16);
7344 reconstruct |= (mark << 23);
7345 rtpheader[0] = htonl(reconstruct);
7346
7347 if (mark) {
7348 /* make this rtp instance aware of the new ssrc it is sending */
7349 bridged->ssrc = ntohl(rtpheader[2]);
7350 }
7351
7352 /* Send the packet back out */
7353 res = rtp_sendto(instance1, (void *)rtpheader, len, 0, &remote_address, &ice);
7354 if (res < 0) {
7357 "RTP Transmission error of packet to %s: %s\n",
7358 ast_sockaddr_stringify(&remote_address),
7359 strerror(errno));
7363 "RTP NAT: Can't write RTP to private "
7364 "address %s, waiting for other end to "
7365 "send audio...\n",
7366 ast_sockaddr_stringify(&remote_address));
7367 }
7369 }
7370 ao2_unlock(instance1);
7371 ao2_lock(instance);
7372 return 0;
7373 }
7374
7375 if (rtp_debug_test_addr(&remote_address)) {
7376 ast_verbose("Sent RTP P2P packet to %s%s (type %-2.2d, len %-6.6d)\n",
7377 ast_sockaddr_stringify(&remote_address),
7378 ice ? " (via ICE)" : "",
7379 bridged_payload, len - hdrlen);
7380 }
7381
7382 ao2_unlock(instance1);
7383 ao2_lock(instance);
7384 return 0;
7385}
7386
7387static void rtp_instance_unlock(struct ast_rtp_instance *instance)
7388{
7389 if (instance) {
7390 ao2_unlock(instance);
7391 }
7392}
7393
7396{
7397 return a.seqno - b.seqno;
7398}
7399
7400static void rtp_transport_wide_cc_feedback_status_vector_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits,
7401 uint16_t *status_vector_chunk, int status)
7402{
7403 /* Appending this status will use up 2 bits */
7404 *status_vector_chunk_bits -= 2;
7405
7406 /* We calculate which bits we want to update the status of. Since a status vector
7407 * is 16 bits we take away 2 (for the header), and then we take away any that have
7408 * already been used.
7409 */
7410 *status_vector_chunk |= (status << (16 - 2 - (14 - *status_vector_chunk_bits)));
7411
7412 /* If there are still bits available we can return early */
7413 if (*status_vector_chunk_bits) {
7414 return;
7415 }
7416
7417 /* Otherwise we have to place this chunk into the packet */
7418 put_unaligned_uint16(rtcpheader + *packet_len, htons(*status_vector_chunk));
7419 *status_vector_chunk_bits = 14;
7420
7421 /* The first bit being 1 indicates that this is a status vector chunk and the second
7422 * bit being 1 indicates that we are using 2 bits to represent each status for a
7423 * packet.
7424 */
7425 *status_vector_chunk = (1 << 15) | (1 << 14);
7426 *packet_len += 2;
7427}
7428
7429static void rtp_transport_wide_cc_feedback_status_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits,
7430 uint16_t *status_vector_chunk, int *run_length_chunk_count, int *run_length_chunk_status, int status)
7431{
7432 if (*run_length_chunk_status != status) {
7433 while (*run_length_chunk_count > 0 && *run_length_chunk_count < 8) {
7434 /* Realistically it only makes sense to use a run length chunk if there were 8 or more
7435 * consecutive packets of the same type, otherwise we could end up making the packet larger
7436 * if we have lots of small blocks of the same type. To help with this we backfill the status
7437 * vector (since it always represents 7 packets). Best case we end up with only that single
7438 * status vector and the rest are run length chunks.
7439 */
7440 rtp_transport_wide_cc_feedback_status_vector_append(rtcpheader, packet_len, status_vector_chunk_bits,
7441 status_vector_chunk, *run_length_chunk_status);
7442 *run_length_chunk_count -= 1;
7443 }
7444
7445 if (*run_length_chunk_count) {
7446 /* There is a run length chunk which needs to be written out */
7447 put_unaligned_uint16(rtcpheader + *packet_len, htons((0 << 15) | (*run_length_chunk_status << 13) | *run_length_chunk_count));
7448 *packet_len += 2;
7449 }
7450
7451 /* In all cases the run length chunk has to be reset */
7452 *run_length_chunk_count = 0;
7453 *run_length_chunk_status = -1;
7454
7455 if (*status_vector_chunk_bits == 14) {
7456 /* We aren't in the middle of a status vector so we can try for a run length chunk */
7457 *run_length_chunk_status = status;
7458 *run_length_chunk_count = 1;
7459 } else {
7460 /* We're doing a status vector so populate it accordingly */
7461 rtp_transport_wide_cc_feedback_status_vector_append(rtcpheader, packet_len, status_vector_chunk_bits,
7462 status_vector_chunk, status);
7463 }
7464 } else {
7465 /* This is easy, the run length chunk count can just get bumped up */
7466 *run_length_chunk_count += 1;
7467 }
7468}
7469
7470static int rtp_transport_wide_cc_feedback_produce(const void *data)
7471{
7472 struct ast_rtp_instance *instance = (struct ast_rtp_instance *) data;
7473 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
7474 unsigned char *rtcpheader;
7475 char bdata[1024];
7476 struct rtp_transport_wide_cc_packet_statistics *first_packet;
7477 struct rtp_transport_wide_cc_packet_statistics *previous_packet;
7478 int i;
7479 int status_vector_chunk_bits = 14;
7480 uint16_t status_vector_chunk = (1 << 15) | (1 << 14);
7481 int run_length_chunk_count = 0;
7482 int run_length_chunk_status = -1;
7483 int packet_len = 20;
7484 int delta_len = 0;
7485 int packet_count = 0;
7486 unsigned int received_msw;
7487 unsigned int received_lsw;
7488 struct ast_sockaddr remote_address = { { 0, } };
7489 int res;
7490 int ice;
7491 unsigned int large_delta_count = 0;
7492 unsigned int small_delta_count = 0;
7493 unsigned int lost_count = 0;
7494
7495 if (!rtp || !rtp->rtcp || rtp->transport_wide_cc.schedid == -1) {
7496 ao2_ref(instance, -1);
7497 return 0;
7498 }
7499
7500 ao2_lock(instance);
7501
7502 /* If no packets have been received then do nothing */
7504 ao2_unlock(instance);
7505 return 1000;
7506 }
7507
7508 rtcpheader = (unsigned char *)bdata;
7509
7510 /* The first packet in the vector acts as our base sequence number and reference time */
7512 previous_packet = first_packet;
7513
7514 /* We go through each packet that we have statistics for, adding it either to a status
7515 * vector chunk or a run length chunk. The code tries to be as efficient as possible to
7516 * reduce packet size and will favor run length chunks when it makes sense.
7517 */
7518 for (i = 0; i < AST_VECTOR_SIZE(&rtp->transport_wide_cc.packet_statistics); ++i) {
7520 int lost = 0;
7521 int res = 0;
7522
7524
7525 packet_count++;
7526
7527 if (first_packet != statistics) {
7528 /* The vector stores statistics in a sorted fashion based on the sequence
7529 * number. This ensures we can detect any packets that have been lost/not
7530 * received by comparing the sequence numbers.
7531 */
7532 lost = statistics->seqno - (previous_packet->seqno + 1);
7533 lost_count += lost;
7534 }
7535
7536 while (lost) {
7537 /* We append a not received status until all the lost packets have been accounted for */
7538 rtp_transport_wide_cc_feedback_status_append(rtcpheader, &packet_len, &status_vector_chunk_bits,
7539 &status_vector_chunk, &run_length_chunk_count, &run_length_chunk_status, 0);
7540 packet_count++;
7541
7542 /* If there is no more room left for storing packets stop now, we leave 20
7543 * extra bits at the end just in case.
7544 */
7545 if (packet_len + delta_len + 20 > sizeof(bdata)) {
7546 res = -1;
7547 break;
7548 }
7549
7550 lost--;
7551 }
7552
7553 /* If the lost packet appending bailed out because we have no more space, then exit here too */
7554 if (res) {
7555 break;
7556 }
7557
7558 /* Per the spec the delta is in increments of 250 */
7559 statistics->delta = ast_tvdiff_us(statistics->received, previous_packet->received) / 250;
7560
7561 /* Based on the delta determine the status of this packet */
7562 if (statistics->delta < 0 || statistics->delta > 127) {
7563 /* Large or negative delta */
7564 rtp_transport_wide_cc_feedback_status_append(rtcpheader, &packet_len, &status_vector_chunk_bits,
7565 &status_vector_chunk, &run_length_chunk_count, &run_length_chunk_status, 2);
7566 delta_len += 2;
7567 large_delta_count++;
7568 } else {
7569 /* Small delta */
7570 rtp_transport_wide_cc_feedback_status_append(rtcpheader, &packet_len, &status_vector_chunk_bits,
7571 &status_vector_chunk, &run_length_chunk_count, &run_length_chunk_status, 1);
7572 delta_len += 1;
7573 small_delta_count++;
7574 }
7575
7576 previous_packet = statistics;
7577
7578 /* If there is no more room left in the packet stop handling of any subsequent packets */
7579 if (packet_len + delta_len + 20 > sizeof(bdata)) {
7580 break;
7581 }
7582 }
7583
7584 if (status_vector_chunk_bits != 14) {
7585 /* If the status vector chunk has packets in it then place it in the RTCP packet */
7586 put_unaligned_uint16(rtcpheader + packet_len, htons(status_vector_chunk));
7587 packet_len += 2;
7588 } else if (run_length_chunk_count) {
7589 /* If there is a run length chunk in progress then place it in the RTCP packet */
7590 put_unaligned_uint16(rtcpheader + packet_len, htons((0 << 15) | (run_length_chunk_status << 13) | run_length_chunk_count));
7591 packet_len += 2;
7592 }
7593
7594 /* We iterate again to build delta chunks */
7595 for (i = 0; i < AST_VECTOR_SIZE(&rtp->transport_wide_cc.packet_statistics); ++i) {
7597
7599
7600 if (statistics->delta < 0 || statistics->delta > 127) {
7601 /* We need 2 bytes to store this delta */
7602 put_unaligned_uint16(rtcpheader + packet_len, htons(statistics->delta));
7603 packet_len += 2;
7604 } else {
7605 /* We can store this delta in 1 byte */
7606 rtcpheader[packet_len] = statistics->delta;
7607 packet_len += 1;
7608 }
7609
7610 /* If this is the last packet handled by the run length chunk or status vector chunk code
7611 * then we can go no further.
7612 */
7613 if (statistics == previous_packet) {
7614 break;
7615 }
7616 }
7617
7618 /* Zero pad the end of the packet */
7619 while (packet_len % 4) {
7620 rtcpheader[packet_len++] = 0;
7621 }
7622
7623 /* Add the general RTCP header information */
7624 put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (AST_RTP_RTCP_FMT_TRANSPORT_WIDE_CC << 24)
7625 | (AST_RTP_RTCP_RTPFB << 16) | ((packet_len / 4) - 1)));
7626 put_unaligned_uint32(rtcpheader + 4, htonl(rtp->ssrc));
7627 put_unaligned_uint32(rtcpheader + 8, htonl(rtp->themssrc));
7628
7629 /* Add the transport-cc specific header information */
7630 put_unaligned_uint32(rtcpheader + 12, htonl((first_packet->seqno << 16) | packet_count));
7631
7632 timeval2ntp(first_packet->received, &received_msw, &received_lsw);
7633 put_unaligned_time24(rtcpheader + 16, received_msw, received_lsw);
7634 rtcpheader[19] = rtp->transport_wide_cc.feedback_count;
7635
7636 /* The packet is now fully constructed so send it out */
7637 ast_sockaddr_copy(&remote_address, &rtp->rtcp->them);
7638
7639 ast_debug_rtcp(2, "(%p) RTCP sending transport-cc feedback packet of size '%d' on '%s' with packet count of %d (small = %d, large = %d, lost = %d)\n",
7640 instance, packet_len, ast_rtp_instance_get_channel_id(instance), packet_count, small_delta_count, large_delta_count, lost_count);
7641
7642 res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len, 0, &remote_address, &ice);
7643 if (res < 0) {
7644 ast_log(LOG_ERROR, "RTCP transport-cc feedback error to %s due to %s\n",
7645 ast_sockaddr_stringify(&remote_address), strerror(errno));
7646 }
7647
7649
7651
7652 ao2_unlock(instance);
7653
7654 return 1000;
7655}
7656
7657static void rtp_instance_parse_transport_wide_cc(struct ast_rtp_instance *instance, struct ast_rtp *rtp,
7658 unsigned char *data, int len)
7659{
7660 uint16_t *seqno = (uint16_t *)data;
7662 struct ast_rtp_instance *transport = rtp->bundled ? rtp->bundled : instance;
7663 struct ast_rtp *transport_rtp = ast_rtp_instance_get_data(transport);
7664
7665 /* If the sequence number has cycled over then record it as such */
7666 if (((int)transport_rtp->transport_wide_cc.last_seqno - (int)ntohs(*seqno)) > 100) {
7667 transport_rtp->transport_wide_cc.cycles += RTP_SEQ_MOD;
7668 }
7669
7670 /* Populate the statistics information for this packet */
7671 statistics.seqno = transport_rtp->transport_wide_cc.cycles + ntohs(*seqno);
7672 statistics.received = ast_tvnow();
7673
7674 /* We allow at a maximum 1000 packet statistics in play at a time, if we hit the
7675 * limit we give up and start fresh.
7676 */
7677 if (AST_VECTOR_SIZE(&transport_rtp->transport_wide_cc.packet_statistics) > 1000) {
7679 }
7680
7681 if (!AST_VECTOR_SIZE(&transport_rtp->transport_wide_cc.packet_statistics) ||
7682 statistics.seqno > transport_rtp->transport_wide_cc.last_extended_seqno) {
7683 /* This is the expected path */
7685 return;
7686 }
7687
7688 transport_rtp->transport_wide_cc.last_extended_seqno = statistics.seqno;
7689 transport_rtp->transport_wide_cc.last_seqno = ntohs(*seqno);
7690 } else {
7691 /* This packet was out of order, so reorder it within the vector accordingly */
7694 return;
7695 }
7696 }
7697
7698 /* If we have not yet scheduled the periodic sending of feedback for this transport then do so */
7699 if (transport_rtp->transport_wide_cc.schedid < 0 && transport_rtp->rtcp) {
7700 ast_debug_rtcp(1, "(%p) RTCP starting transport-cc feedback transmission on RTP instance '%p'\n", instance, transport);
7701 ao2_ref(transport, +1);
7702 transport_rtp->transport_wide_cc.schedid = ast_sched_add(rtp->sched, 1000,
7704 if (transport_rtp->transport_wide_cc.schedid < 0) {
7705 ao2_ref(transport, -1);
7706 ast_log(LOG_WARNING, "Scheduling RTCP transport-cc feedback transmission failed on RTP instance '%p'\n",
7707 transport);
7708 }
7709 }
7710}
7711
7712static void rtp_instance_parse_extmap_extensions(struct ast_rtp_instance *instance, struct ast_rtp *rtp,
7713 unsigned char *extension, int len)
7714{
7715 int transport_wide_cc_id = ast_rtp_instance_extmap_get_id(instance, AST_RTP_EXTENSION_TRANSPORT_WIDE_CC);
7716 int pos = 0;
7717
7718 /* We currently only care about the transport-cc extension, so if that's not negotiated then do nothing */
7719 if (transport_wide_cc_id == -1) {
7720 return;
7721 }
7722
7723 /* Only while we do not exceed available extension data do we continue */
7724 while (pos < len) {
7725 int id = extension[pos] >> 4;
7726 int extension_len = (extension[pos] & 0xF) + 1;
7727
7728 /* We've handled the first byte as it contains the extension id and length, so always
7729 * skip ahead now
7730 */
7731 pos += 1;
7732
7733 if (id == 0) {
7734 /* From the RFC:
7735 * In both forms, padding bytes have the value of 0 (zero). They may be
7736 * placed between extension elements, if desired for alignment, or after
7737 * the last extension element, if needed for padding. A padding byte
7738 * does not supply the ID of an element, nor the length field. When a
7739 * padding byte is found, it is ignored and the parser moves on to
7740 * interpreting the next byte.
7741 */
7742 continue;
7743 } else if (id == 15) {
7744 /* From the RFC:
7745 * The local identifier value 15 is reserved for future extension and
7746 * MUST NOT be used as an identifier. If the ID value 15 is
7747 * encountered, its length field should be ignored, processing of the
7748 * entire extension should terminate at that point, and only the
7749 * extension elements present prior to the element with ID 15
7750 * considered.
7751 */
7752 break;
7753 } else if ((pos + extension_len) > len) {
7754 /* The extension is corrupted and is stating that it contains more data than is
7755 * available in the extensions data.
7756 */
7757 break;
7758 }
7759
7760 /* If this is transport-cc then we need to parse it further */
7761 if (id == transport_wide_cc_id) {
7762 rtp_instance_parse_transport_wide_cc(instance, rtp, extension + pos, extension_len);
7763 }
7764
7765 /* Skip ahead to the next extension */
7766 pos += extension_len;
7767 }
7768}
7769
7770static struct ast_frame *ast_rtp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp,
7771 const struct ast_sockaddr *remote_address, unsigned char *read_area, int length, int prev_seqno,
7772 unsigned int bundled)
7773{
7774 unsigned int *rtpheader = (unsigned int*)(read_area);
7775 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
7776 struct ast_rtp_instance *instance1;
7777 int res = length, hdrlen = 12, ssrc, seqno, payloadtype, padding, mark, ext, cc;
7778 unsigned int timestamp;
7779 RAII_VAR(struct ast_rtp_payload_type *, payload, NULL, ao2_cleanup);
7780 struct frame_list frames;
7781
7782 /* If this payload is encrypted then decrypt it using the given SRTP instance */
7783 if ((*read_area & 0xC0) && res_srtp && srtp && res_srtp->unprotect(
7784 srtp, read_area, &res, 0 | (srtp_replay_protection << 1)) < 0) {
7785 return &ast_null_frame;
7786 }
7787
7788 /* If we are currently sending DTMF to the remote party send a continuation packet */
7789 if (rtp->sending_digit) {
7790 ast_rtp_dtmf_continuation(instance);
7791 }
7792
7793 /* Pull out the various other fields we will need */
7794 ssrc = ntohl(rtpheader[2]);
7795 seqno = ntohl(rtpheader[0]);
7796 payloadtype = (seqno & 0x7f0000) >> 16;
7797 padding = seqno & (1 << 29);
7798 mark = seqno & (1 << 23);
7799 ext = seqno & (1 << 28);
7800 cc = (seqno & 0xF000000) >> 24;
7801 seqno &= 0xffff;
7802 timestamp = ntohl(rtpheader[1]);
7803
7805
7806 /* Remove any padding bytes that may be present */
7807 if (padding) {
7808 res -= read_area[res - 1];
7809 }
7810
7811 /* Skip over any CSRC fields */
7812 if (cc) {
7813 hdrlen += cc * 4;
7814 }
7815
7816 /* Look for any RTP extensions, currently we do not support any */
7817 if (ext) {
7818 int extensions_size = (ntohl(rtpheader[hdrlen/4]) & 0xffff) << 2;
7819 unsigned int profile;
7820 profile = (ntohl(rtpheader[3]) & 0xffff0000) >> 16;
7821
7822 if (profile == 0xbede) {
7823 /* We skip over the first 4 bytes as they are just for the one byte extension header */
7824 rtp_instance_parse_extmap_extensions(instance, rtp, read_area + hdrlen + 4, extensions_size);
7825 } else if (DEBUG_ATLEAST(1)) {
7826 if (profile == 0x505a) {
7827 ast_log(LOG_DEBUG, "Found Zfone extension in RTP stream - zrtp - not supported.\n");
7828 } else {
7829 /* SDP negotiated RTP extensions can not currently be output in logging */
7830 ast_log(LOG_DEBUG, "Found unknown RTP Extensions %x\n", profile);
7831 }
7832 }
7833
7834 hdrlen += extensions_size;
7835 hdrlen += 4;
7836 }
7837
7838 /* Make sure after we potentially mucked with the header length that it is once again valid */
7839 if (res < hdrlen) {
7840 ast_log(LOG_WARNING, "RTP Read too short (%d, expecting %d\n", res, hdrlen);
7842 }
7843
7844 /* Only non-bundled instances can change/learn the remote's SSRC implicitly. */
7845 if (!bundled) {
7846 /* Force a marker bit and change SSRC if the SSRC changes */
7847 if (rtp->themssrc_valid && rtp->themssrc != ssrc) {
7848 struct ast_frame *f, srcupdate = {
7850 .subclass.integer = AST_CONTROL_SRCCHANGE,
7851 };
7852
7853 if (!mark) {
7855 ast_debug(0, "(%p) RTP forcing Marker bit, because SSRC has changed\n", instance);
7856 }
7857 mark = 1;
7858 }
7859
7860 f = ast_frisolate(&srcupdate);
7862
7863 rtp->seedrxseqno = 0;
7864 rtp->rxcount = 0;
7865 rtp->rxoctetcount = 0;
7866 rtp->cycles = 0;
7867 prev_seqno = 0;
7868 rtp->last_seqno = 0;
7869 rtp->last_end_timestamp.ts = 0;
7870 rtp->last_end_timestamp.is_set = 0;
7871 if (rtp->rtcp) {
7872 rtp->rtcp->expected_prior = 0;
7873 rtp->rtcp->received_prior = 0;
7874 }
7875 }
7876
7877 rtp->themssrc = ssrc; /* Record their SSRC to put in future RR */
7878 rtp->themssrc_valid = 1;
7879 }
7880
7881 rtp->rxcount++;
7882 rtp->rxoctetcount += (res - hdrlen);
7883 if (rtp->rxcount == 1) {
7884 rtp->seedrxseqno = seqno;
7885 }
7886
7887 /* Do not schedule RR if RTCP isn't run */
7888 if (rtp->rtcp && !ast_sockaddr_isnull(&rtp->rtcp->them) && rtp->rtcp->schedid < 0) {
7889 /* Schedule transmission of Receiver Report */
7890 ao2_ref(instance, +1);
7892 if (rtp->rtcp->schedid < 0) {
7893 ao2_ref(instance, -1);
7894 ast_log(LOG_WARNING, "scheduling RTCP transmission failed.\n");
7895 }
7896 }
7897 if ((int)prev_seqno - (int)seqno > 100) /* if so it would indicate that the sender cycled; allow for misordering */
7898 rtp->cycles += RTP_SEQ_MOD;
7899
7900 /* If we are directly bridged to another instance send the audio directly out,
7901 * but only after updating core information about the received traffic so that
7902 * outgoing RTCP reflects it.
7903 */
7904 instance1 = ast_rtp_instance_get_bridged(instance);
7905 if (instance1
7906 && !bridge_p2p_rtp_write(instance, instance1, rtpheader, res, hdrlen)) {
7907 struct timeval rxtime;
7908 struct ast_frame *f;
7909
7910 /* Update statistics for jitter so they are correct in RTCP */
7911 calc_rxstamp_and_jitter(&rxtime, rtp, timestamp, mark);
7912
7913
7914 /* When doing P2P we don't need to raise any frames about SSRC change to the core */
7915 while ((f = AST_LIST_REMOVE_HEAD(&frames, frame_list)) != NULL) {
7916 ast_frfree(f);
7917 }
7918
7919 return &ast_null_frame;
7920 }
7921
7922 payload = ast_rtp_codecs_get_payload(ast_rtp_instance_get_codecs(instance), payloadtype);
7923 if (!payload) {
7924 /* Unknown payload type. */
7926 }
7927
7928 /* If the payload is not actually an Asterisk one but a special one pass it off to the respective handler */
7929 if (!payload->asterisk_format) {
7930 struct ast_frame *f = NULL;
7931 if (payload->rtp_code == AST_RTP_DTMF) {
7932 /* process_dtmf_rfc2833 may need to return multiple frames. We do this
7933 * by passing the pointer to the frame list to it so that the method
7934 * can append frames to the list as needed.
7935 */
7936 process_dtmf_rfc2833(instance, read_area + hdrlen, res - hdrlen, seqno, timestamp, payloadtype, mark, &frames);
7937 } else if (payload->rtp_code == AST_RTP_CISCO_DTMF) {
7938 f = process_dtmf_cisco(instance, read_area + hdrlen, res - hdrlen, seqno, timestamp, payloadtype, mark);
7939 } else if (payload->rtp_code == AST_RTP_CN) {
7940 f = process_cn_rfc3389(instance, read_area + hdrlen, res - hdrlen, seqno, timestamp, payloadtype, mark);
7941 } else {
7942 ast_log(LOG_NOTICE, "Unknown RTP codec %d received from '%s'\n",
7943 payloadtype,
7944 ast_sockaddr_stringify(remote_address));
7945 }
7946
7947 if (f) {
7949 }
7950 /* Even if no frame was returned by one of the above methods,
7951 * we may have a frame to return in our frame list
7952 */
7954 }
7955
7956 ao2_replace(rtp->lastrxformat, payload->format);
7957 ao2_replace(rtp->f.subclass.format, payload->format);
7958 switch (ast_format_get_type(rtp->f.subclass.format)) {
7961 break;
7964 break;
7966 rtp->f.frametype = AST_FRAME_TEXT;
7967 break;
7969 /* Fall through */
7970 default:
7971 ast_log(LOG_WARNING, "Unknown or unsupported media type: %s\n",
7973 return &ast_null_frame;
7974 }
7975
7976 if (rtp->dtmf_timeout && rtp->dtmf_timeout < timestamp) {
7977 rtp->dtmf_timeout = 0;
7978
7979 if (rtp->resp) {
7980 struct ast_frame *f;
7981 f = create_dtmf_frame(instance, AST_FRAME_DTMF_END, 0);
7983 rtp->resp = 0;
7984 rtp->dtmf_timeout = rtp->dtmf_duration = 0;
7986 return AST_LIST_FIRST(&frames);
7987 }
7988 }
7989
7990 rtp->f.src = "RTP";
7991 rtp->f.mallocd = 0;
7992 rtp->f.datalen = res - hdrlen;
7993 rtp->f.data.ptr = read_area + hdrlen;
7994 rtp->f.offset = hdrlen + AST_FRIENDLY_OFFSET;
7996 rtp->f.seqno = seqno;
7997 rtp->f.stream_num = rtp->stream_num;
7998
8000 && ((int)seqno - (prev_seqno + 1) > 0)
8001 && ((int)seqno - (prev_seqno + 1) < 10)) {
8002 unsigned char *data = rtp->f.data.ptr;
8003
8004 memmove(rtp->f.data.ptr+3, rtp->f.data.ptr, rtp->f.datalen);
8005 rtp->f.datalen +=3;
8006 *data++ = 0xEF;
8007 *data++ = 0xBF;
8008 *data = 0xBD;
8009 }
8010
8012 unsigned char *data = rtp->f.data.ptr;
8013 unsigned char *header_end;
8014 int num_generations;
8015 int header_length;
8016 int len;
8017 int diff =(int)seqno - (prev_seqno+1); /* if diff = 0, no drop*/
8018 int x;
8019
8021 header_end = memchr(data, ((*data) & 0x7f), rtp->f.datalen);
8022 if (header_end == NULL) {
8024 }
8025 header_end++;
8026
8027 header_length = header_end - data;
8028 num_generations = header_length / 4;
8029 len = header_length;
8030
8031 if (!diff) {
8032 for (x = 0; x < num_generations; x++)
8033 len += data[x * 4 + 3];
8034
8035 if (!(rtp->f.datalen - len))
8037
8038 rtp->f.data.ptr += len;
8039 rtp->f.datalen -= len;
8040 } else if (diff > num_generations && diff < 10) {
8041 len -= 3;
8042 rtp->f.data.ptr += len;
8043 rtp->f.datalen -= len;
8044
8045 data = rtp->f.data.ptr;
8046 *data++ = 0xEF;
8047 *data++ = 0xBF;
8048 *data = 0xBD;
8049 } else {
8050 for ( x = 0; x < num_generations - diff; x++)
8051 len += data[x * 4 + 3];
8052
8053 rtp->f.data.ptr += len;
8054 rtp->f.datalen -= len;
8055 }
8056 }
8057
8059 rtp->f.samples = ast_codec_samples_count(&rtp->f);
8061 ast_frame_byteswap_be(&rtp->f);
8062 }
8063 calc_rxstamp_and_jitter(&rtp->f.delivery, rtp, timestamp, mark);
8064 /* Add timing data to let ast_generic_bridge() put the frame into a jitterbuf */
8066 rtp->f.ts = timestamp / (ast_rtp_get_rate(rtp->f.subclass.format) / 1000);
8067 rtp->f.len = rtp->f.samples / ((ast_format_get_sample_rate(rtp->f.subclass.format) / 1000));
8069 /* Video -- samples is # of samples vs. 90000 */
8070 if (!rtp->lastividtimestamp)
8071 rtp->lastividtimestamp = timestamp;
8072 calc_rxstamp_and_jitter(&rtp->f.delivery, rtp, timestamp, mark);
8074 rtp->f.ts = timestamp / (ast_rtp_get_rate(rtp->f.subclass.format) / 1000);
8075 rtp->f.samples = timestamp - rtp->lastividtimestamp;
8076 rtp->lastividtimestamp = timestamp;
8077 rtp->f.delivery.tv_sec = 0;
8078 rtp->f.delivery.tv_usec = 0;
8079 /* Pass the RTP marker bit as bit */
8080 rtp->f.subclass.frame_ending = mark ? 1 : 0;
8082 /* TEXT -- samples is # of samples vs. 1000 */
8083 if (!rtp->lastitexttimestamp)
8084 rtp->lastitexttimestamp = timestamp;
8085 rtp->f.samples = timestamp - rtp->lastitexttimestamp;
8086 rtp->lastitexttimestamp = timestamp;
8087 rtp->f.delivery.tv_sec = 0;
8088 rtp->f.delivery.tv_usec = 0;
8089 } else {
8090 ast_log(LOG_WARNING, "Unknown or unsupported media type: %s\n",
8092 return &ast_null_frame;
8093 }
8094
8096 return AST_LIST_FIRST(&frames);
8097}
8098
8099#ifdef AST_DEVMODE
8100
8101struct rtp_drop_packets_data {
8102 /* Whether or not to randomize the number of packets to drop. */
8103 unsigned int use_random_num;
8104 /* Whether or not to randomize the time interval between packets drops. */
8105 unsigned int use_random_interval;
8106 /* The total number of packets to drop. If 'use_random_num' is true then this
8107 * value becomes the upper bound for a number of random packets to drop. */
8108 unsigned int num_to_drop;
8109 /* The current number of packets that have been dropped during an interval. */
8110 unsigned int num_dropped;
8111 /* The optional interval to use between packet drops. If 'use_random_interval'
8112 * is true then this values becomes the upper bound for a random interval used. */
8113 struct timeval interval;
8114 /* The next time a packet drop should be triggered. */
8115 struct timeval next;
8116 /* An optional IP address from which to drop packets from. */
8117 struct ast_sockaddr addr;
8118 /* The optional port from which to drop packets from. */
8119 unsigned int port;
8120};
8121
8122static struct rtp_drop_packets_data drop_packets_data;
8123
8124static void drop_packets_data_update(struct timeval tv)
8125{
8126 /*
8127 * num_dropped keeps up with the number of packets that have been dropped for a
8128 * given interval. Once the specified number of packets have been dropped and
8129 * the next time interval is ready to trigger then set this number to zero (drop
8130 * the next 'n' packets up to 'num_to_drop'), or if 'use_random_num' is set to
8131 * true then set to a random number between zero and 'num_to_drop'.
8132 */
8133 drop_packets_data.num_dropped = drop_packets_data.use_random_num ?
8134 ast_random() % drop_packets_data.num_to_drop : 0;
8135
8136 /*
8137 * A specified number of packets can be dropped at a given interval (e.g every
8138 * 30 seconds). If 'use_random_interval' is false simply add the interval to
8139 * the given time to get the next trigger point. If set to true, then get a
8140 * random time between the given time and up to the specified interval.
8141 */
8142 if (drop_packets_data.use_random_interval) {
8143 /* Calculate as a percentage of the specified drop packets interval */
8144 struct timeval interval = ast_time_create_by_unit(ast_time_tv_to_usec(
8145 &drop_packets_data.interval) * ((double)(ast_random() % 100 + 1) / 100),
8147
8148 drop_packets_data.next = ast_tvadd(tv, interval);
8149 } else {
8150 drop_packets_data.next = ast_tvadd(tv, drop_packets_data.interval);
8151 }
8152}
8153
8154static int should_drop_packets(struct ast_sockaddr *addr)
8155{
8156 struct timeval tv;
8157
8158 if (!drop_packets_data.num_to_drop) {
8159 return 0;
8160 }
8161
8162 /*
8163 * If an address has been specified then filter on it, and also the port if
8164 * it too was included.
8165 */
8166 if (!ast_sockaddr_isnull(&drop_packets_data.addr) &&
8167 (drop_packets_data.port ?
8168 ast_sockaddr_cmp(&drop_packets_data.addr, addr) :
8169 ast_sockaddr_cmp_addr(&drop_packets_data.addr, addr)) != 0) {
8170 /* Address and/or port does not match */
8171 return 0;
8172 }
8173
8174 /* Keep dropping packets until we've reached the total to drop */
8175 if (drop_packets_data.num_dropped < drop_packets_data.num_to_drop) {
8176 ++drop_packets_data.num_dropped;
8177 return 1;
8178 }
8179
8180 /*
8181 * Once the set number of packets has been dropped check to see if it's
8182 * time to drop more.
8183 */
8184
8185 if (ast_tvzero(drop_packets_data.interval)) {
8186 /* If no interval then drop specified number of packets and be done */
8187 drop_packets_data.num_to_drop = 0;
8188 return 0;
8189 }
8190
8191 tv = ast_tvnow();
8192 if (ast_tvcmp(tv, drop_packets_data.next) == -1) {
8193 /* Still waiting for the next time interval to elapse */
8194 return 0;
8195 }
8196
8197 /*
8198 * The next time interval has elapsed so update the tracking structure
8199 * in order to start dropping more packets, and figure out when the next
8200 * time interval is.
8201 */
8202 drop_packets_data_update(tv);
8203 return 1;
8204}
8205
8206#endif
8207
8208/*! \pre instance is locked */
8209static struct ast_frame *ast_rtp_read(struct ast_rtp_instance *instance, int rtcp)
8210{
8211 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
8212 struct ast_srtp *srtp;
8214 struct ast_sockaddr addr;
8215 int res, hdrlen = 12, version, payloadtype;
8216 unsigned char *read_area = rtp->rawdata + AST_FRIENDLY_OFFSET;
8217 size_t read_area_size = sizeof(rtp->rawdata) - AST_FRIENDLY_OFFSET;
8218 unsigned int *rtpheader = (unsigned int*)(read_area), seqno, ssrc, timestamp, prev_seqno;
8219 struct ast_sockaddr remote_address = { {0,} };
8220 struct frame_list frames;
8221 struct ast_frame *frame;
8222 unsigned int bundled;
8223
8224 /* If this is actually RTCP let's hop on over and handle it */
8225 if (rtcp) {
8226 if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
8227 return ast_rtcp_read(instance);
8228 }
8229 return &ast_null_frame;
8230 }
8231
8232 /* Actually read in the data from the socket */
8233 if ((res = rtp_recvfrom(instance, read_area, read_area_size, 0,
8234 &addr)) < 0) {
8235 if (res == RTP_DTLS_ESTABLISHED) {
8238 return &rtp->f;
8239 }
8240
8241 ast_assert(errno != EBADF);
8242 if (errno != EAGAIN) {
8243 ast_log(LOG_WARNING, "RTP Read error: %s. Hanging up.\n",
8244 (errno) ? strerror(errno) : "Unspecified");
8245 return NULL;
8246 }
8247 return &ast_null_frame;
8248 }
8249
8250 /* If this was handled by the ICE session don't do anything */
8251 if (!res) {
8252 return &ast_null_frame;
8253 }
8254
8255 /* This could be a multiplexed RTCP packet. If so, be sure to interpret it correctly */
8256 if (rtcp_mux(rtp, read_area)) {
8257 return ast_rtcp_interpret(instance, ast_rtp_instance_get_srtp(instance, 1), read_area, res, &addr);
8258 }
8259
8260 /* Make sure the data that was read in is actually enough to make up an RTP packet */
8261 if (res < hdrlen) {
8262 /* If this is a keepalive containing only nulls, don't bother with a warning */
8263 int i;
8264 for (i = 0; i < res; ++i) {
8265 if (read_area[i] != '\0') {
8266 ast_log(LOG_WARNING, "RTP Read too short\n");
8267 return &ast_null_frame;
8268 }
8269 }
8270 return &ast_null_frame;
8271 }
8272
8273 /* Get fields and verify this is an RTP packet */
8274 seqno = ntohl(rtpheader[0]);
8275
8276 ast_rtp_instance_get_remote_address(instance, &remote_address);
8277
8278 if (!(version = (seqno & 0xC0000000) >> 30)) {
8279 struct sockaddr_in addr_tmp;
8280 struct ast_sockaddr addr_v4;
8281 if (ast_sockaddr_is_ipv4(&addr)) {
8282 ast_sockaddr_to_sin(&addr, &addr_tmp);
8283 } else if (ast_sockaddr_ipv4_mapped(&addr, &addr_v4)) {
8284 ast_debug_stun(1, "(%p) STUN using IPv6 mapped address %s\n",
8285 instance, ast_sockaddr_stringify(&addr));
8286 ast_sockaddr_to_sin(&addr_v4, &addr_tmp);
8287 } else {
8288 ast_debug_stun(1, "(%p) STUN cannot do for non IPv4 address %s\n",
8289 instance, ast_sockaddr_stringify(&addr));
8290 return &ast_null_frame;
8291 }
8292 if ((ast_stun_handle_packet(rtp->s, &addr_tmp, read_area, res, NULL, NULL) == AST_STUN_ACCEPT) &&
8293 ast_sockaddr_isnull(&remote_address)) {
8294 ast_sockaddr_from_sin(&addr, &addr_tmp);
8295 ast_rtp_instance_set_remote_address(instance, &addr);
8296 }
8297 return &ast_null_frame;
8298 }
8299
8300 /* If the version is not what we expected by this point then just drop the packet */
8301 if (version != 2) {
8302 return &ast_null_frame;
8303 }
8304
8305 /* We use the SSRC to determine what RTP instance this packet is actually for */
8306 ssrc = ntohl(rtpheader[2]);
8307
8308 /* We use the SRTP data from the provided instance that it came in on, not the child */
8309 srtp = ast_rtp_instance_get_srtp(instance, 0);
8310
8311 /* Determine the appropriate instance for this */
8312 child = rtp_find_instance_by_packet_source_ssrc(instance, rtp, ssrc);
8313 if (!child) {
8314 /* Neither the bundled parent nor any child has this SSRC */
8315 return &ast_null_frame;
8316 }
8317 if (child != instance) {
8318 /* It is safe to hold the child lock while holding the parent lock, we guarantee that the locking order
8319 * is always parent->child or that the child lock is not held when acquiring the parent lock.
8320 */
8321 ao2_lock(child);
8322 instance = child;
8323 rtp = ast_rtp_instance_get_data(instance);
8324 } else {
8325 /* The child is the parent! We don't need to unlock it. */
8326 child = NULL;
8327 }
8328
8329 /* If strict RTP protection is enabled see if we need to learn the remote address or if we need to drop the packet */
8330 switch (rtp->strict_rtp_state) {
8331 case STRICT_RTP_LEARN:
8332 /*
8333 * Scenario setup:
8334 * PartyA -- Ast1 -- Ast2 -- PartyB
8335 *
8336 * The learning timeout is necessary for Ast1 to handle the above
8337 * setup where PartyA calls PartyB and Ast2 initiates direct media
8338 * between Ast1 and PartyB. Ast1 may lock onto the Ast2 stream and
8339 * never learn the PartyB stream when it starts. The timeout makes
8340 * Ast1 stay in the learning state long enough to see and learn the
8341 * RTP stream from PartyB.
8342 *
8343 * To mitigate against attack, the learning state cannot switch
8344 * streams while there are competing streams. The competing streams
8345 * interfere with each other's qualification. Once we accept a
8346 * stream and reach the timeout, an attacker cannot interfere
8347 * anymore.
8348 *
8349 * Here are a few scenarios and each one assumes that the streams
8350 * are continuous:
8351 *
8352 * 1) We already have a known stream source address and the known
8353 * stream wants to change to a new source address. An attacking
8354 * stream will block learning the new stream source. After the
8355 * timeout we re-lock onto the original stream source address which
8356 * likely went away. The result is one way audio.
8357 *
8358 * 2) We already have a known stream source address and the known
8359 * stream doesn't want to change source addresses. An attacking
8360 * stream will not be able to replace the known stream. After the
8361 * timeout we re-lock onto the known stream. The call is not
8362 * affected.
8363 *
8364 * 3) We don't have a known stream source address. This presumably
8365 * is the start of a call. Competing streams will result in staying
8366 * in learning mode until a stream becomes the victor and we reach
8367 * the timeout. We cannot exit learning if we have no known stream
8368 * to lock onto. The result is one way audio until there is a victor.
8369 *
8370 * If we learn a stream source address before the timeout we will be
8371 * in scenario 1) or 2) when a competing stream starts.
8372 */
8375 ast_verb(4, "%p -- Strict RTP learning complete - Locking on source address %s\n",
8377 ast_test_suite_event_notify("STRICT_RTP_LEARN", "Source: %s",
8380 } else {
8381 struct ast_sockaddr target_address;
8382
8383 if (!ast_sockaddr_cmp(&rtp->strict_rtp_address, &addr)) {
8384 /*
8385 * We are open to learning a new address but have received
8386 * traffic from the current address, accept it and reset
8387 * the learning counts for a new source. When no more
8388 * current source packets arrive a new source can take over
8389 * once sufficient traffic is received.
8390 */
8392 break;
8393 }
8394
8395 /*
8396 * We give preferential treatment to the requested target address
8397 * (negotiated SDP address) where we are to send our RTP. However,
8398 * the other end has no obligation to send from that address even
8399 * though it is practically a requirement when NAT is involved.
8400 */
8401 ast_rtp_instance_get_requested_target_address(instance, &target_address);
8402 if (!ast_sockaddr_cmp(&target_address, &addr)) {
8403 /* Accept the negotiated target RTP stream as the source */
8404 ast_verb(4, "%p -- Strict RTP switching to RTP target address %s as source\n",
8405 rtp, ast_sockaddr_stringify(&addr));
8408 break;
8409 }
8410
8411 /*
8412 * Trying to learn a new address. If we pass a probationary period
8413 * with it, that means we've stopped getting RTP from the original
8414 * source and we should switch to it.
8415 */
8418 struct ast_rtp_codecs *codecs;
8419
8423 ast_verb(4, "%p -- Strict RTP qualifying stream type: %s\n",
8425 }
8426 if (!rtp_learning_rtp_seq_update(&rtp->rtp_source_learn, seqno)) {
8427 /* Accept the new RTP stream */
8428 ast_verb(4, "%p -- Strict RTP switching source address to %s\n",
8429 rtp, ast_sockaddr_stringify(&addr));
8432 break;
8433 }
8434 /* Not ready to accept the RTP stream candidate */
8435 ast_debug_rtp(1, "(%p) RTP %p -- Received packet from %s, dropping due to strict RTP protection. Will switch to it in %d packets.\n",
8436 instance, rtp, ast_sockaddr_stringify(&addr), rtp->rtp_source_learn.packets);
8437 } else {
8438 /*
8439 * This is either an attacking stream or
8440 * the start of the expected new stream.
8441 */
8444 ast_debug_rtp(1, "(%p) RTP %p -- Received packet from %s, dropping due to strict RTP protection. Qualifying new stream.\n",
8445 instance, rtp, ast_sockaddr_stringify(&addr));
8446 }
8447 return &ast_null_frame;
8448 }
8449 /* Fall through */
8450 case STRICT_RTP_CLOSED:
8451 /*
8452 * We should not allow a stream address change if the SSRC matches
8453 * once strictrtp learning is closed. Any kind of address change
8454 * like this should have happened while we were in the learning
8455 * state. We do not want to allow the possibility of an attacker
8456 * interfering with the RTP stream after the learning period.
8457 * An attacker could manage to get an RTCP packet redirected to
8458 * them which can contain the SSRC value.
8459 */
8460 if (!ast_sockaddr_cmp(&rtp->strict_rtp_address, &addr)) {
8461 break;
8462 }
8463 ast_debug_rtp(1, "(%p) RTP %p -- Received packet from %s, dropping due to strict RTP protection.\n",
8464 instance, rtp, ast_sockaddr_stringify(&addr));
8465#ifdef TEST_FRAMEWORK
8466 {
8467 static int strict_rtp_test_event = 1;
8468 if (strict_rtp_test_event) {
8469 ast_test_suite_event_notify("STRICT_RTP_CLOSED", "Source: %s",
8470 ast_sockaddr_stringify(&addr));
8471 strict_rtp_test_event = 0; /* Only run this event once to prevent possible spam */
8472 }
8473 }
8474#endif
8475 return &ast_null_frame;
8476 case STRICT_RTP_OPEN:
8477 break;
8478 }
8479
8480 /* If symmetric RTP is enabled see if the remote side is not what we expected and change where we are sending audio */
8482 if (ast_sockaddr_cmp(&remote_address, &addr)) {
8483 /* do not update the originally given address, but only the remote */
8485 ast_sockaddr_copy(&remote_address, &addr);
8486 if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
8487 ast_sockaddr_copy(&rtp->rtcp->them, &addr);
8489 }
8492 ast_debug(0, "(%p) RTP NAT: Got audio from other end. Now sending to address %s\n",
8493 instance, ast_sockaddr_stringify(&remote_address));
8494 }
8495 }
8496
8497 /* Pull out the various other fields we will need */
8498 payloadtype = (seqno & 0x7f0000) >> 16;
8499 seqno &= 0xffff;
8500 timestamp = ntohl(rtpheader[1]);
8501
8502#ifdef AST_DEVMODE
8503 if (should_drop_packets(&addr)) {
8504 ast_debug(0, "(%p) RTP: drop received packet from %s (type %-2.2d, seq %-6.6u, ts %-6.6u, len %-6.6d)\n",
8505 instance, ast_sockaddr_stringify(&addr), payloadtype, seqno, timestamp, res - hdrlen);
8506 return &ast_null_frame;
8507 }
8508#endif
8509
8510 if (rtp_debug_test_addr(&addr)) {
8511 ast_verbose("Got RTP packet from %s (type %-2.2d, seq %-6.6u, ts %-6.6u, len %-6.6d)\n",
8513 payloadtype, seqno, timestamp, res - hdrlen);
8514 }
8515
8517
8518 bundled = (child || AST_VECTOR_SIZE(&rtp->ssrc_mapping)) ? 1 : 0;
8519
8520 prev_seqno = rtp->lastrxseqno;
8521 /* We need to save lastrxseqno for use by jitter before resetting it. */
8522 rtp->prevrxseqno = rtp->lastrxseqno;
8523 rtp->lastrxseqno = seqno;
8524
8525 if (!rtp->recv_buffer) {
8526 /* If there is no receive buffer then we can pass back the frame directly */
8527 frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
8529 return AST_LIST_FIRST(&frames);
8530 } else if (rtp->expectedrxseqno == -1 || seqno == rtp->expectedrxseqno) {
8531 rtp->expectedrxseqno = seqno + 1;
8532
8533 /* We've cycled over, so go back to 0 */
8534 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8535 rtp->expectedrxseqno = 0;
8536 }
8537
8538 /* If there are no buffered packets that will be placed after this frame then we can
8539 * return it directly without duplicating it.
8540 */
8542 frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
8544 return AST_LIST_FIRST(&frames);
8545 }
8546
8549 ast_debug_rtp(2, "(%p) RTP Packet with sequence number '%d' on instance is no longer missing\n",
8550 instance, seqno);
8551 }
8552
8553 /* If we don't have the next packet after this we can directly return the frame, as there is no
8554 * chance it will be overwritten.
8555 */
8557 frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
8559 return AST_LIST_FIRST(&frames);
8560 }
8561
8562 /* Otherwise we need to dupe the frame so that the potential processing of frames placed after
8563 * it do not overwrite the data. You may be thinking that we could just add the current packet
8564 * to the head of the frames list and avoid having to duplicate it but this would result in out
8565 * of order packet processing by libsrtp which we are trying to avoid.
8566 */
8567 frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled));
8568 if (frame) {
8570 prev_seqno = seqno;
8571 }
8572
8573 /* Add any additional packets that we have buffered and that are available */
8574 while (ast_data_buffer_count(rtp->recv_buffer)) {
8575 struct ast_rtp_rtcp_nack_payload *payload;
8576
8578 if (!payload) {
8579 break;
8580 }
8581
8582 frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, payload->buf, payload->size, prev_seqno, bundled));
8583 ast_free(payload);
8584
8585 if (!frame) {
8586 /* If this packet can't be interpreted due to being out of memory we return what we have and assume
8587 * that we will determine it is a missing packet later and NACK for it.
8588 */
8589 return AST_LIST_FIRST(&frames);
8590 }
8591
8592 ast_debug_rtp(2, "(%p) RTP pulled buffered packet with sequence number '%d' to additionally return\n",
8593 instance, frame->seqno);
8595 prev_seqno = rtp->expectedrxseqno;
8596 rtp->expectedrxseqno++;
8597 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8598 rtp->expectedrxseqno = 0;
8599 }
8600 }
8601
8602 return AST_LIST_FIRST(&frames);
8603 } else if ((((seqno - rtp->expectedrxseqno) > 100) && timestamp > rtp->lastividtimestamp) ||
8605 int inserted = 0;
8606
8607 /* We have a large number of outstanding buffered packets or we've jumped far ahead in time.
8608 * To compensate we dump what we have in the buffer and place the current packet in a logical
8609 * spot. In the case of video we also require a full frame to give the decoding side a fighting
8610 * chance.
8611 */
8612
8614 ast_debug_rtp(2, "(%p) RTP source has wild gap or packet loss, sending FIR\n",
8615 instance);
8616 rtp_write_rtcp_fir(instance, rtp, &remote_address);
8617 }
8618
8619 /* This works by going through the progression of the sequence number retrieving buffered packets
8620 * or inserting the current received packet until we've run out of packets. This ensures that the
8621 * packets are in the correct sequence number order.
8622 */
8623 while (ast_data_buffer_count(rtp->recv_buffer)) {
8624 struct ast_rtp_rtcp_nack_payload *payload;
8625
8626 /* If the packet we received is the one we are expecting at this point then add it in */
8627 if (rtp->expectedrxseqno == seqno) {
8628 frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled));
8629 if (frame) {
8631 prev_seqno = seqno;
8632 ast_debug_rtp(2, "(%p) RTP inserted just received packet with sequence number '%d' in correct order\n",
8633 instance, seqno);
8634 }
8635 /* It is possible due to packet retransmission for this packet to also exist in the receive
8636 * buffer so we explicitly remove it in case this occurs, otherwise the receive buffer will
8637 * never be empty.
8638 */
8639 payload = (struct ast_rtp_rtcp_nack_payload *)ast_data_buffer_remove(rtp->recv_buffer, seqno);
8640 if (payload) {
8641 ast_free(payload);
8642 }
8643 rtp->expectedrxseqno++;
8644 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8645 rtp->expectedrxseqno = 0;
8646 }
8647 inserted = 1;
8648 continue;
8649 }
8650
8652 if (payload) {
8653 frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, payload->buf, payload->size, prev_seqno, bundled));
8654 if (frame) {
8656 prev_seqno = rtp->expectedrxseqno;
8657 ast_debug_rtp(2, "(%p) RTP emptying queue and returning packet with sequence number '%d'\n",
8658 instance, frame->seqno);
8659 }
8660 ast_free(payload);
8661 }
8662
8663 rtp->expectedrxseqno++;
8664 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8665 rtp->expectedrxseqno = 0;
8666 }
8667 }
8668
8669 if (!inserted) {
8670 /* This current packet goes after them, and we assume that packets going forward will follow
8671 * that new sequence number increment. It is okay for this to not be duplicated as it is guaranteed
8672 * to be the last packet processed right now and it is also guaranteed that it will always return
8673 * non-NULL.
8674 */
8675 frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
8677 rtp->expectedrxseqno = seqno + 1;
8678 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8679 rtp->expectedrxseqno = 0;
8680 }
8681
8682 ast_debug_rtp(2, "(%p) RTP adding just received packet with sequence number '%d' to end of dumped queue\n",
8683 instance, seqno);
8684 }
8685
8686 /* When we flush increase our chance for next time by growing the receive buffer when possible
8687 * by how many packets we missed, to give ourselves a bit more breathing room.
8688 */
8691 ast_debug_rtp(2, "(%p) RTP receive buffer is now at maximum of %zu\n", instance, ast_data_buffer_max(rtp->recv_buffer));
8692
8693 /* As there is such a large gap we don't want to flood the order side with missing packets, so we
8694 * give up and start anew.
8695 */
8697
8698 return AST_LIST_FIRST(&frames);
8699 }
8700
8701 /* We're finished with the frames list */
8703
8704 /* Determine if the received packet is from the last OLD_PACKET_COUNT (1000 by default) packets or not.
8705 * For the case where the received sequence number exceeds that of the expected sequence number we calculate
8706 * the past sequence number that would be 1000 sequence numbers ago. If the received sequence number
8707 * exceeds or meets that then it is within OLD_PACKET_COUNT packets ago. For example if the expected
8708 * sequence number is 100 and we receive 65530, then it would be considered old. This is because
8709 * 65535 - 1000 + 100 = 64635 which gives us the sequence number at which we would consider the packets
8710 * old. Since 65530 is above that, it would be considered old.
8711 * For the case where the received sequence number is less than the expected sequence number we can do
8712 * a simple subtraction to see if it is 1000 packets ago or not.
8713 */
8714 if ((seqno < rtp->expectedrxseqno && ((rtp->expectedrxseqno - seqno) <= OLD_PACKET_COUNT)) ||
8715 (seqno > rtp->expectedrxseqno && (seqno >= (65535 - OLD_PACKET_COUNT + rtp->expectedrxseqno)))) {
8716 /* If this is a packet from the past then we have received a duplicate packet, so just drop it */
8717 ast_debug_rtp(2, "(%p) RTP received an old packet with sequence number '%d', dropping it\n",
8718 instance, seqno);
8719 return &ast_null_frame;
8720 } else if (ast_data_buffer_get(rtp->recv_buffer, seqno)) {
8721 /* If this is a packet we already have buffered then it is a duplicate, so just drop it */
8722 ast_debug_rtp(2, "(%p) RTP received a duplicate transmission of packet with sequence number '%d', dropping it\n",
8723 instance, seqno);
8724 return &ast_null_frame;
8725 } else {
8726 /* This is an out of order packet from the future */
8727 struct ast_rtp_rtcp_nack_payload *payload;
8728 int missing_seqno;
8729 int remove_failed;
8730 unsigned int missing_seqnos_added = 0;
8731
8732 ast_debug_rtp(2, "(%p) RTP received an out of order packet with sequence number '%d' while expecting '%d' from the future\n",
8733 instance, seqno, rtp->expectedrxseqno);
8734
8735 payload = ast_malloc(sizeof(*payload) + res);
8736 if (!payload) {
8737 /* If the payload can't be allocated then we can't defer this packet right now.
8738 * Instead of dumping what we have we pretend we lost this packet. It will then
8739 * get NACKed later or the existing buffer will be returned entirely. Well, we may
8740 * try since we're seemingly out of memory. It's a bad situation all around and
8741 * packets are likely to get lost anyway.
8742 */
8743 return &ast_null_frame;
8744 }
8745
8746 payload->size = res;
8747 memcpy(payload->buf, rtpheader, res);
8748 if (ast_data_buffer_put(rtp->recv_buffer, seqno, payload) == -1) {
8749 ast_free(payload);
8750 }
8751
8752 /* If this sequence number is removed that means we had a gap and this packet has filled it in
8753 * some. Since it was part of the gap we will have already added any other missing sequence numbers
8754 * before it (and possibly after it) to the vector so we don't need to do that again. Note that
8755 * remove_failed will be set to -1 if the sequence number isn't removed, and 0 if it is.
8756 */
8757 remove_failed = AST_VECTOR_REMOVE_CMP_ORDERED(&rtp->missing_seqno, seqno, find_by_value,
8759 if (!remove_failed) {
8760 ast_debug_rtp(2, "(%p) RTP packet with sequence number '%d' is no longer missing\n",
8761 instance, seqno);
8762 }
8763
8764 /* The missing sequence number code works by taking the sequence number of the
8765 * packet we've just received and going backwards until we hit the sequence number
8766 * of the last packet we've received. While doing so we check to make sure that the
8767 * sequence number is not already missing and that it is not already buffered.
8768 */
8769 missing_seqno = seqno;
8770 while (remove_failed) {
8771 missing_seqno -= 1;
8772
8773 /* If we've cycled backwards then start back at the top */
8774 if (missing_seqno < 0) {
8775 missing_seqno = 65535;
8776 }
8777
8778 /* We've gone backwards enough such that we've hit the previous sequence number */
8779 if (missing_seqno == prev_seqno) {
8780 break;
8781 }
8782
8783 /* We don't want missing sequence number duplicates. If, for some reason,
8784 * packets are really out of order, we could end up in this scenario:
8785 *
8786 * We are expecting sequence number 100
8787 * We receive sequence number 105
8788 * Sequence numbers 100 through 104 get added to the vector
8789 * We receive sequence number 101 (this section is skipped)
8790 * We receive sequence number 103
8791 * Sequence number 102 is added to the vector
8792 *
8793 * This will prevent the duplicate from being added.
8794 */
8795 if (AST_VECTOR_GET_CMP(&rtp->missing_seqno, missing_seqno,
8796 find_by_value)) {
8797 continue;
8798 }
8799
8800 /* If this packet has been buffered already then don't count it amongst the
8801 * missing.
8802 */
8803 if (ast_data_buffer_get(rtp->recv_buffer, missing_seqno)) {
8804 continue;
8805 }
8806
8807 ast_debug_rtp(2, "(%p) RTP added missing sequence number '%d'\n",
8808 instance, missing_seqno);
8809 AST_VECTOR_ADD_SORTED(&rtp->missing_seqno, missing_seqno,
8811 missing_seqnos_added++;
8812 }
8813
8814 /* When we add a large number of missing sequence numbers we assume there was a substantial
8815 * gap in reception so we trigger an immediate NACK. When our data buffer is 1/4 full we
8816 * assume that the packets aren't just out of order but have actually been lost. At 1/2
8817 * full we get more aggressive and ask for retransmission when we get a new packet.
8818 * To get them back we construct and send a NACK causing the sender to retransmit them.
8819 */
8820 if (missing_seqnos_added >= MISSING_SEQNOS_ADDED_TRIGGER ||
8823 int packet_len = 0;
8824 int res = 0;
8825 int ice;
8826 int sr;
8827 size_t data_size = AST_UUID_STR_LEN + 128 + (AST_VECTOR_SIZE(&rtp->missing_seqno) * 4);
8828 RAII_VAR(unsigned char *, rtcpheader, NULL, ast_free_ptr);
8829 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report,
8831 ao2_cleanup);
8832
8833 /* Sufficient space for RTCP headers and report, SDES with CNAME, NACK header,
8834 * and worst case 4 bytes per missing sequence number.
8835 */
8836 rtcpheader = ast_malloc(sizeof(*rtcpheader) + data_size);
8837 if (!rtcpheader) {
8838 ast_debug_rtcp(1, "(%p) RTCP failed to allocate memory for NACK\n", instance);
8839 return &ast_null_frame;
8840 }
8841
8842 memset(rtcpheader, 0, data_size);
8843
8844 res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
8845
8846 if (res == 0 || res == 1) {
8847 return &ast_null_frame;
8848 }
8849
8850 packet_len += res;
8851
8852 res = ast_rtcp_generate_nack(instance, rtcpheader + packet_len);
8853
8854 if (res == 0) {
8855 ast_debug_rtcp(1, "(%p) RTCP failed to construct NACK, stopping here\n", instance);
8856 return &ast_null_frame;
8857 }
8858
8859 packet_len += res;
8860
8861 res = rtcp_sendto(instance, rtcpheader, packet_len, 0, &remote_address, &ice);
8862 if (res < 0) {
8863 ast_debug_rtcp(1, "(%p) RTCP failed to send NACK request out\n", instance);
8864 } else {
8865 ast_debug_rtcp(2, "(%p) RTCP sending a NACK request to get missing packets\n", instance);
8866 /* Update RTCP SR/RR statistics */
8867 ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, remote_address, ice, sr);
8868 }
8869 }
8870 }
8871
8872 return &ast_null_frame;
8873}
8874
8875/*! \pre instance is locked */
8876static void ast_rtp_prop_set(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value)
8877{
8878 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
8879
8880 if (property == AST_RTP_PROPERTY_RTCP) {
8881 if (value) {
8882 struct ast_sockaddr local_addr;
8883
8884 if (rtp->rtcp && rtp->rtcp->type == value) {
8885 ast_debug_rtcp(1, "(%p) RTCP ignoring duplicate property\n", instance);
8886 return;
8887 }
8888
8889 if (!rtp->rtcp) {
8890 rtp->rtcp = ast_calloc(1, sizeof(*rtp->rtcp));
8891 if (!rtp->rtcp) {
8892 return;
8893 }
8894 rtp->rtcp->s = -1;
8895#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
8896 rtp->rtcp->dtls.timeout_timer = -1;
8897#endif
8898 rtp->rtcp->schedid = -1;
8899 }
8900
8901 rtp->rtcp->type = value;
8902
8903 /* Grab the IP address and port we are going to use */
8904 ast_rtp_instance_get_local_address(instance, &rtp->rtcp->us);
8907 ast_sockaddr_port(&rtp->rtcp->us) + 1);
8908 }
8909
8910 ast_sockaddr_copy(&local_addr, &rtp->rtcp->us);
8911 if (!ast_find_ourip(&local_addr, &rtp->rtcp->us, 0)) {
8912 ast_sockaddr_set_port(&local_addr, ast_sockaddr_port(&rtp->rtcp->us));
8913 } else {
8914 /* Failed to get local address reset to use default. */
8915 ast_sockaddr_copy(&local_addr, &rtp->rtcp->us);
8916 }
8917
8920 if (!rtp->rtcp->local_addr_str) {
8921 ast_free(rtp->rtcp);
8922 rtp->rtcp = NULL;
8923 return;
8924 }
8925
8927 /* We're either setting up RTCP from scratch or
8928 * switching from MUX. Either way, we won't have
8929 * a socket set up, and we need to set it up
8930 */
8931 if ((rtp->rtcp->s =
8932 create_new_socket("RTCP",
8933 ast_sockaddr_is_ipv4(&rtp->rtcp->us) ?
8934 AF_INET :
8935 ast_sockaddr_is_ipv6(&rtp->rtcp->us) ?
8936 AF_INET6 : -1)) < 0) {
8937 ast_debug_rtcp(1, "(%p) RTCP failed to create a new socket\n", instance);
8939 ast_free(rtp->rtcp);
8940 rtp->rtcp = NULL;
8941 return;
8942 }
8943
8944 /* Try to actually bind to the IP address and port we are going to use for RTCP, if this fails we have to bail out */
8945 if (ast_bind(rtp->rtcp->s, &rtp->rtcp->us)) {
8946 ast_debug_rtcp(1, "(%p) RTCP failed to setup RTP instance\n", instance);
8947 close(rtp->rtcp->s);
8949 ast_free(rtp->rtcp);
8950 rtp->rtcp = NULL;
8951 return;
8952 }
8953#ifdef HAVE_PJPROJECT
8954 if (rtp->ice) {
8955 rtp_add_candidates_to_ice(instance, rtp, &rtp->rtcp->us, ast_sockaddr_port(&rtp->rtcp->us), AST_RTP_ICE_COMPONENT_RTCP, TRANSPORT_SOCKET_RTCP);
8956 }
8957#endif
8958#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
8959 dtls_setup_rtcp(instance);
8960#endif
8961 } else {
8962 struct ast_sockaddr addr;
8963 /* RTCPMUX uses the same socket as RTP. If we were previously using standard RTCP
8964 * then close the socket we previously created.
8965 *
8966 * It may seem as though there is a possible race condition here where we might try
8967 * to close the RTCP socket while it is being used to send data. However, this is not
8968 * a problem in practice since setting and adjusting of RTCP properties happens prior
8969 * to activating RTP. It is not until RTP is activated that timers start for RTCP
8970 * transmission
8971 */
8972 if (rtp->rtcp->s > -1 && rtp->rtcp->s != rtp->s) {
8973 close(rtp->rtcp->s);
8974 }
8975 rtp->rtcp->s = rtp->s;
8976 ast_rtp_instance_get_remote_address(instance, &addr);
8977 ast_sockaddr_copy(&rtp->rtcp->them, &addr);
8978#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
8979 if (rtp->rtcp->dtls.ssl && rtp->rtcp->dtls.ssl != rtp->dtls.ssl) {
8980 SSL_free(rtp->rtcp->dtls.ssl);
8981 }
8982 rtp->rtcp->dtls.ssl = rtp->dtls.ssl;
8983#endif
8984 }
8985
8986 ast_debug_rtcp(1, "(%s) RTCP setup on RTP instance\n",
8988 } else {
8989 if (rtp->rtcp) {
8990 if (rtp->rtcp->schedid > -1) {
8991 ao2_unlock(instance);
8992 if (!ast_sched_del(rtp->sched, rtp->rtcp->schedid)) {
8993 /* Successfully cancelled scheduler entry. */
8994 ao2_ref(instance, -1);
8995 } else {
8996 /* Unable to cancel scheduler entry */
8997 ast_debug_rtcp(1, "(%p) RTCP failed to tear down RTCP\n", instance);
8998 ao2_lock(instance);
8999 return;
9000 }
9001 ao2_lock(instance);
9002 rtp->rtcp->schedid = -1;
9003 }
9004 if (rtp->transport_wide_cc.schedid > -1) {
9005 ao2_unlock(instance);
9006 if (!ast_sched_del(rtp->sched, rtp->transport_wide_cc.schedid)) {
9007 ao2_ref(instance, -1);
9008 } else {
9009 ast_debug_rtcp(1, "(%p) RTCP failed to tear down transport-cc feedback\n", instance);
9010 ao2_lock(instance);
9011 return;
9012 }
9013 ao2_lock(instance);
9014 rtp->transport_wide_cc.schedid = -1;
9015 }
9016 if (rtp->rtcp->s > -1 && rtp->rtcp->s != rtp->s) {
9017 close(rtp->rtcp->s);
9018 }
9019#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
9020 ao2_unlock(instance);
9021 dtls_srtp_stop_timeout_timer(instance, rtp, 1);
9022 ao2_lock(instance);
9023
9024 if (rtp->rtcp->dtls.ssl && rtp->rtcp->dtls.ssl != rtp->dtls.ssl) {
9025 SSL_free(rtp->rtcp->dtls.ssl);
9026 }
9027#endif
9029 ast_free(rtp->rtcp);
9030 rtp->rtcp = NULL;
9031 ast_debug_rtcp(1, "(%s) RTCP torn down on RTP instance\n",
9033 }
9034 }
9035 } else if (property == AST_RTP_PROPERTY_ASYMMETRIC_CODEC) {
9036 rtp->asymmetric_codec = value;
9037 } else if (property == AST_RTP_PROPERTY_RETRANS_SEND) {
9038 if (value) {
9039 if (!rtp->send_buffer) {
9041 }
9042 } else {
9043 if (rtp->send_buffer) {
9045 rtp->send_buffer = NULL;
9046 }
9047 }
9048 } else if (property == AST_RTP_PROPERTY_RETRANS_RECV) {
9049 if (value) {
9050 if (!rtp->recv_buffer) {
9053 }
9054 } else {
9055 if (rtp->recv_buffer) {
9057 rtp->recv_buffer = NULL;
9059 }
9060 }
9061 }
9062}
9063
9064/*! \pre instance is locked */
9065static int ast_rtp_fd(struct ast_rtp_instance *instance, int rtcp)
9066{
9067 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9068
9069 return rtcp ? (rtp->rtcp ? rtp->rtcp->s : -1) : rtp->s;
9070}
9071
9072/*! \pre instance is locked */
9073static void ast_rtp_remote_address_set(struct ast_rtp_instance *instance, struct ast_sockaddr *addr)
9074{
9075 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9076 struct ast_sockaddr local;
9077 int index;
9078
9079 ast_rtp_instance_get_local_address(instance, &local);
9080 if (!ast_sockaddr_isnull(addr)) {
9081 /* Update the local RTP address with what is being used */
9082 if (ast_ouraddrfor(addr, &local)) {
9083 /* Failed to update our address so reuse old local address */
9084 ast_rtp_instance_get_local_address(instance, &local);
9085 } else {
9086 ast_rtp_instance_set_local_address(instance, &local);
9087 }
9088 }
9089
9090 if (rtp->rtcp && !ast_sockaddr_isnull(addr)) {
9091 ast_debug_rtcp(1, "(%p) RTCP setting address on RTP instance\n", instance);
9092 ast_sockaddr_copy(&rtp->rtcp->them, addr);
9093
9096
9097 /* Update the local RTCP address with what is being used */
9098 ast_sockaddr_set_port(&local, ast_sockaddr_port(&local) + 1);
9099 }
9100 ast_sockaddr_copy(&rtp->rtcp->us, &local);
9101
9104 }
9105
9106 /* Update any bundled RTP instances */
9107 for (index = 0; index < AST_VECTOR_SIZE(&rtp->ssrc_mapping); ++index) {
9108 struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&rtp->ssrc_mapping, index);
9109
9111 }
9112
9113 /* Need to reset the DTMF last sequence number and the timestamp of the last END packet */
9114 rtp->last_seqno = 0;
9115 rtp->last_end_timestamp.ts = 0;
9116 rtp->last_end_timestamp.is_set = 0;
9117
9119 && !ast_sockaddr_isnull(addr) && ast_sockaddr_cmp(addr, &rtp->strict_rtp_address)) {
9120 /* We only need to learn a new strict source address if we've been told the source is
9121 * changing to something different.
9122 */
9123 ast_verb(4, "%p -- Strict RTP learning after remote address set to: %s\n",
9124 rtp, ast_sockaddr_stringify(addr));
9125 rtp_learning_start(rtp);
9126 }
9127}
9128
9129/*!
9130 * \brief Write t140 redundancy frame
9131 *
9132 * \param data primary data to be buffered
9133 *
9134 * Scheduler callback
9135 */
9136static int red_write(const void *data)
9137{
9138 struct ast_rtp_instance *instance = (struct ast_rtp_instance*) data;
9139 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9140
9141 ao2_lock(instance);
9142 if (rtp->red->t140.datalen > 0) {
9143 ast_rtp_write(instance, &rtp->red->t140);
9144 }
9145 ao2_unlock(instance);
9146
9147 return 1;
9148}
9149
9150/*! \pre instance is locked */
9151static int rtp_red_init(struct ast_rtp_instance *instance, int buffer_time, int *payloads, int generations)
9152{
9153 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9154 int x;
9155
9156 rtp->red = ast_calloc(1, sizeof(*rtp->red));
9157 if (!rtp->red) {
9158 return -1;
9159 }
9160
9163 rtp->red->t140.data.ptr = &rtp->red->buf_data;
9164
9165 rtp->red->t140red = rtp->red->t140;
9166 rtp->red->t140red.data.ptr = &rtp->red->t140red_data;
9167
9168 rtp->red->num_gen = generations;
9169 rtp->red->hdrlen = generations * 4 + 1;
9170
9171 for (x = 0; x < generations; x++) {
9172 rtp->red->pt[x] = payloads[x];
9173 rtp->red->pt[x] |= 1 << 7; /* mark redundant generations pt */
9174 rtp->red->t140red_data[x*4] = rtp->red->pt[x];
9175 }
9176 rtp->red->t140red_data[x*4] = rtp->red->pt[x] = payloads[x]; /* primary pt */
9177 rtp->red->schedid = ast_sched_add(rtp->sched, buffer_time, red_write, instance);
9178
9179 return 0;
9180}
9181
9182/*! \pre instance is locked */
9183static int rtp_red_buffer(struct ast_rtp_instance *instance, struct ast_frame *frame)
9184{
9185 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9186 struct rtp_red *red = rtp->red;
9187
9188 if (!red) {
9189 return 0;
9190 }
9191
9192 if (frame->datalen > 0) {
9193 if (red->t140.datalen > 0) {
9194 const unsigned char *primary = red->buf_data;
9195
9196 /* There is something already in the T.140 buffer */
9197 if (primary[0] == 0x08 || primary[0] == 0x0a || primary[0] == 0x0d) {
9198 /* Flush the previous T.140 packet if it is a command */
9199 ast_rtp_write(instance, &rtp->red->t140);
9200 } else {
9201 primary = frame->data.ptr;
9202 if (primary[0] == 0x08 || primary[0] == 0x0a || primary[0] == 0x0d) {
9203 /* Flush the previous T.140 packet if we are buffering a command now */
9204 ast_rtp_write(instance, &rtp->red->t140);
9205 }
9206 }
9207 }
9208
9209 memcpy(&red->buf_data[red->t140.datalen], frame->data.ptr, frame->datalen);
9210 red->t140.datalen += frame->datalen;
9211 red->t140.ts = frame->ts;
9212 }
9213
9214 return 0;
9215}
9216
9217/*! \pre Neither instance0 nor instance1 are locked */
9218static int ast_rtp_local_bridge(struct ast_rtp_instance *instance0, struct ast_rtp_instance *instance1)
9219{
9220 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance0);
9221
9222 ao2_lock(instance0);
9224 if (rtp->smoother) {
9226 rtp->smoother = NULL;
9227 }
9228
9229 /* We must use a new SSRC when local bridge ends */
9230 if (!instance1) {
9231 rtp->ssrc = rtp->ssrc_orig;
9232 rtp->ssrc_orig = 0;
9233 rtp->ssrc_saved = 0;
9234 } else if (!rtp->ssrc_saved) {
9235 /* In case ast_rtp_local_bridge is called multiple times, only save the ssrc from before local bridge began */
9236 rtp->ssrc_orig = rtp->ssrc;
9237 rtp->ssrc_saved = 1;
9238 }
9239
9240 ao2_unlock(instance0);
9241
9242 return 0;
9243}
9244
9245/*! \pre instance is locked */
9246static int ast_rtp_get_stat(struct ast_rtp_instance *instance, struct ast_rtp_instance_stats *stats, enum ast_rtp_instance_stat stat)
9247{
9248 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9249
9250 if (!rtp->rtcp) {
9251 return -1;
9252 }
9253
9258
9270
9282
9289
9301
9302
9306
9307 return 0;
9308}
9309
9310/*! \pre Neither instance0 nor instance1 are locked */
9311static int ast_rtp_dtmf_compatible(struct ast_channel *chan0, struct ast_rtp_instance *instance0, struct ast_channel *chan1, struct ast_rtp_instance *instance1)
9312{
9313 /* If both sides are not using the same method of DTMF transmission
9314 * (ie: one is RFC2833, other is INFO... then we can not do direct media.
9315 * --------------------------------------------------
9316 * | DTMF Mode | HAS_DTMF | Accepts Begin Frames |
9317 * |-----------|------------|-----------------------|
9318 * | Inband | False | True |
9319 * | RFC2833 | True | True |
9320 * | SIP INFO | False | False |
9321 * --------------------------------------------------
9322 */
9324 (!ast_channel_tech(chan0)->send_digit_begin != !ast_channel_tech(chan1)->send_digit_begin)) ? 0 : 1);
9325}
9326
9327/*! \pre instance is NOT locked */
9328static void ast_rtp_stun_request(struct ast_rtp_instance *instance, struct ast_sockaddr *suggestion, const char *username)
9329{
9330 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9331 struct sockaddr_in suggestion_tmp;
9332
9333 /*
9334 * The instance should not be locked because we can block
9335 * waiting for a STUN respone.
9336 */
9337 ast_sockaddr_to_sin(suggestion, &suggestion_tmp);
9338 ast_stun_request(rtp->s, &suggestion_tmp, username, NULL);
9339 ast_sockaddr_from_sin(suggestion, &suggestion_tmp);
9340}
9341
9342/*! \pre instance is locked */
9343static void ast_rtp_stop(struct ast_rtp_instance *instance)
9344{
9345 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9346 struct ast_sockaddr addr = { {0,} };
9347
9348#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
9349 ao2_unlock(instance);
9350 AST_SCHED_DEL_UNREF(rtp->sched, rtp->rekeyid, ao2_ref(instance, -1));
9351
9352 dtls_srtp_stop_timeout_timer(instance, rtp, 0);
9353 if (rtp->rtcp) {
9354 dtls_srtp_stop_timeout_timer(instance, rtp, 1);
9355 }
9356 ao2_lock(instance);
9357#endif
9358 ast_debug_rtp(1, "(%s) RTP Stop\n",
9360
9361 if (rtp->rtcp && rtp->rtcp->schedid > -1) {
9362 ao2_unlock(instance);
9363 if (!ast_sched_del(rtp->sched, rtp->rtcp->schedid)) {
9364 /* successfully cancelled scheduler entry. */
9365 ao2_ref(instance, -1);
9366 }
9367 ao2_lock(instance);
9368 rtp->rtcp->schedid = -1;
9369 }
9370
9371 if (rtp->transport_wide_cc.schedid > -1) {
9372 ao2_unlock(instance);
9373 if (!ast_sched_del(rtp->sched, rtp->transport_wide_cc.schedid)) {
9374 ao2_ref(instance, -1);
9375 }
9376 ao2_lock(instance);
9377 rtp->transport_wide_cc.schedid = -1;
9378 }
9379
9380 if (rtp->red) {
9381 ao2_unlock(instance);
9382 AST_SCHED_DEL(rtp->sched, rtp->red->schedid);
9383 ao2_lock(instance);
9384 ast_free(rtp->red);
9385 rtp->red = NULL;
9386 }
9387
9388 ast_rtp_instance_set_remote_address(instance, &addr);
9389
9391}
9392
9393/*! \pre instance is locked */
9394static int ast_rtp_qos_set(struct ast_rtp_instance *instance, int tos, int cos, const char *desc)
9395{
9396 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9397
9398 return ast_set_qos(rtp->s, tos, cos, desc);
9399}
9400
9401/*!
9402 * \brief generate comfort noice (CNG)
9403 *
9404 * \pre instance is locked
9405 */
9406static int ast_rtp_sendcng(struct ast_rtp_instance *instance, int level)
9407{
9408 unsigned int *rtpheader;
9409 int hdrlen = 12;
9410 int res, payload = 0;
9411 char data[256];
9412 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9413 struct ast_sockaddr remote_address = { {0,} };
9414 int ice;
9415
9416 ast_rtp_instance_get_remote_address(instance, &remote_address);
9417
9418 if (ast_sockaddr_isnull(&remote_address)) {
9419 return -1;
9420 }
9421
9423
9424 level = 127 - (level & 0x7f);
9425
9426 rtp->dtmfmute = ast_tvadd(ast_tvnow(), ast_tv(0, 500000));
9427
9428 /* Get a pointer to the header */
9429 rtpheader = (unsigned int *)data;
9430 rtpheader[0] = htonl((2 << 30) | (payload << 16) | (rtp->seqno));
9431 rtpheader[1] = htonl(rtp->lastts);
9432 rtpheader[2] = htonl(rtp->ssrc);
9433 data[12] = level;
9434
9435 res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 1, 0, &remote_address, &ice);
9436
9437 if (res < 0) {
9438 ast_log(LOG_ERROR, "RTP Comfort Noise Transmission error to %s: %s\n", ast_sockaddr_stringify(&remote_address), strerror(errno));
9439 return res;
9440 }
9441
9442 if (rtp_debug_test_addr(&remote_address)) {
9443 ast_verbose("Sent Comfort Noise RTP packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
9444 ast_sockaddr_stringify(&remote_address),
9445 ice ? " (via ICE)" : "",
9446 AST_RTP_CN, rtp->seqno, rtp->lastdigitts, res - hdrlen);
9447 }
9448
9449 rtp->seqno++;
9450
9451 return res;
9452}
9453
9454/*! \pre instance is locked */
9455static unsigned int ast_rtp_get_ssrc(struct ast_rtp_instance *instance)
9456{
9457 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9458
9459 return rtp->ssrc;
9460}
9461
9462/*! \pre instance is locked */
9463static const char *ast_rtp_get_cname(struct ast_rtp_instance *instance)
9464{
9465 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9466
9467 return rtp->cname;
9468}
9469
9470/*! \pre instance is locked */
9471static void ast_rtp_set_remote_ssrc(struct ast_rtp_instance *instance, unsigned int ssrc)
9472{
9473 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9474
9475 if (rtp->themssrc_valid && rtp->themssrc == ssrc) {
9476 return;
9477 }
9478
9479 rtp->themssrc = ssrc;
9480 rtp->themssrc_valid = 1;
9481
9482 /* If this is bundled we need to update the SSRC mapping */
9483 if (rtp->bundled) {
9484 struct ast_rtp *bundled_rtp;
9485 int index;
9486
9487 ao2_unlock(instance);
9488
9489 /* The child lock can't be held while accessing the parent */
9490 ao2_lock(rtp->bundled);
9491 bundled_rtp = ast_rtp_instance_get_data(rtp->bundled);
9492
9493 for (index = 0; index < AST_VECTOR_SIZE(&bundled_rtp->ssrc_mapping); ++index) {
9494 struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&bundled_rtp->ssrc_mapping, index);
9495
9496 if (mapping->instance == instance) {
9497 mapping->ssrc = ssrc;
9498 mapping->ssrc_valid = 1;
9499 break;
9500 }
9501 }
9502
9503 ao2_unlock(rtp->bundled);
9504
9506 }
9507}
9508
9509static void ast_rtp_set_stream_num(struct ast_rtp_instance *instance, int stream_num)
9510{
9511 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9512
9513 rtp->stream_num = stream_num;
9514}
9515
9517{
9518 switch (extension) {
9521 return 1;
9522 default:
9523 return 0;
9524 }
9525}
9526
9527/*! \pre child is locked */
9528static int ast_rtp_bundle(struct ast_rtp_instance *child, struct ast_rtp_instance *parent)
9529{
9530 struct ast_rtp *child_rtp = ast_rtp_instance_get_data(child);
9531 struct ast_rtp *parent_rtp;
9532 struct rtp_ssrc_mapping mapping;
9533 struct ast_sockaddr them = { { 0, } };
9534
9535 if (child_rtp->bundled == parent) {
9536 return 0;
9537 }
9538
9539 /* If this instance was already bundled then remove the SSRC mapping */
9540 if (child_rtp->bundled) {
9541 struct ast_rtp *bundled_rtp;
9542
9543 ao2_unlock(child);
9544
9545 /* The child lock can't be held while accessing the parent */
9546 ao2_lock(child_rtp->bundled);
9547 bundled_rtp = ast_rtp_instance_get_data(child_rtp->bundled);
9549 ao2_unlock(child_rtp->bundled);
9550
9551 ao2_lock(child);
9552 ao2_ref(child_rtp->bundled, -1);
9553 child_rtp->bundled = NULL;
9554 }
9555
9556 if (!parent) {
9557 /* We transitioned away from bundle so we need our own transport resources once again */
9558 rtp_allocate_transport(child, child_rtp);
9559 return 0;
9560 }
9561
9562 parent_rtp = ast_rtp_instance_get_data(parent);
9563
9564 /* We no longer need any transport related resources as we will use our parent RTP instance instead */
9565 rtp_deallocate_transport(child, child_rtp);
9566
9567 /* Children maintain a reference to the parent to guarantee that the transport doesn't go away on them */
9568 child_rtp->bundled = ao2_bump(parent);
9569
9570 mapping.ssrc = child_rtp->themssrc;
9571 mapping.ssrc_valid = child_rtp->themssrc_valid;
9572 mapping.instance = child;
9573
9574 ao2_unlock(child);
9575
9576 ao2_lock(parent);
9577
9578 AST_VECTOR_APPEND(&parent_rtp->ssrc_mapping, mapping);
9579
9580#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
9581 /* If DTLS-SRTP is already in use then add the local SSRC to it, otherwise it will get added once DTLS
9582 * negotiation has been completed.
9583 */
9584 if (parent_rtp->dtls.connection == AST_RTP_DTLS_CONNECTION_EXISTING) {
9585 dtls_srtp_add_local_ssrc(parent_rtp, parent, 0, child_rtp->ssrc, 0);
9586 }
9587#endif
9588
9589 /* Bundle requires that RTCP-MUX be in use so only the main remote address needs to match */
9591
9592 ao2_unlock(parent);
9593
9594 ao2_lock(child);
9595
9597
9598 return 0;
9599}
9600
9601#ifdef HAVE_PJPROJECT
9602static void stunaddr_resolve_callback(const struct ast_dns_query *query)
9603{
9604 const int lowest_ttl = ast_dns_result_get_lowest_ttl(ast_dns_query_get_result(query));
9605 const char *stunaddr_name = ast_dns_query_get_name(query);
9606 const char *stunaddr_resolved_str;
9607
9608 if (!store_stunaddr_resolved(query)) {
9609 ast_log(LOG_WARNING, "Failed to resolve stunaddr '%s'. Cancelling recurring resolution.\n", stunaddr_name);
9610 return;
9611 }
9612
9613 if (DEBUG_ATLEAST(2)) {
9614 ast_rwlock_rdlock(&stunaddr_lock);
9615 stunaddr_resolved_str = ast_inet_ntoa(stunaddr.sin_addr);
9616 ast_rwlock_unlock(&stunaddr_lock);
9617
9618 ast_debug_stun(2, "Resolved stunaddr '%s' to '%s'. Lowest TTL = %d.\n",
9619 stunaddr_name,
9620 stunaddr_resolved_str,
9621 lowest_ttl);
9622 }
9623
9624 if (!lowest_ttl) {
9625 ast_log(LOG_WARNING, "Resolution for stunaddr '%s' returned TTL = 0. Recurring resolution was cancelled.\n", ast_dns_query_get_name(query));
9626 }
9627}
9628
9629static int store_stunaddr_resolved(const struct ast_dns_query *query)
9630{
9631 const struct ast_dns_result *result = ast_dns_query_get_result(query);
9632 const struct ast_dns_record *record;
9633
9634 for (record = ast_dns_result_get_records(result); record; record = ast_dns_record_get_next(record)) {
9635 const size_t data_size = ast_dns_record_get_data_size(record);
9636 const unsigned char *data = (unsigned char *)ast_dns_record_get_data(record);
9637 const int rr_type = ast_dns_record_get_rr_type(record);
9638
9639 if (rr_type == ns_t_a && data_size == 4) {
9640 ast_rwlock_wrlock(&stunaddr_lock);
9641 memcpy(&stunaddr.sin_addr, data, data_size);
9642 stunaddr.sin_family = AF_INET;
9643 ast_rwlock_unlock(&stunaddr_lock);
9644
9645 return 1;
9646 } else {
9647 ast_debug_stun(3, "Unrecognized rr_type '%u' or data_size '%zu' from DNS query for stunaddr '%s'\n",
9648 rr_type, data_size, ast_dns_query_get_name(query));
9649 continue;
9650 }
9651 }
9652 return 0;
9653}
9654
9655static void clean_stunaddr(void) {
9656 if (stunaddr_resolver) {
9657 if (ast_dns_resolve_recurring_cancel(stunaddr_resolver)) {
9658 ast_log(LOG_ERROR, "Failed to cancel recurring DNS resolution of previous stunaddr.\n");
9659 }
9660 ao2_ref(stunaddr_resolver, -1);
9661 stunaddr_resolver = NULL;
9662 }
9663 ast_rwlock_wrlock(&stunaddr_lock);
9664 memset(&stunaddr, 0, sizeof(stunaddr));
9665 ast_rwlock_unlock(&stunaddr_lock);
9666}
9667#endif
9668
9669#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
9670/*! \pre instance is locked */
9671static int ast_rtp_activate(struct ast_rtp_instance *instance)
9672{
9673 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9674
9675 /* If ICE negotiation is enabled the DTLS Handshake will be performed upon completion of it */
9676#ifdef HAVE_PJPROJECT
9677 if (rtp->ice) {
9678 return 0;
9679 }
9680#endif
9681
9682 ast_debug_dtls(3, "(%p) DTLS - ast_rtp_activate rtp=%p - setup and perform DTLS'\n", instance, rtp);
9683
9684 dtls_perform_setup(&rtp->dtls);
9685 dtls_perform_handshake(instance, &rtp->dtls, 0);
9686
9687 if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
9688 dtls_perform_setup(&rtp->rtcp->dtls);
9689 dtls_perform_handshake(instance, &rtp->rtcp->dtls, 1);
9690 }
9691
9692 return 0;
9693}
9694#endif
9695
9696static char *rtp_do_debug_ip(struct ast_cli_args *a)
9697{
9698 char *arg = ast_strdupa(a->argv[4]);
9699 char *debughost = NULL;
9700 char *debugport = NULL;
9701
9702 if (!ast_sockaddr_parse(&rtpdebugaddr, arg, 0) || !ast_sockaddr_split_hostport(arg, &debughost, &debugport, 0)) {
9703 ast_cli(a->fd, "Lookup failed for '%s'\n", arg);
9704 return CLI_FAILURE;
9705 }
9706 rtpdebugport = (!ast_strlen_zero(debugport) && debugport[0] != '0');
9707 ast_cli(a->fd, "RTP Packet Debugging Enabled for address: %s\n",
9710 return CLI_SUCCESS;
9711}
9712
9713static char *rtcp_do_debug_ip(struct ast_cli_args *a)
9714{
9715 char *arg = ast_strdupa(a->argv[4]);
9716 char *debughost = NULL;
9717 char *debugport = NULL;
9718
9719 if (!ast_sockaddr_parse(&rtcpdebugaddr, arg, 0) || !ast_sockaddr_split_hostport(arg, &debughost, &debugport, 0)) {
9720 ast_cli(a->fd, "Lookup failed for '%s'\n", arg);
9721 return CLI_FAILURE;
9722 }
9723 rtcpdebugport = (!ast_strlen_zero(debugport) && debugport[0] != '0');
9724 ast_cli(a->fd, "RTCP Packet Debugging Enabled for address: %s\n",
9727 return CLI_SUCCESS;
9728}
9729
9730static char *handle_cli_rtp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9731{
9732 switch (cmd) {
9733 case CLI_INIT:
9734 e->command = "rtp set debug {on|off|ip}";
9735 e->usage =
9736 "Usage: rtp set debug {on|off|ip host[:port]}\n"
9737 " Enable/Disable dumping of all RTP packets. If 'ip' is\n"
9738 " specified, limit the dumped packets to those to and from\n"
9739 " the specified 'host' with optional port.\n";
9740 return NULL;
9741 case CLI_GENERATE:
9742 return NULL;
9743 }
9744
9745 if (a->argc == e->args) { /* set on or off */
9746 if (!strncasecmp(a->argv[e->args-1], "on", 2)) {
9748 memset(&rtpdebugaddr, 0, sizeof(rtpdebugaddr));
9749 ast_cli(a->fd, "RTP Packet Debugging Enabled\n");
9750 return CLI_SUCCESS;
9751 } else if (!strncasecmp(a->argv[e->args-1], "off", 3)) {
9753 ast_cli(a->fd, "RTP Packet Debugging Disabled\n");
9754 return CLI_SUCCESS;
9755 }
9756 } else if (a->argc == e->args +1) { /* ip */
9757 return rtp_do_debug_ip(a);
9758 }
9759
9760 return CLI_SHOWUSAGE; /* default, failure */
9761}
9762
9763
9764static char *handle_cli_rtp_settings(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9765{
9766#ifdef HAVE_PJPROJECT
9767 struct sockaddr_in stunaddr_copy;
9768#endif
9769 switch (cmd) {
9770 case CLI_INIT:
9771 e->command = "rtp show settings";
9772 e->usage =
9773 "Usage: rtp show settings\n"
9774 " Display RTP configuration settings\n";
9775 return NULL;
9776 case CLI_GENERATE:
9777 return NULL;
9778 }
9779
9780 if (a->argc != 3) {
9781 return CLI_SHOWUSAGE;
9782 }
9783
9784 ast_cli(a->fd, "\n\nGeneral Settings:\n");
9785 ast_cli(a->fd, "----------------\n");
9786 ast_cli(a->fd, " Port start: %d\n", rtpstart);
9787 ast_cli(a->fd, " Port end: %d\n", rtpend);
9788#ifdef SO_NO_CHECK
9789 ast_cli(a->fd, " Checksums: %s\n", AST_CLI_YESNO(nochecksums == 0));
9790#endif
9791 ast_cli(a->fd, " DTMF Timeout: %d\n", dtmftimeout);
9792 ast_cli(a->fd, " Strict RTP: %s\n", AST_CLI_YESNO(strictrtp));
9793
9794 if (strictrtp) {
9795 ast_cli(a->fd, " Probation: %d frames\n", learning_min_sequential);
9796 }
9797
9798 ast_cli(a->fd, " Replay Protect: %s\n", AST_CLI_YESNO(srtp_replay_protection));
9799#ifdef HAVE_PJPROJECT
9800 ast_cli(a->fd, " ICE support: %s\n", AST_CLI_YESNO(icesupport));
9801
9802 ast_rwlock_rdlock(&stunaddr_lock);
9803 memcpy(&stunaddr_copy, &stunaddr, sizeof(stunaddr));
9804 ast_rwlock_unlock(&stunaddr_lock);
9805 ast_cli(a->fd, " STUN address: %s:%d\n", ast_inet_ntoa(stunaddr_copy.sin_addr), htons(stunaddr_copy.sin_port));
9806#endif
9807 return CLI_SUCCESS;
9808}
9809
9810
9811static char *handle_cli_rtcp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9812{
9813 switch (cmd) {
9814 case CLI_INIT:
9815 e->command = "rtcp set debug {on|off|ip}";
9816 e->usage =
9817 "Usage: rtcp set debug {on|off|ip host[:port]}\n"
9818 " Enable/Disable dumping of all RTCP packets. If 'ip' is\n"
9819 " specified, limit the dumped packets to those to and from\n"
9820 " the specified 'host' with optional port.\n";
9821 return NULL;
9822 case CLI_GENERATE:
9823 return NULL;
9824 }
9825
9826 if (a->argc == e->args) { /* set on or off */
9827 if (!strncasecmp(a->argv[e->args-1], "on", 2)) {
9829 memset(&rtcpdebugaddr, 0, sizeof(rtcpdebugaddr));
9830 ast_cli(a->fd, "RTCP Packet Debugging Enabled\n");
9831 return CLI_SUCCESS;
9832 } else if (!strncasecmp(a->argv[e->args-1], "off", 3)) {
9834 ast_cli(a->fd, "RTCP Packet Debugging Disabled\n");
9835 return CLI_SUCCESS;
9836 }
9837 } else if (a->argc == e->args +1) { /* ip */
9838 return rtcp_do_debug_ip(a);
9839 }
9840
9841 return CLI_SHOWUSAGE; /* default, failure */
9842}
9843
9844static char *handle_cli_rtcp_set_stats(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9845{
9846 switch (cmd) {
9847 case CLI_INIT:
9848 e->command = "rtcp set stats {on|off}";
9849 e->usage =
9850 "Usage: rtcp set stats {on|off}\n"
9851 " Enable/Disable dumping of RTCP stats.\n";
9852 return NULL;
9853 case CLI_GENERATE:
9854 return NULL;
9855 }
9856
9857 if (a->argc != e->args)
9858 return CLI_SHOWUSAGE;
9859
9860 if (!strncasecmp(a->argv[e->args-1], "on", 2))
9861 rtcpstats = 1;
9862 else if (!strncasecmp(a->argv[e->args-1], "off", 3))
9863 rtcpstats = 0;
9864 else
9865 return CLI_SHOWUSAGE;
9866
9867 ast_cli(a->fd, "RTCP Stats %s\n", rtcpstats ? "Enabled" : "Disabled");
9868 return CLI_SUCCESS;
9869}
9870
9871#ifdef AST_DEVMODE
9872
9873static unsigned int use_random(struct ast_cli_args *a, int pos, unsigned int index)
9874{
9875 return pos >= index && !ast_strlen_zero(a->argv[index - 1]) &&
9876 !strcasecmp(a->argv[index - 1], "random");
9877}
9878
9879static char *handle_cli_rtp_drop_incoming_packets(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9880{
9881 static const char * const completions_2[] = { "stop", "<N>", NULL };
9882 static const char * const completions_3[] = { "random", "incoming packets", NULL };
9883 static const char * const completions_5[] = { "on", "every", NULL };
9884 static const char * const completions_units[] = { "random", "usec", "msec", "sec", "min", NULL };
9885
9886 unsigned int use_random_num = 0;
9887 unsigned int use_random_interval = 0;
9888 unsigned int num_to_drop = 0;
9889 unsigned int interval = 0;
9890 const char *interval_s = NULL;
9891 const char *unit_s = NULL;
9892 struct ast_sockaddr addr;
9893 const char *addr_s = NULL;
9894
9895 switch (cmd) {
9896 case CLI_INIT:
9897 e->command = "rtp drop";
9898 e->usage =
9899 "Usage: rtp drop [stop|[<N> [random] incoming packets[ every <N> [random] {usec|msec|sec|min}][ on <ip[:port]>]]\n"
9900 " Drop RTP incoming packets.\n";
9901 return NULL;
9902 case CLI_GENERATE:
9903 use_random_num = use_random(a, a->pos, 4);
9904 use_random_interval = use_random(a, a->pos, 8 + use_random_num) ||
9905 use_random(a, a->pos, 10 + use_random_num);
9906
9907 switch (a->pos - use_random_num - use_random_interval) {
9908 case 2:
9909 return ast_cli_complete(a->word, completions_2, a->n);
9910 case 3:
9911 return ast_cli_complete(a->word, completions_3 + use_random_num, a->n);
9912 case 5:
9913 return ast_cli_complete(a->word, completions_5, a->n);
9914 case 7:
9915 if (!strcasecmp(a->argv[a->pos - 2], "on")) {
9917 break;
9918 }
9919 /* Fall through */
9920 case 9:
9921 if (!strcasecmp(a->argv[a->pos - 2 - use_random_interval], "every")) {
9922 return ast_cli_complete(a->word, completions_units + use_random_interval, a->n);
9923 }
9924 break;
9925 case 8:
9926 if (!strcasecmp(a->argv[a->pos - 3 - use_random_interval], "every")) {
9928 }
9929 break;
9930 }
9931
9932 return NULL;
9933 }
9934
9935 if (a->argc < 3) {
9936 return CLI_SHOWUSAGE;
9937 }
9938
9939 use_random_num = use_random(a, a->argc, 4);
9940 use_random_interval = use_random(a, a->argc, 8 + use_random_num) ||
9941 use_random(a, a->argc, 10 + use_random_num);
9942
9943 if (!strcasecmp(a->argv[2], "stop")) {
9944 /* rtp drop stop */
9945 } else if (a->argc < 5) {
9946 return CLI_SHOWUSAGE;
9947 } else if (ast_str_to_uint(a->argv[2], &num_to_drop)) {
9948 ast_cli(a->fd, "%s is not a valid number of packets to drop\n", a->argv[2]);
9949 return CLI_FAILURE;
9950 } else if (a->argc - use_random_num == 5) {
9951 /* rtp drop <N> [random] incoming packets */
9952 } else if (a->argc - use_random_num >= 7 && !strcasecmp(a->argv[5 + use_random_num], "on")) {
9953 /* rtp drop <N> [random] incoming packets on <ip[:port]> */
9954 addr_s = a->argv[6 + use_random_num];
9955 if (a->argc - use_random_num - use_random_interval == 10 &&
9956 !strcasecmp(a->argv[7 + use_random_num], "every")) {
9957 /* rtp drop <N> [random] incoming packets on <ip[:port]> every <N> [random] {usec|msec|sec|min} */
9958 interval_s = a->argv[8 + use_random_num];
9959 unit_s = a->argv[9 + use_random_num + use_random_interval];
9960 }
9961 } else if (a->argc - use_random_num >= 8 && !strcasecmp(a->argv[5 + use_random_num], "every")) {
9962 /* rtp drop <N> [random] incoming packets every <N> [random] {usec|msec|sec|min} */
9963 interval_s = a->argv[6 + use_random_num];
9964 unit_s = a->argv[7 + use_random_num + use_random_interval];
9965 if (a->argc == 10 + use_random_num + use_random_interval &&
9966 !strcasecmp(a->argv[8 + use_random_num + use_random_interval], "on")) {
9967 /* rtp drop <N> [random] incoming packets every <N> [random] {usec|msec|sec|min} on <ip[:port]> */
9968 addr_s = a->argv[9 + use_random_num + use_random_interval];
9969 }
9970 } else {
9971 return CLI_SHOWUSAGE;
9972 }
9973
9974 if (a->argc - use_random_num >= 8 && !interval_s && !addr_s) {
9975 return CLI_SHOWUSAGE;
9976 }
9977
9978 if (interval_s && ast_str_to_uint(interval_s, &interval)) {
9979 ast_cli(a->fd, "%s is not a valid interval number\n", interval_s);
9980 return CLI_FAILURE;
9981 }
9982
9983 memset(&addr, 0, sizeof(addr));
9984 if (addr_s && !ast_sockaddr_parse(&addr, addr_s, 0)) {
9985 ast_cli(a->fd, "%s is not a valid hostname[:port]\n", addr_s);
9986 return CLI_FAILURE;
9987 }
9988
9989 drop_packets_data.use_random_num = use_random_num;
9990 drop_packets_data.use_random_interval = use_random_interval;
9991 drop_packets_data.num_to_drop = num_to_drop;
9992 drop_packets_data.interval = ast_time_create_by_unit_str(interval, unit_s);
9993 ast_sockaddr_copy(&drop_packets_data.addr, &addr);
9994 drop_packets_data.port = ast_sockaddr_port(&addr);
9995
9996 drop_packets_data_update(ast_tvnow());
9997
9998 return CLI_SUCCESS;
9999}
10000#endif
10001
10002static struct ast_cli_entry cli_rtp[] = {
10003 AST_CLI_DEFINE(handle_cli_rtp_set_debug, "Enable/Disable RTP debugging"),
10004 AST_CLI_DEFINE(handle_cli_rtp_settings, "Display RTP settings"),
10005 AST_CLI_DEFINE(handle_cli_rtcp_set_debug, "Enable/Disable RTCP debugging"),
10006 AST_CLI_DEFINE(handle_cli_rtcp_set_stats, "Enable/Disable RTCP stats"),
10007#ifdef AST_DEVMODE
10008 AST_CLI_DEFINE(handle_cli_rtp_drop_incoming_packets, "Drop RTP incoming packets"),
10009#endif
10010};
10011
10012static int rtp_reload(int reload, int by_external_config)
10013{
10014 struct ast_config *cfg;
10015 const char *s;
10016 struct ast_flags config_flags = { (reload && !by_external_config) ? CONFIG_FLAG_FILEUNCHANGED : 0 };
10017
10018#ifdef HAVE_PJPROJECT
10019 struct ast_variable *var;
10020 struct ast_ice_host_candidate *candidate;
10021 int acl_subscription_flag = 0;
10022#endif
10023
10024 cfg = ast_config_load2("rtp.conf", "rtp", config_flags);
10025 if (!cfg || cfg == CONFIG_STATUS_FILEUNCHANGED || cfg == CONFIG_STATUS_FILEINVALID) {
10026 return 0;
10027 }
10028
10029#ifdef SO_NO_CHECK
10030 nochecksums = 0;
10031#endif
10032
10041
10042 /** This resource is not "reloaded" so much as unloaded and loaded again.
10043 * In the case of the TURN related variables, the memory referenced by a
10044 * previously loaded instance *should* have been released when the
10045 * corresponding pool was destroyed. If at some point in the future this
10046 * resource were to support ACTUAL live reconfiguration and did NOT release
10047 * the pool this will cause a small memory leak.
10048 */
10049
10050#ifdef HAVE_PJPROJECT
10051 icesupport = DEFAULT_ICESUPPORT;
10052 stun_software_attribute = DEFAULT_STUN_SOFTWARE_ATTRIBUTE;
10053 turnport = DEFAULT_TURN_PORT;
10054 clean_stunaddr();
10055 turnaddr = pj_str(NULL);
10056 turnusername = pj_str(NULL);
10057 turnpassword = pj_str(NULL);
10058 host_candidate_overrides_clear();
10059#endif
10060
10061#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
10062 dtls_mtu = DEFAULT_DTLS_MTU;
10063#endif
10064
10065 if ((s = ast_variable_retrieve(cfg, "general", "rtpstart"))) {
10066 rtpstart = atoi(s);
10071 }
10072 if ((s = ast_variable_retrieve(cfg, "general", "rtpend"))) {
10073 rtpend = atoi(s);
10078 }
10079 if ((s = ast_variable_retrieve(cfg, "general", "rtcpinterval"))) {
10080 rtcpinterval = atoi(s);
10081 if (rtcpinterval == 0)
10082 rtcpinterval = 0; /* Just so we're clear... it's zero */
10084 rtcpinterval = RTCP_MIN_INTERVALMS; /* This catches negative numbers too */
10087 }
10088 if ((s = ast_variable_retrieve(cfg, "general", "rtpchecksums"))) {
10089#ifdef SO_NO_CHECK
10090 nochecksums = ast_false(s) ? 1 : 0;
10091#else
10092 if (ast_false(s))
10093 ast_log(LOG_WARNING, "Disabling RTP checksums is not supported on this operating system!\n");
10094#endif
10095 }
10096 if ((s = ast_variable_retrieve(cfg, "general", "dtmftimeout"))) {
10097 dtmftimeout = atoi(s);
10098 if ((dtmftimeout < 0) || (dtmftimeout > 64000)) {
10099 ast_log(LOG_WARNING, "DTMF timeout of '%d' outside range, using default of '%d' instead\n",
10102 };
10103 }
10104 if ((s = ast_variable_retrieve(cfg, "general", "strictrtp"))) {
10105 if (ast_true(s)) {
10107 } else if (!strcasecmp(s, "seqno")) {
10109 } else {
10111 }
10112 }
10113 if ((s = ast_variable_retrieve(cfg, "general", "probation"))) {
10114 if ((sscanf(s, "%d", &learning_min_sequential) != 1) || learning_min_sequential <= 1) {
10115 ast_log(LOG_WARNING, "Value for 'probation' could not be read, using default of '%d' instead\n",
10118 }
10120 }
10121 if ((s = ast_variable_retrieve(cfg, "general", "srtpreplayprotection"))) {
10123 }
10124#ifdef HAVE_PJPROJECT
10125 if ((s = ast_variable_retrieve(cfg, "general", "icesupport"))) {
10126 icesupport = ast_true(s);
10127 }
10128 if ((s = ast_variable_retrieve(cfg, "general", "stun_software_attribute"))) {
10129 stun_software_attribute = ast_true(s);
10130 }
10131 if ((s = ast_variable_retrieve(cfg, "general", "stunaddr"))) {
10132 char *hostport, *host, *port;
10133 unsigned int port_parsed = STANDARD_STUN_PORT;
10134 struct ast_sockaddr stunaddr_parsed;
10135
10136 hostport = ast_strdupa(s);
10137
10138 if (!ast_parse_arg(hostport, PARSE_ADDR, &stunaddr_parsed)) {
10139 ast_debug_stun(3, "stunaddr = '%s' does not need name resolution\n",
10140 ast_sockaddr_stringify_host(&stunaddr_parsed));
10141 if (!ast_sockaddr_port(&stunaddr_parsed)) {
10142 ast_sockaddr_set_port(&stunaddr_parsed, STANDARD_STUN_PORT);
10143 }
10144 ast_rwlock_wrlock(&stunaddr_lock);
10145 ast_sockaddr_to_sin(&stunaddr_parsed, &stunaddr);
10146 ast_rwlock_unlock(&stunaddr_lock);
10147 } else if (ast_sockaddr_split_hostport(hostport, &host, &port, 0)) {
10148 if (port) {
10149 ast_parse_arg(port, PARSE_UINT32|PARSE_IN_RANGE, &port_parsed, 1, 65535);
10150 }
10151 stunaddr.sin_port = htons(port_parsed);
10152
10153 stunaddr_resolver = ast_dns_resolve_recurring(host, T_A, C_IN,
10154 &stunaddr_resolve_callback, NULL);
10155 if (!stunaddr_resolver) {
10156 ast_log(LOG_ERROR, "Failed to setup recurring DNS resolution of stunaddr '%s'",
10157 host);
10158 }
10159 } else {
10160 ast_log(LOG_ERROR, "Failed to parse stunaddr '%s'", hostport);
10161 }
10162 }
10163 if ((s = ast_variable_retrieve(cfg, "general", "turnaddr"))) {
10164 struct sockaddr_in addr;
10165 addr.sin_port = htons(DEFAULT_TURN_PORT);
10166 if (ast_parse_arg(s, PARSE_INADDR, &addr)) {
10167 ast_log(LOG_WARNING, "Invalid TURN server address: %s\n", s);
10168 } else {
10169 pj_strdup2_with_null(pool, &turnaddr, ast_inet_ntoa(addr.sin_addr));
10170 /* ntohs() is not a bug here. The port number is used in host byte order with
10171 * a pjnat API. */
10172 turnport = ntohs(addr.sin_port);
10173 }
10174 }
10175 if ((s = ast_variable_retrieve(cfg, "general", "turnusername"))) {
10176 pj_strdup2_with_null(pool, &turnusername, s);
10177 }
10178 if ((s = ast_variable_retrieve(cfg, "general", "turnpassword"))) {
10179 pj_strdup2_with_null(pool, &turnpassword, s);
10180 }
10181
10182 AST_RWLIST_WRLOCK(&host_candidates);
10183 for (var = ast_variable_browse(cfg, "ice_host_candidates"); var; var = var->next) {
10184 struct ast_sockaddr local_addr, advertised_addr;
10185 unsigned int include_local_address = 0;
10186 char *sep;
10187
10188 ast_sockaddr_setnull(&local_addr);
10189 ast_sockaddr_setnull(&advertised_addr);
10190
10191 if (ast_parse_arg(var->name, PARSE_ADDR | PARSE_PORT_IGNORE, &local_addr)) {
10192 ast_log(LOG_WARNING, "Invalid local ICE host address: %s\n", var->name);
10193 continue;
10194 }
10195
10196 sep = strchr(var->value,',');
10197 if (sep) {
10198 *sep = '\0';
10199 sep++;
10200 sep = ast_skip_blanks(sep);
10201 include_local_address = strcmp(sep, "include_local_address") == 0;
10202 }
10203
10204 if (ast_parse_arg(var->value, PARSE_ADDR | PARSE_PORT_IGNORE, &advertised_addr)) {
10205 ast_log(LOG_WARNING, "Invalid advertised ICE host address: %s\n", var->value);
10206 continue;
10207 }
10208
10209 if (!(candidate = ast_calloc(1, sizeof(*candidate)))) {
10210 ast_log(LOG_ERROR, "Failed to allocate ICE host candidate mapping.\n");
10211 break;
10212 }
10213
10214 candidate->include_local = include_local_address;
10215
10216 ast_sockaddr_copy(&candidate->local, &local_addr);
10217 ast_sockaddr_copy(&candidate->advertised, &advertised_addr);
10218
10219 AST_RWLIST_INSERT_TAIL(&host_candidates, candidate, next);
10220 }
10221 AST_RWLIST_UNLOCK(&host_candidates);
10222
10223 ast_rwlock_wrlock(&ice_acl_lock);
10224 ast_rwlock_wrlock(&stun_acl_lock);
10225
10226 ice_acl = ast_free_acl_list(ice_acl);
10227 stun_acl = ast_free_acl_list(stun_acl);
10228
10229 for (var = ast_variable_browse(cfg, "general"); var; var = var->next) {
10230 const char* sense = NULL;
10231 struct ast_acl_list **acl = NULL;
10232 if (strncasecmp(var->name, "ice_", 4) == 0) {
10233 sense = var->name + 4;
10234 acl = &ice_acl;
10235 } else if (strncasecmp(var->name, "stun_", 5) == 0) {
10236 sense = var->name + 5;
10237 acl = &stun_acl;
10238 } else {
10239 continue;
10240 }
10241
10242 if (strcasecmp(sense, "blacklist") == 0) {
10243 sense = "deny";
10244 }
10245
10246 if (strcasecmp(sense, "acl") && strcasecmp(sense, "permit") && strcasecmp(sense, "deny")) {
10247 continue;
10248 }
10249
10250 ast_append_acl(sense, var->value, acl, NULL, &acl_subscription_flag);
10251 }
10252 ast_rwlock_unlock(&ice_acl_lock);
10253 ast_rwlock_unlock(&stun_acl_lock);
10254
10255 if (acl_subscription_flag && !acl_change_sub) {
10259 } else if (!acl_subscription_flag && acl_change_sub) {
10261 }
10262#endif
10263#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
10264 if ((s = ast_variable_retrieve(cfg, "general", "dtls_mtu"))) {
10265 if ((sscanf(s, "%d", &dtls_mtu) != 1) || dtls_mtu < 256) {
10266 ast_log(LOG_WARNING, "Value for 'dtls_mtu' could not be read, using default of '%d' instead\n",
10268 dtls_mtu = DEFAULT_DTLS_MTU;
10269 }
10270 }
10271#endif
10272
10273 ast_config_destroy(cfg);
10274
10275 /* Choosing an odd start port casues issues (like a potential infinite loop) and as odd parts are not
10276 chosen anyway, we are going to round up and issue a warning */
10277 if (rtpstart & 1) {
10278 rtpstart++;
10279 ast_log(LOG_WARNING, "Odd start value for RTP port in rtp.conf, rounding up to %d\n", rtpstart);
10280 }
10281
10282 if (rtpstart >= rtpend) {
10283 ast_log(LOG_WARNING, "Unreasonable values for RTP start/end port in rtp.conf\n");
10286 }
10287 ast_verb(2, "RTP Allocating from port range %d -> %d\n", rtpstart, rtpend);
10288 return 0;
10289}
10290
10291static int reload_module(void)
10292{
10293 rtp_reload(1, 0);
10294 return 0;
10295}
10296
10297#ifdef HAVE_PJPROJECT
10298static void rtp_terminate_pjproject(void)
10299{
10300 pj_thread_register_check();
10301
10302 if (timer_thread) {
10303 timer_terminate = 1;
10304 pj_thread_join(timer_thread);
10305 pj_thread_destroy(timer_thread);
10306 }
10307
10309 pj_shutdown();
10310}
10311
10312static void acl_change_stasis_cb(void *data, struct stasis_subscription *sub, struct stasis_message *message)
10313{
10315 return;
10316 }
10317
10318 /* There is no simple way to just reload the ACLs, so just execute a forced reload. */
10319 rtp_reload(1, 1);
10320}
10321#endif
10322
10323static int load_module(void)
10324{
10325#ifdef HAVE_PJPROJECT
10326 pj_lock_t *lock;
10327
10329
10331 if (pj_init() != PJ_SUCCESS) {
10333 }
10334
10335 if (pjlib_util_init() != PJ_SUCCESS) {
10336 rtp_terminate_pjproject();
10338 }
10339
10340 if (pjnath_init() != PJ_SUCCESS) {
10341 rtp_terminate_pjproject();
10343 }
10344
10345 ast_pjproject_caching_pool_init(&cachingpool, &pj_pool_factory_default_policy, 0);
10346
10347 pool = pj_pool_create(&cachingpool.factory, "timer", 512, 512, NULL);
10348
10349 if (pj_timer_heap_create(pool, 100, &timer_heap) != PJ_SUCCESS) {
10350 rtp_terminate_pjproject();
10352 }
10353
10354 if (pj_lock_create_recursive_mutex(pool, "rtp%p", &lock) != PJ_SUCCESS) {
10355 rtp_terminate_pjproject();
10357 }
10358
10359 pj_timer_heap_set_lock(timer_heap, lock, PJ_TRUE);
10360
10361 if (pj_thread_create(pool, "timer", &timer_worker_thread, NULL, 0, 0, &timer_thread) != PJ_SUCCESS) {
10362 rtp_terminate_pjproject();
10364 }
10365
10366#endif
10367
10368#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
10369 dtls_bio_methods = BIO_meth_new(BIO_TYPE_BIO, "rtp write");
10370 if (!dtls_bio_methods) {
10371#ifdef HAVE_PJPROJECT
10372 rtp_terminate_pjproject();
10373#endif
10375 }
10376 BIO_meth_set_write(dtls_bio_methods, dtls_bio_write);
10377 BIO_meth_set_ctrl(dtls_bio_methods, dtls_bio_ctrl);
10378 BIO_meth_set_create(dtls_bio_methods, dtls_bio_new);
10379 BIO_meth_set_destroy(dtls_bio_methods, dtls_bio_free);
10380#endif
10381
10383#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
10384 BIO_meth_free(dtls_bio_methods);
10385#endif
10386#ifdef HAVE_PJPROJECT
10387 rtp_terminate_pjproject();
10388#endif
10390 }
10391
10393#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
10394 BIO_meth_free(dtls_bio_methods);
10395#endif
10396#ifdef HAVE_PJPROJECT
10398 rtp_terminate_pjproject();
10399#endif
10401 }
10402
10403 rtp_reload(0, 0);
10404
10406}
10407
10408static int unload_module(void)
10409{
10412
10413#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
10414 if (dtls_bio_methods) {
10415 BIO_meth_free(dtls_bio_methods);
10416 }
10417#endif
10418
10419#ifdef HAVE_PJPROJECT
10420 host_candidate_overrides_clear();
10421 pj_thread_register_check();
10422 rtp_terminate_pjproject();
10423
10425 rtp_unload_acl(&ice_acl_lock, &ice_acl);
10426 rtp_unload_acl(&stun_acl_lock, &stun_acl);
10427 clean_stunaddr();
10428#endif
10429
10430 return 0;
10431}
10432
10434 .support_level = AST_MODULE_SUPPORT_CORE,
10435 .load = load_module,
10436 .unload = unload_module,
10438 .load_pri = AST_MODPRI_CHANNEL_DEPEND,
10439#ifdef HAVE_PJPROJECT
10440 .requires = "res_pjproject",
10441#endif
Access Control of various sorts.
struct stasis_message_type * ast_named_acl_change_type(void)
a stasis_message_type for changes against a named ACL or the set of all named ACLs
int ast_ouraddrfor(const struct ast_sockaddr *them, struct ast_sockaddr *us)
Get our local IP address when contacting a remote host.
Definition: acl.c:1021
void ast_append_acl(const char *sense, const char *stuff, struct ast_acl_list **path, int *error, int *named_acl_flag)
Add a rule to an ACL struct.
Definition: acl.c:429
int ast_find_ourip(struct ast_sockaddr *ourip, const struct ast_sockaddr *bindaddr, int family)
Find our IP address.
Definition: acl.c:1068
@ AST_SENSE_DENY
Definition: acl.h:37
enum ast_acl_sense ast_apply_acl_nolog(struct ast_acl_list *acl_list, const struct ast_sockaddr *addr)
Apply a set of rules to a given IP address, don't log failure.
Definition: acl.c:803
struct ast_acl_list * ast_free_acl_list(struct ast_acl_list *acl)
Free a list of ACLs.
Definition: acl.c:233
char digit
jack_status_t status
Definition: app_jack.c:149
const char * str
Definition: app_jack.c:150
enum queue_result id
Definition: app_queue.c:1808
pthread_t thread
Definition: app_sla.c:335
ast_cond_t cond
Definition: app_sla.c:336
ast_mutex_t lock
Definition: app_sla.c:337
static volatile unsigned int seq
Definition: app_sms.c:123
#define var
Definition: ast_expr2f.c:605
if(!yyg->yy_init)
Definition: ast_expr2f.c:854
void timersub(struct timeval *tvend, struct timeval *tvstart, struct timeval *tvdiff)
char * strsep(char **str, const char *delims)
Asterisk main include file. File version handling, generic pbx functions.
#define ast_free(a)
Definition: astmm.h:180
#define ast_strndup(str, len)
A wrapper for strndup()
Definition: astmm.h:256
#define ast_strdup(str)
A wrapper for strdup()
Definition: astmm.h:241
#define ast_strdupa(s)
duplicate a string in memory from the stack
Definition: astmm.h:298
void ast_free_ptr(void *ptr)
free() wrapper
Definition: astmm.c:1739
#define ast_calloc(num, len)
A wrapper for calloc()
Definition: astmm.h:202
#define ast_malloc(len)
A wrapper for malloc()
Definition: astmm.h:191
#define ast_log
Definition: astobj2.c:42
#define ao2_iterator_next(iter)
Definition: astobj2.h:1911
#define ao2_link(container, obj)
Add an object to a container.
Definition: astobj2.h:1532
@ CMP_MATCH
Definition: astobj2.h:1027
@ CMP_STOP
Definition: astobj2.h:1028
#define OBJ_POINTER
Definition: astobj2.h:1150
@ AO2_ALLOC_OPT_LOCK_NOLOCK
Definition: astobj2.h:367
@ AO2_ALLOC_OPT_LOCK_MUTEX
Definition: astobj2.h:363
int ao2_container_count(struct ao2_container *c)
Returns the number of elements in a container.
#define ao2_cleanup(obj)
Definition: astobj2.h:1934
#define ao2_find(container, arg, flags)
Definition: astobj2.h:1736
struct ao2_iterator ao2_iterator_init(struct ao2_container *c, int flags) attribute_warn_unused_result
Create an iterator for a container.
#define ao2_unlock(a)
Definition: astobj2.h:729
#define ao2_replace(dst, src)
Replace one object reference with another cleaning up the original.
Definition: astobj2.h:501
#define ao2_lock(a)
Definition: astobj2.h:717
#define ao2_ref(o, delta)
Reference/unreference an object and return the old refcount.
Definition: astobj2.h:459
#define ao2_alloc_options(data_size, destructor_fn, options)
Definition: astobj2.h:404
void * ao2_object_get_lockaddr(void *obj)
Return the mutex lock address of an object.
Definition: astobj2.c:476
#define ao2_bump(obj)
Bump refcount on an AO2 object by one, returning the object.
Definition: astobj2.h:480
void ao2_iterator_destroy(struct ao2_iterator *iter)
Destroy a container iterator.
#define ao2_container_alloc_list(ao2_options, container_options, sort_fn, cmp_fn)
Allocate and initialize a list container.
Definition: astobj2.h:1327
#define ao2_alloc(data_size, destructor_fn)
Definition: astobj2.h:409
static const char desc[]
Definition: cdr_radius.c:84
static PGresult * result
Definition: cel_pgsql.c:84
unsigned int tos
Definition: chan_iax2.c:379
static struct stasis_subscription * acl_change_sub
Definition: chan_iax2.c:352
unsigned int cos
Definition: chan_iax2.c:380
static void acl_change_stasis_cb(void *data, struct stasis_subscription *sub, struct stasis_message *message)
Definition: chan_iax2.c:1583
static struct ast_sched_context * sched
Definition: chan_ooh323.c:400
static const char type[]
Definition: chan_ooh323.c:109
static char version[AST_MAX_EXTENSION]
Definition: chan_ooh323.c:391
static int answer(void *data)
Definition: chan_pjsip.c:687
General Asterisk PBX channel definitions.
const struct ast_channel_tech * ast_channel_tech(const struct ast_channel *chan)
Standard Command Line Interface.
#define CLI_SHOWUSAGE
Definition: cli.h:45
#define AST_CLI_YESNO(x)
Return Yes or No depending on the argument.
Definition: cli.h:71
#define CLI_SUCCESS
Definition: cli.h:44
int ast_cli_unregister_multiple(struct ast_cli_entry *e, int len)
Unregister multiple commands.
Definition: clicompat.c:30
#define AST_CLI_DEFINE(fn, txt,...)
Definition: cli.h:197
int ast_cli_completion_add(char *value)
Add a result to a request for completion options.
Definition: main/cli.c:2768
void ast_cli(int fd, const char *fmt,...)
Definition: clicompat.c:6
char * ast_cli_complete(const char *word, const char *const choices[], int pos)
Definition: main/cli.c:1853
@ CLI_INIT
Definition: cli.h:152
@ CLI_GENERATE
Definition: cli.h:153
#define CLI_FAILURE
Definition: cli.h:46
#define ast_cli_register_multiple(e, len)
Register multiple commands.
Definition: cli.h:265
static struct ao2_container * codecs
Registered codecs.
Definition: codec.c:48
ast_media_type
Types of media.
Definition: codec.h:30
@ AST_MEDIA_TYPE_AUDIO
Definition: codec.h:32
@ AST_MEDIA_TYPE_UNKNOWN
Definition: codec.h:31
@ AST_MEDIA_TYPE_VIDEO
Definition: codec.h:33
@ AST_MEDIA_TYPE_END
Definition: codec.h:36
@ AST_MEDIA_TYPE_IMAGE
Definition: codec.h:34
@ AST_MEDIA_TYPE_TEXT
Definition: codec.h:35
unsigned int ast_codec_samples_count(struct ast_frame *frame)
Get the number of samples contained within a frame.
Definition: codec.c:379
const char * ast_codec_media_type2str(enum ast_media_type type)
Conversion function to take a media type and turn it into a string.
Definition: codec.c:348
static int reconstruct(int sign, int dqln, int y)
Definition: codec_g726.c:331
Conversion utility functions.
int ast_str_to_uint(const char *str, unsigned int *res)
Convert the given string to an unsigned integer.
Definition: conversions.c:56
Data Buffer API.
void * ast_data_buffer_get(const struct ast_data_buffer *buffer, size_t pos)
Retrieve a data payload from the data buffer.
Definition: data_buffer.c:269
struct ast_data_buffer * ast_data_buffer_alloc(ast_data_buffer_free_callback free_fn, size_t size)
Allocate a data buffer.
Definition: data_buffer.c:145
size_t ast_data_buffer_count(const struct ast_data_buffer *buffer)
Return the number of payloads in a data buffer.
Definition: data_buffer.c:356
void ast_data_buffer_resize(struct ast_data_buffer *buffer, size_t size)
Resize a data buffer.
Definition: data_buffer.c:168
int ast_data_buffer_put(struct ast_data_buffer *buffer, size_t pos, void *payload)
Place a data payload at a position in the data buffer.
Definition: data_buffer.c:203
size_t ast_data_buffer_max(const struct ast_data_buffer *buffer)
Return the maximum number of payloads a data buffer can hold.
Definition: data_buffer.c:363
void * ast_data_buffer_remove(struct ast_data_buffer *buffer, size_t pos)
Remove a data payload from the data buffer.
Definition: data_buffer.c:299
void ast_data_buffer_free(struct ast_data_buffer *buffer)
Free a data buffer (and all held data payloads)
Definition: data_buffer.c:338
Core DNS API.
const struct ast_dns_record * ast_dns_record_get_next(const struct ast_dns_record *record)
Get the next DNS record.
Definition: dns_core.c:170
int ast_dns_result_get_lowest_ttl(const struct ast_dns_result *result)
Retrieve the lowest TTL from a result.
Definition: dns_core.c:112
const char * ast_dns_record_get_data(const struct ast_dns_record *record)
Retrieve the raw DNS record.
Definition: dns_core.c:160
const struct ast_dns_record * ast_dns_result_get_records(const struct ast_dns_result *result)
Get the first record of a DNS Result.
Definition: dns_core.c:102
struct ast_dns_result * ast_dns_query_get_result(const struct ast_dns_query *query)
Get the result information for a DNS query.
Definition: dns_core.c:77
int ast_dns_record_get_rr_type(const struct ast_dns_record *record)
Get the resource record type of a DNS record.
Definition: dns_core.c:145
const char * ast_dns_query_get_name(const struct ast_dns_query *query)
Get the name queried in a DNS query.
Definition: dns_core.c:57
size_t ast_dns_record_get_data_size(const struct ast_dns_record *record)
Retrieve the size of the raw DNS record.
Definition: dns_core.c:165
Internal DNS structure definitions.
DNS Recurring Resolution API.
int ast_dns_resolve_recurring_cancel(struct ast_dns_query_recurring *recurring)
Cancel an asynchronous recurring DNS resolution.
struct ast_dns_query_recurring * ast_dns_resolve_recurring(const char *name, int rr_type, int rr_class, ast_dns_resolve_callback callback, void *data)
Asynchronously resolve a DNS query, and continue resolving it according to the lowest TTL available.
char * end
Definition: eagi_proxy.c:73
char buf[BUFSIZE]
Definition: eagi_proxy.c:66
void ast_verbose(const char *fmt,...)
Definition: extconf.c:2206
char * address
Definition: f2c.h:59
#define abs(x)
Definition: f2c.h:195
int ast_format_get_smoother_flags(const struct ast_format *format)
Get smoother flags for this format.
Definition: format.c:349
enum ast_media_type ast_format_get_type(const struct ast_format *format)
Get the media type of a format.
Definition: format.c:354
int ast_format_can_be_smoothed(const struct ast_format *format)
Get whether or not the format can be smoothed.
Definition: format.c:344
unsigned int ast_format_get_minimum_bytes(const struct ast_format *format)
Get the minimum number of bytes expected in a frame for this format.
Definition: format.c:374
unsigned int ast_format_get_sample_rate(const struct ast_format *format)
Get the sample rate of a media format.
Definition: format.c:379
unsigned int ast_format_get_minimum_ms(const struct ast_format *format)
Get the minimum amount of media carried in this format.
Definition: format.c:364
enum ast_format_cmp_res ast_format_cmp(const struct ast_format *format1, const struct ast_format *format2)
Compare two formats.
Definition: format.c:201
@ AST_FORMAT_CMP_EQUAL
Definition: format.h:36
@ AST_FORMAT_CMP_NOT_EQUAL
Definition: format.h:38
const char * ast_format_get_name(const struct ast_format *format)
Get the name associated with a format.
Definition: format.c:334
unsigned int ast_format_get_default_ms(const struct ast_format *format)
Get the default framing size (in milliseconds) for a format.
Definition: format.c:359
Media Format Cache API.
int ast_format_cache_is_slinear(struct ast_format *format)
Determines if a format is one of the cached slin formats.
Definition: format_cache.c:534
struct ast_format * ast_format_none
Built-in "null" format.
Definition: format_cache.c:246
struct ast_format * ast_format_t140_red
Built-in cached t140 red format.
Definition: format_cache.c:236
struct ast_format * ast_format_g722
Built-in cached g722 format.
Definition: format_cache.c:106
struct ast_format * ast_format_t140
Built-in cached t140 format.
Definition: format_cache.c:231
static const char name[]
Definition: format_mp3.c:68
static int replace(struct ast_channel *chan, const char *cmd, char *data, struct ast_str **buf, ssize_t len)
Definition: func_strings.c:980
static int len(struct ast_channel *chan, const char *cmd, char *data, char *buf, size_t buflen)
struct stasis_message_type * ast_rtp_rtcp_sent_type(void)
Message type for an RTCP message sent from this Asterisk instance.
struct stasis_message_type * ast_rtp_rtcp_received_type(void)
Message type for an RTCP message received from some external source.
const char * ext
Definition: http.c:150
Configuration File Parser.
struct ast_config * ast_config_load2(const char *filename, const char *who_asked, struct ast_flags flags)
Load a config file.
Definition: main/config.c:3541
@ CONFIG_FLAG_FILEUNCHANGED
#define CONFIG_STATUS_FILEUNCHANGED
#define CONFIG_STATUS_FILEINVALID
int ast_parse_arg(const char *arg, enum ast_parse_flags flags, void *p_result,...)
The argument parsing routine.
Definition: main/config.c:4047
void ast_config_destroy(struct ast_config *cfg)
Destroys a config.
Definition: extconf.c:1289
const char * ast_variable_retrieve(struct ast_config *config, const char *category, const char *variable)
Definition: main/config.c:869
struct ast_variable * ast_variable_browse(const struct ast_config *config, const char *category_name)
Definition: extconf.c:1215
Asterisk internal frame definitions.
#define ast_frame_byteswap_be(fr)
#define ast_frisolate(fr)
Makes a frame independent of any static storage.
void ast_frame_free(struct ast_frame *frame, int cache)
Frees a frame or list of frames.
Definition: main/frame.c:176
#define ast_frdup(fr)
Copies a frame.
#define ast_frfree(fr)
#define AST_FRIENDLY_OFFSET
Offset into a frame's data buffer.
ast_frame_type
Frame types.
@ AST_FRAME_VIDEO
@ AST_FRAME_DTMF_END
@ AST_FRAME_DTMF_BEGIN
@ AST_FRAME_VOICE
@ AST_FRAME_RTCP
@ AST_FRAME_CONTROL
@ AST_FRAME_TEXT
@ AST_CONTROL_VIDUPDATE
@ AST_CONTROL_FLASH
@ AST_CONTROL_SRCCHANGE
struct ast_frame ast_null_frame
Definition: main/frame.c:79
@ AST_FRFLAG_HAS_SEQUENCE_NUMBER
@ AST_FRFLAG_HAS_TIMING_INFO
#define DEBUG_ATLEAST(level)
#define ast_debug(level,...)
Log a DEBUG message.
#define LOG_DEBUG
#define LOG_ERROR
#define ast_verb(level,...)
#define LOG_NOTICE
#define LOG_WARNING
struct ssl_ctx_st SSL_CTX
Definition: iostream.h:38
struct ssl_st SSL
Definition: iostream.h:37
void ast_json_unref(struct ast_json *value)
Decrease refcount on value. If refcount reaches zero, value is freed.
Definition: json.c:73
struct ast_json * ast_json_pack(char const *format,...)
Helper for creating complex JSON values.
Definition: json.c:612
#define AST_RWLIST_REMOVE_CURRENT
Definition: linkedlists.h:570
#define AST_RWLIST_RDLOCK(head)
Read locks a list.
Definition: linkedlists.h:78
#define AST_LIST_HEAD_INIT_NOLOCK(head)
Initializes a list head structure.
Definition: linkedlists.h:681
#define AST_LIST_HEAD_STATIC(name, type)
Defines a structure to be used to hold a list of specified type, statically initialized.
Definition: linkedlists.h:291
#define AST_LIST_HEAD_NOLOCK(name, type)
Defines a structure to be used to hold a list of specified type (with no lock).
Definition: linkedlists.h:225
#define AST_RWLIST_TRAVERSE_SAFE_BEGIN
Definition: linkedlists.h:545
#define AST_RWLIST_WRLOCK(head)
Write locks a list.
Definition: linkedlists.h:52
#define AST_RWLIST_UNLOCK(head)
Attempts to unlock a read/write based list.
Definition: linkedlists.h:151
#define AST_LIST_TRAVERSE(head, var, field)
Loops over (traverses) the entries in a list.
Definition: linkedlists.h:491
#define AST_RWLIST_HEAD_STATIC(name, type)
Defines a structure to be used to hold a read/write list of specified type, statically initialized.
Definition: linkedlists.h:333
#define AST_LIST_INSERT_TAIL(head, elm, field)
Appends a list entry to the tail of a list.
Definition: linkedlists.h:731
#define AST_LIST_ENTRY(type)
Declare a forward link structure inside a list entry.
Definition: linkedlists.h:410
#define AST_RWLIST_TRAVERSE_SAFE_END
Definition: linkedlists.h:617
#define AST_LIST_LOCK(head)
Locks a list.
Definition: linkedlists.h:40
#define AST_LIST_INSERT_HEAD(head, elm, field)
Inserts a list entry at the head of a list.
Definition: linkedlists.h:711
#define AST_LIST_REMOVE(head, elm, field)
Removes a specific entry from a list.
Definition: linkedlists.h:856
#define AST_RWLIST_INSERT_TAIL
Definition: linkedlists.h:741
#define AST_LIST_REMOVE_HEAD(head, field)
Removes and returns the head entry from a list.
Definition: linkedlists.h:833
#define AST_LIST_UNLOCK(head)
Attempts to unlock a list.
Definition: linkedlists.h:140
#define AST_RWLIST_ENTRY
Definition: linkedlists.h:415
#define AST_LIST_FIRST(head)
Returns the first entry contained in a list.
Definition: linkedlists.h:421
#define AST_LIST_NEXT(elm, field)
Returns the next entry in the list after the given entry.
Definition: linkedlists.h:439
Asterisk locking-related definitions:
#define ast_rwlock_wrlock(a)
Definition: lock.h:240
#define AST_RWLOCK_INIT_VALUE
Definition: lock.h:102
#define ast_cond_init(cond, attr)
Definition: lock.h:205
#define ast_cond_timedwait(cond, mutex, time)
Definition: lock.h:210
#define ast_rwlock_rdlock(a)
Definition: lock.h:239
pthread_cond_t ast_cond_t
Definition: lock.h:182
#define ast_rwlock_unlock(a)
Definition: lock.h:238
#define ast_cond_signal(cond)
Definition: lock.h:207
#define AST_LOG_CATEGORY_DISABLED
#define AST_LOG_CATEGORY_ENABLED
#define ast_debug_category(sublevel, ids,...)
Log for a debug category.
int ast_debug_category_set_sublevel(const char *name, int sublevel)
Set the debug category's sublevel.
int errno
The AMI - Asterisk Manager Interface - is a TCP protocol created to manage Asterisk with third-party ...
Asterisk module definitions.
@ AST_MODFLAG_LOAD_ORDER
Definition: module.h:331
#define AST_MODULE_INFO(keystr, flags_to_set, desc, fields...)
Definition: module.h:557
@ AST_MODPRI_CHANNEL_DEPEND
Definition: module.h:340
@ AST_MODULE_SUPPORT_CORE
Definition: module.h:121
#define ASTERISK_GPL_KEY
The text the key() function should return.
Definition: module.h:46
@ AST_MODULE_LOAD_SUCCESS
Definition: module.h:70
@ AST_MODULE_LOAD_DECLINE
Module has failed to load, may be in an inconsistent state.
Definition: module.h:78
def info(msg)
int ast_sockaddr_ipv4_mapped(const struct ast_sockaddr *addr, struct ast_sockaddr *ast_mapped)
Convert an IPv4-mapped IPv6 address into an IPv4 address.
Definition: netsock2.c:37
static char * ast_sockaddr_stringify(const struct ast_sockaddr *addr)
Wrapper around ast_sockaddr_stringify_fmt() with default format.
Definition: netsock2.h:256
#define ast_sockaddr_port(addr)
Get the port number of a socket address.
Definition: netsock2.h:517
static void ast_sockaddr_copy(struct ast_sockaddr *dst, const struct ast_sockaddr *src)
Copies the data from one ast_sockaddr to another.
Definition: netsock2.h:167
int ast_sockaddr_is_ipv6(const struct ast_sockaddr *addr)
Determine if this is an IPv6 address.
Definition: netsock2.c:524
int ast_bind(int sockfd, const struct ast_sockaddr *addr)
Wrapper around bind(2) that uses struct ast_sockaddr.
Definition: netsock2.c:590
#define ast_sockaddr_from_sockaddr(addr, sa)
Converts a struct sockaddr to a struct ast_sockaddr.
Definition: netsock2.h:819
int ast_sockaddr_cmp_addr(const struct ast_sockaddr *a, const struct ast_sockaddr *b)
Compares the addresses of two ast_sockaddr structures.
Definition: netsock2.c:413
static char * ast_sockaddr_stringify_host(const struct ast_sockaddr *addr)
Wrapper around ast_sockaddr_stringify_fmt() to return an address only, suitable for a URL (with brack...
Definition: netsock2.h:327
ssize_t ast_sendto(int sockfd, const void *buf, size_t len, int flags, const struct ast_sockaddr *dest_addr)
Wrapper around sendto(2) that uses ast_sockaddr.
Definition: netsock2.c:614
int ast_sockaddr_is_any(const struct ast_sockaddr *addr)
Determine if the address type is unspecified, or "any" address.
Definition: netsock2.c:534
int ast_sockaddr_split_hostport(char *str, char **host, char **port, int flags)
Splits a string into its host and port components.
Definition: netsock2.c:164
int ast_set_qos(int sockfd, int tos, int cos, const char *desc)
Set type of service.
Definition: netsock2.c:621
ast_transport
Definition: netsock2.h:59
@ AST_TRANSPORT_UDP
Definition: netsock2.h:60
@ AST_TRANSPORT_TCP
Definition: netsock2.h:61
#define ast_sockaddr_to_sin(addr, sin)
Converts a struct ast_sockaddr to a struct sockaddr_in.
Definition: netsock2.h:765
int ast_sockaddr_parse(struct ast_sockaddr *addr, const char *str, int flags)
Parse an IPv4 or IPv6 address string.
Definition: netsock2.c:230
static int ast_sockaddr_isnull(const struct ast_sockaddr *addr)
Checks if the ast_sockaddr is null. "null" in this sense essentially means uninitialized,...
Definition: netsock2.h:127
ssize_t ast_recvfrom(int sockfd, void *buf, size_t len, int flags, struct ast_sockaddr *src_addr)
Wrapper around recvfrom(2) that uses struct ast_sockaddr.
Definition: netsock2.c:606
int ast_sockaddr_cmp(const struct ast_sockaddr *a, const struct ast_sockaddr *b)
Compares two ast_sockaddr structures.
Definition: netsock2.c:388
#define ast_sockaddr_set_port(addr, port)
Sets the port number of a socket address.
Definition: netsock2.h:532
#define ast_sockaddr_from_sin(addr, sin)
Converts a struct sockaddr_in to a struct ast_sockaddr.
Definition: netsock2.h:778
static void ast_sockaddr_setnull(struct ast_sockaddr *addr)
Sets address addr to null.
Definition: netsock2.h:138
int ast_sockaddr_is_ipv4(const struct ast_sockaddr *addr)
Determine if the address is an IPv4 address.
Definition: netsock2.c:497
const char * ast_inet_ntoa(struct in_addr ia)
thread-safe replacement for inet_ntoa().
Definition: utils.c:928
Options provided by main asterisk program.
#define AST_PJPROJECT_INIT_LOG_LEVEL()
Get maximum log level pjproject was compiled with.
Definition: options.h:167
static int frames
Definition: parser.c:51
Core PBX routines and definitions.
static void * cleanup(void *unused)
Definition: pbx_realtime.c:124
static char * generate_random_string(char *buf, size_t size)
Generate 32 byte random string (stolen from chan_sip.c)
Definition: res_calendar.c:734
static int reload(void)
struct stasis_forward * sub
Definition: res_corosync.c:240
int ast_sockaddr_to_pj_sockaddr(const struct ast_sockaddr *addr, pj_sockaddr *pjaddr)
Fill a pj_sockaddr from an ast_sockaddr.
void ast_pjproject_caching_pool_destroy(pj_caching_pool *cp)
Destroy caching pool factory and all cached pools.
int ast_sockaddr_pj_sockaddr_cmp(const struct ast_sockaddr *addr, const pj_sockaddr *pjaddr)
Compare an ast_sockaddr to a pj_sockaddr.
void ast_pjproject_caching_pool_init(pj_caching_pool *cp, const pj_pool_factory_policy *policy, pj_size_t max_capacity)
Initialize the caching pool factory.
static struct ast_threadstorage pj_thread_storage
Definition: res_pjsip.c:2281
static pj_caching_pool cachingpool
Pool factory used by pjlib to allocate memory.
#define OLD_PACKET_COUNT
#define TURN_STATE_WAIT_TIME
static int ast_rtp_dtmf_compatible(struct ast_channel *chan0, struct ast_rtp_instance *instance0, struct ast_channel *chan1, struct ast_rtp_instance *instance1)
static int rtpdebugport
static void ast_rtp_update_source(struct ast_rtp_instance *instance)
#define TRANSPORT_TURN_RTCP
static int ast_rtp_destroy(struct ast_rtp_instance *instance)
#define RTCP_LENGTH_SHIFT
struct ast_srtp_res * res_srtp
Definition: rtp_engine.c:182
static int ast_rtp_rtcp_handle_nack(struct ast_rtp_instance *instance, unsigned int *nackdata, unsigned int position, unsigned int length)
static int rtp_reload(int reload, int by_external_config)
#define RTCP_PAYLOAD_TYPE_SHIFT
#define DEFAULT_RTP_RECV_BUFFER_SIZE
#define MAX_TIMESTAMP_SKEW
#define DEFAULT_ICESUPPORT
static void ntp2timeval(unsigned int msw, unsigned int lsw, struct timeval *tv)
#define RTCP_VALID_VALUE
#define RTCP_FB_NACK_BLOCK_WORD_LENGTH
static struct ast_sockaddr rtpdebugaddr
#define DEFAULT_LEARNING_MIN_SEQUENTIAL
#define FLAG_3389_WARNING
static int rtp_learning_rtp_seq_update(struct rtp_learning_info *info, uint16_t seq)
static int rtp_transport_wide_cc_feedback_produce(const void *data)
#define RTCP_RR_BLOCK_WORD_LENGTH
static struct ast_frame * ast_rtcp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp, const unsigned char *rtcpdata, size_t size, struct ast_sockaddr *addr)
static const char * rtcp_payload_subtype2str(unsigned int pt, unsigned int subtype)
static int ast_rtp_new(struct ast_rtp_instance *instance, struct ast_sched_context *sched, struct ast_sockaddr *addr, void *data)
static char * handle_cli_rtp_settings(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
static struct ast_frame * ast_rtcp_read(struct ast_rtp_instance *instance)
#define RTP_IGNORE_FIRST_PACKETS_COUNT
static int rtp_raw_write(struct ast_rtp_instance *instance, struct ast_frame *frame, int codec)
static int rtcpdebugport
#define RTCP_SR_BLOCK_WORD_LENGTH
static int ast_rtp_dtmf_end_with_duration(struct ast_rtp_instance *instance, char digit, unsigned int duration)
#define DEFAULT_RTP_END
static int rtcp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
static struct ast_rtp_instance * rtp_find_instance_by_packet_source_ssrc(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned int ssrc)
#define SRTP_MASTER_LEN
#define RTCP_REPORT_COUNT_SHIFT
#define RTCP_PT_FUR
#define RTCP_DEFAULT_INTERVALMS
static void rtp_deallocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
#define RTP_DTLS_ESTABLISHED
static int bridge_p2p_rtp_write(struct ast_rtp_instance *instance, struct ast_rtp_instance *instance1, unsigned int *rtpheader, int len, int hdrlen)
#define DEFAULT_DTMF_TIMEOUT
static void put_unaligned_time24(void *p, uint32_t time_msw, uint32_t time_lsw)
#define RTCP_MAX_INTERVALMS
static int ast_rtcp_generate_nack(struct ast_rtp_instance *instance, unsigned char *rtcpheader)
static char * handle_cli_rtp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
strict_rtp_mode
@ STRICT_RTP_SEQNO
@ STRICT_RTP_YES
@ STRICT_RTP_NO
static void rtp_transport_wide_cc_feedback_status_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits, uint16_t *status_vector_chunk, int *run_length_chunk_count, int *run_length_chunk_status, int status)
static int ast_rtp_bundle(struct ast_rtp_instance *child, struct ast_rtp_instance *parent)
static struct ast_rtp_engine asterisk_rtp_engine
static const char * rtcp_payload_type2str(unsigned int pt)
#define TRANSPORT_SOCKET_RTP
static int rtpend
static void rtp_instance_parse_transport_wide_cc(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned char *data, int len)
static void calc_rxstamp_and_jitter(struct timeval *tv, struct ast_rtp *rtp, unsigned int rx_rtp_ts, int mark)
static unsigned int calc_txstamp(struct ast_rtp *rtp, struct timeval *delivery)
static int ast_rtp_dtmf_continuation(struct ast_rtp_instance *instance)
#define RTCP_PT_RR
#define SRTP_MASTER_KEY_LEN
static int learning_min_sequential
static int rtp_allocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
static char * rtcp_do_debug_ip(struct ast_cli_args *a)
static int ast_rtcp_generate_report(struct ast_rtp_instance *instance, unsigned char *rtcpheader, struct ast_rtp_rtcp_report *rtcp_report, int *sr)
static struct ast_frame * ast_rtp_read(struct ast_rtp_instance *instance, int rtcp)
static char * handle_cli_rtcp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
struct ast_srtp_policy_res * res_srtp_policy
Definition: rtp_engine.c:183
#define RTCP_PT_BYE
static struct ast_rtp_instance * __rtp_find_instance_by_ssrc(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned int ssrc, int source)
static void calculate_lost_packet_statistics(struct ast_rtp *rtp, unsigned int *lost_packets, int *fraction_lost)
#define RTCP_HEADER_SSRC_LENGTH
static void process_dtmf_rfc2833(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark, struct frame_list *frames)
#define RTCP_VALID_MASK
static int srtp_replay_protection
static void ast_rtp_set_stream_num(struct ast_rtp_instance *instance, int stream_num)
static int learning_min_duration
static int create_new_socket(const char *type, int af)
static int ast_rtp_fd(struct ast_rtp_instance *instance, int rtcp)
static int ast_rtcp_generate_compound_prefix(struct ast_rtp_instance *instance, unsigned char *rtcpheader, struct ast_rtp_rtcp_report *report, int *sr)
static void update_jitter_stats(struct ast_rtp *rtp, unsigned int ia_jitter)
#define RTCP_FB_REMB_BLOCK_WORD_LENGTH
#define RTCP_PT_PSFB
static struct ast_frame * process_cn_rfc3389(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
#define DEFAULT_SRTP_REPLAY_PROTECTION
#define DEFAULT_DTLS_MTU
static int reload_module(void)
#define FLAG_NAT_INACTIVE
static int rtcp_debug_test_addr(struct ast_sockaddr *addr)
static int ast_rtp_qos_set(struct ast_rtp_instance *instance, int tos, int cos, const char *desc)
static void ast_rtp_change_source(struct ast_rtp_instance *instance)
static int ast_rtp_dtmf_end(struct ast_rtp_instance *instance, char digit)
static void calc_mean_and_standard_deviation(double new_sample, double *mean, double *std_dev, unsigned int *count)
static int compare_by_value(int elem, int value)
Helper function to compare an elem in a vector by value.
static int update_rtt_stats(struct ast_rtp *rtp, unsigned int lsr, unsigned int dlsr)
static int rtcp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
static struct ast_sockaddr rtcpdebugaddr
static struct ast_rtp_instance * rtp_find_instance_by_media_source_ssrc(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned int ssrc)
#define MAXIMUM_RTP_RECV_BUFFER_SIZE
static int rtp_red_buffer(struct ast_rtp_instance *instance, struct ast_frame *frame)
#define STRICT_RTP_LEARN_TIMEOUT
Strict RTP learning timeout time in milliseconds.
#define RTCP_VERSION_SHIFTED
static int rtcpinterval
static int strictrtp
static int ast_rtp_dtmf_begin(struct ast_rtp_instance *instance, char digit)
static void rtp_instance_parse_extmap_extensions(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned char *extension, int len)
static int find_by_value(int elem, int value)
Helper function to find an elem in a vector by value.
#define RTCP_REPORT_COUNT_MASK
static void rtp_instance_unlock(struct ast_rtp_instance *instance)
#define DEFAULT_RTP_START
#define TRANSPORT_TURN_RTP
static int rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
static int rtpstart
#define MINIMUM_RTP_PORT
static struct ast_cli_entry cli_rtp[]
static int ast_rtp_get_stat(struct ast_rtp_instance *instance, struct ast_rtp_instance_stats *stats, enum ast_rtp_instance_stat stat)
#define RESCALE(in, inmin, inmax, outmin, outmax)
#define RTCP_PT_SDES
#define MISSING_SEQNOS_ADDED_TRIGGER
#define SRTP_MASTER_SALT_LEN
static int ast_rtp_write(struct ast_rtp_instance *instance, struct ast_frame *frame)
#define RTCP_PAYLOAD_TYPE_MASK
#define DEFAULT_RTP_SEND_BUFFER_SIZE
#define FLAG_NAT_ACTIVE
#define FLAG_NEED_MARKER_BIT
static int __rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp)
#define RTCP_MIN_INTERVALMS
static void ast_rtp_stop(struct ast_rtp_instance *instance)
#define FLAG_REQ_LOCAL_BRIDGE_BIT
#define RTCP_PT_SR
static int __rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp, int *via_ice, int use_srtp)
static int load_module(void)
static int ast_rtcp_calculate_sr_rr_statistics(struct ast_rtp_instance *instance, struct ast_rtp_rtcp_report *rtcp_report, struct ast_sockaddr remote_address, int ice, int sr)
#define RTCP_VERSION_MASK_SHIFTED
#define CALC_LEARNING_MIN_DURATION(count)
Calculate the min learning duration in ms.
static int rtp_transport_wide_cc_packet_statistics_cmp(struct rtp_transport_wide_cc_packet_statistics a, struct rtp_transport_wide_cc_packet_statistics b)
#define SSRC_MAPPING_ELEM_CMP(elem, value)
SSRC mapping comparator for AST_VECTOR_REMOVE_CMP_UNORDERED()
static int rtp_debug_test_addr(struct ast_sockaddr *addr)
static int rtp_red_init(struct ast_rtp_instance *instance, int buffer_time, int *payloads, int generations)
strict_rtp_state
@ STRICT_RTP_LEARN
@ STRICT_RTP_OPEN
@ STRICT_RTP_CLOSED
static int unload_module(void)
static void ast_rtp_set_remote_ssrc(struct ast_rtp_instance *instance, unsigned int ssrc)
static void ast_rtp_prop_set(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value)
#define FLAG_NAT_INACTIVE_NOWARN
static int rtcp_mux(struct ast_rtp *rtp, const unsigned char *packet)
static void rtp_learning_seq_init(struct rtp_learning_info *info, uint16_t seq)
#define TRANSPORT_SOCKET_RTCP
static void rtp_learning_start(struct ast_rtp *rtp)
Start the strictrtp learning mode.
static int ast_rtp_dtmf_mode_set(struct ast_rtp_instance *instance, enum ast_rtp_dtmf_mode dtmf_mode)
static unsigned int ast_rtcp_calc_interval(struct ast_rtp *rtp)
static char * rtp_do_debug_ip(struct ast_cli_args *a)
static enum ast_rtp_dtmf_mode ast_rtp_dtmf_mode_get(struct ast_rtp_instance *instance)
static int rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
static unsigned int ast_rtp_get_ssrc(struct ast_rtp_instance *instance)
#define MAXIMUM_RTP_PORT
static void timeval2ntp(struct timeval tv, unsigned int *msw, unsigned int *lsw)
static void ast_rtp_remote_address_set(struct ast_rtp_instance *instance, struct ast_sockaddr *addr)
static struct ast_frame * ast_rtp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp, const struct ast_sockaddr *remote_address, unsigned char *read_area, int length, int prev_seqno, unsigned int bundled)
static int ast_rtp_local_bridge(struct ast_rtp_instance *instance0, struct ast_rtp_instance *instance1)
static struct ast_frame * red_t140_to_red(struct rtp_red *red)
static int ast_rtcp_generate_sdes(struct ast_rtp_instance *instance, unsigned char *rtcpheader, struct ast_rtp_rtcp_report *rtcp_report)
#define SEQNO_CYCLE_OVER
static double calc_media_experience_score(struct ast_rtp_instance *instance, double normdevrtt, double normdev_rxjitter, double stdev_rxjitter, double normdev_rxlost)
Calculate a "media experience score" based on given data.
static void update_reported_mes_stats(struct ast_rtp *rtp)
static int dtmftimeout
#define DEFAULT_STRICT_RTP
static int ast_rtp_sendcng(struct ast_rtp_instance *instance, int level)
generate comfort noice (CNG)
static char * handle_cli_rtcp_set_stats(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
static void update_lost_stats(struct ast_rtp *rtp, unsigned int lost_packets)
static void ast_rtp_stun_request(struct ast_rtp_instance *instance, struct ast_sockaddr *suggestion, const char *username)
static const char * ast_rtp_get_cname(struct ast_rtp_instance *instance)
static void rtp_write_rtcp_psfb(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_frame *frame, struct ast_sockaddr *remote_address)
static int rtcpstats
static struct ast_frame * process_dtmf_cisco(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
#define RTP_SEQ_MOD
static struct ast_frame * create_dtmf_frame(struct ast_rtp_instance *instance, enum ast_frame_type type, int compensate)
static void rtp_write_rtcp_fir(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_sockaddr *remote_address)
#define DEFAULT_TURN_PORT
#define MAXIMUM_RTP_SEND_BUFFER_SIZE
static int red_write(const void *data)
Write t140 redundancy frame.
#define DEFAULT_STUN_SOFTWARE_ATTRIBUTE
#define RTCP_LENGTH_MASK
#define DEFAULT_LEARNING_MIN_DURATION
static void update_local_mes_stats(struct ast_rtp *rtp)
static void rtp_transport_wide_cc_feedback_status_vector_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits, uint16_t *status_vector_chunk, int status)
static int ast_rtp_extension_enable(struct ast_rtp_instance *instance, enum ast_rtp_extension extension)
static int ast_rtcp_write(const void *data)
Write a RTCP packet to the far end.
ast_srtp_suite
Definition: res_srtp.h:56
@ AST_AES_CM_128_HMAC_SHA1_80
Definition: res_srtp.h:58
@ AST_AES_CM_128_HMAC_SHA1_32
Definition: res_srtp.h:59
#define NULL
Definition: resample.c:96
Pluggable RTP Architecture.
ast_rtp_dtls_setup
DTLS setup types.
Definition: rtp_engine.h:564
@ AST_RTP_DTLS_SETUP_PASSIVE
Definition: rtp_engine.h:566
@ AST_RTP_DTLS_SETUP_HOLDCONN
Definition: rtp_engine.h:568
@ AST_RTP_DTLS_SETUP_ACTPASS
Definition: rtp_engine.h:567
@ AST_RTP_DTLS_SETUP_ACTIVE
Definition: rtp_engine.h:565
#define AST_RTP_RTCP_PSFB
Definition: rtp_engine.h:329
#define AST_DEBUG_CATEGORY_DTLS
Definition: rtp_engine.h:3089
#define ast_debug_rtcp_packet_is_allowed
Definition: rtp_engine.h:3124
ast_rtp_ice_role
ICE role during negotiation.
Definition: rtp_engine.h:519
@ AST_RTP_ICE_ROLE_CONTROLLING
Definition: rtp_engine.h:521
@ AST_RTP_ICE_ROLE_CONTROLLED
Definition: rtp_engine.h:520
#define AST_RTP_RTCP_FMT_FIR
Definition: rtp_engine.h:337
#define ast_debug_rtcp(sublevel,...)
Log debug level RTCP information.
Definition: rtp_engine.h:3116
struct ast_format * ast_rtp_codecs_get_preferred_format(struct ast_rtp_codecs *codecs)
Retrieve rx preferred format.
Definition: rtp_engine.c:1578
ast_rtp_ice_component_type
ICE component types.
Definition: rtp_engine.h:513
@ AST_RTP_ICE_COMPONENT_RTCP
Definition: rtp_engine.h:515
@ AST_RTP_ICE_COMPONENT_RTP
Definition: rtp_engine.h:514
struct ast_rtp_rtcp_report * ast_rtp_rtcp_report_alloc(unsigned int report_blocks)
Allocate an ao2 ref counted instance of ast_rtp_rtcp_report.
Definition: rtp_engine.c:3685
struct ast_rtp_payload_type * ast_rtp_codecs_get_payload(struct ast_rtp_codecs *codecs, int payload)
Retrieve rx payload mapped information by payload type.
Definition: rtp_engine.c:1554
int ast_rtp_instance_get_prop(struct ast_rtp_instance *instance, enum ast_rtp_property property)
Get the value of an RTP instance property.
Definition: rtp_engine.c:744
ast_rtp_dtls_hash
DTLS fingerprint hashes.
Definition: rtp_engine.h:578
@ AST_RTP_DTLS_HASH_SHA1
Definition: rtp_engine.h:580
@ AST_RTP_DTLS_HASH_SHA256
Definition: rtp_engine.h:579
int ast_rtp_engine_srtp_is_registered(void)
Definition: rtp_engine.c:2937
ast_rtp_dtmf_mode
Definition: rtp_engine.h:151
#define AST_RED_MAX_GENERATION
Definition: rtp_engine.h:98
#define AST_RTP_DTMF
Definition: rtp_engine.h:294
ast_rtp_instance_rtcp
Definition: rtp_engine.h:283
@ AST_RTP_INSTANCE_RTCP_MUX
Definition: rtp_engine.h:289
@ AST_RTP_INSTANCE_RTCP_STANDARD
Definition: rtp_engine.h:287
void ast_rtp_publish_rtcp_message(struct ast_rtp_instance *rtp, struct stasis_message_type *message_type, struct ast_rtp_rtcp_report *report, struct ast_json *blob)
Publish an RTCP message to Stasis Message Bus API.
Definition: rtp_engine.c:3696
struct ast_srtp * ast_rtp_instance_get_srtp(struct ast_rtp_instance *instance, int rtcp)
Obtain the SRTP instance associated with an RTP instance.
Definition: rtp_engine.c:2969
#define AST_RTP_STAT_TERMINATOR(combined)
Definition: rtp_engine.h:500
#define AST_RTP_RTCP_RTPFB
Definition: rtp_engine.h:327
struct ast_rtp_instance * ast_rtp_instance_get_bridged(struct ast_rtp_instance *instance)
Get the other RTP instance that an instance is bridged to.
Definition: rtp_engine.c:2416
ast_rtp_dtls_verify
DTLS verification settings.
Definition: rtp_engine.h:584
@ AST_RTP_DTLS_VERIFY_FINGERPRINT
Definition: rtp_engine.h:586
@ AST_RTP_DTLS_VERIFY_CERTIFICATE
Definition: rtp_engine.h:587
#define ast_debug_rtp_packet_is_allowed
Definition: rtp_engine.h:3107
#define AST_LOG_CATEGORY_RTCP_PACKET
Definition: rtp_engine.h:3069
ast_rtp_instance_stat
Definition: rtp_engine.h:185
@ AST_RTP_INSTANCE_STAT_LOCAL_MAXRXPLOSS
Definition: rtp_engine.h:207
@ AST_RTP_INSTANCE_STAT_REMOTE_NORMDEVRXPLOSS
Definition: rtp_engine.h:203
@ AST_RTP_INSTANCE_STAT_REMOTE_MAXRXPLOSS
Definition: rtp_engine.h:199
@ AST_RTP_INSTANCE_STAT_REMOTE_NORMDEVMES
Definition: rtp_engine.h:270
@ AST_RTP_INSTANCE_STAT_REMOTE_MINJITTER
Definition: rtp_engine.h:223
@ AST_RTP_INSTANCE_STAT_LOCAL_NORMDEVMES
Definition: rtp_engine.h:278
@ AST_RTP_INSTANCE_STAT_MIN_RTT
Definition: rtp_engine.h:243
@ AST_RTP_INSTANCE_STAT_TXMES
Definition: rtp_engine.h:262
@ AST_RTP_INSTANCE_STAT_CHANNEL_UNIQUEID
Definition: rtp_engine.h:253
@ AST_RTP_INSTANCE_STAT_TXPLOSS
Definition: rtp_engine.h:195
@ AST_RTP_INSTANCE_STAT_MAX_RTT
Definition: rtp_engine.h:241
@ AST_RTP_INSTANCE_STAT_RXPLOSS
Definition: rtp_engine.h:197
@ AST_RTP_INSTANCE_STAT_REMOTE_MAXJITTER
Definition: rtp_engine.h:221
@ AST_RTP_INSTANCE_STAT_LOCAL_MAXJITTER
Definition: rtp_engine.h:229
@ AST_RTP_INSTANCE_STAT_REMOTE_MINMES
Definition: rtp_engine.h:268
@ AST_RTP_INSTANCE_STAT_REMOTE_STDEVJITTER
Definition: rtp_engine.h:227
@ AST_RTP_INSTANCE_STAT_REMOTE_MINRXPLOSS
Definition: rtp_engine.h:201
@ AST_RTP_INSTANCE_STAT_LOCAL_MINMES
Definition: rtp_engine.h:276
@ AST_RTP_INSTANCE_STAT_TXOCTETCOUNT
Definition: rtp_engine.h:255
@ AST_RTP_INSTANCE_STAT_RXMES
Definition: rtp_engine.h:264
@ AST_RTP_INSTANCE_STAT_REMOTE_STDEVMES
Definition: rtp_engine.h:272
@ AST_RTP_INSTANCE_STAT_LOCAL_NORMDEVRXPLOSS
Definition: rtp_engine.h:211
@ AST_RTP_INSTANCE_STAT_REMOTE_STDEVRXPLOSS
Definition: rtp_engine.h:205
@ AST_RTP_INSTANCE_STAT_LOCAL_STDEVRXPLOSS
Definition: rtp_engine.h:213
@ AST_RTP_INSTANCE_STAT_REMOTE_MAXMES
Definition: rtp_engine.h:266
@ AST_RTP_INSTANCE_STAT_TXCOUNT
Definition: rtp_engine.h:189
@ AST_RTP_INSTANCE_STAT_STDEVRTT
Definition: rtp_engine.h:247
@ AST_RTP_INSTANCE_STAT_COMBINED_MES
Definition: rtp_engine.h:260
@ AST_RTP_INSTANCE_STAT_LOCAL_MAXMES
Definition: rtp_engine.h:274
@ AST_RTP_INSTANCE_STAT_RXJITTER
Definition: rtp_engine.h:219
@ AST_RTP_INSTANCE_STAT_LOCAL_MINRXPLOSS
Definition: rtp_engine.h:209
@ AST_RTP_INSTANCE_STAT_LOCAL_SSRC
Definition: rtp_engine.h:249
@ AST_RTP_INSTANCE_STAT_REMOTE_NORMDEVJITTER
Definition: rtp_engine.h:225
@ AST_RTP_INSTANCE_STAT_COMBINED_JITTER
Definition: rtp_engine.h:215
@ AST_RTP_INSTANCE_STAT_TXJITTER
Definition: rtp_engine.h:217
@ AST_RTP_INSTANCE_STAT_LOCAL_MINJITTER
Definition: rtp_engine.h:231
@ AST_RTP_INSTANCE_STAT_COMBINED_LOSS
Definition: rtp_engine.h:193
@ AST_RTP_INSTANCE_STAT_LOCAL_STDEVJITTER
Definition: rtp_engine.h:235
@ AST_RTP_INSTANCE_STAT_COMBINED_RTT
Definition: rtp_engine.h:237
@ AST_RTP_INSTANCE_STAT_NORMDEVRTT
Definition: rtp_engine.h:245
@ AST_RTP_INSTANCE_STAT_RTT
Definition: rtp_engine.h:239
@ AST_RTP_INSTANCE_STAT_RXOCTETCOUNT
Definition: rtp_engine.h:257
@ AST_RTP_INSTANCE_STAT_LOCAL_STDEVMES
Definition: rtp_engine.h:280
@ AST_RTP_INSTANCE_STAT_LOCAL_NORMDEVJITTER
Definition: rtp_engine.h:233
@ AST_RTP_INSTANCE_STAT_RXCOUNT
Definition: rtp_engine.h:191
@ AST_RTP_INSTANCE_STAT_REMOTE_SSRC
Definition: rtp_engine.h:251
void * ast_rtp_instance_get_data(struct ast_rtp_instance *instance)
Get the data portion of an RTP instance.
Definition: rtp_engine.c:591
#define ast_rtp_instance_get_remote_address(instance, address)
Get the address of the remote endpoint that we are sending RTP to.
Definition: rtp_engine.h:1250
enum ast_media_type ast_rtp_codecs_get_stream_type(struct ast_rtp_codecs *codecs)
Determine the type of RTP stream media from the codecs mapped.
Definition: rtp_engine.c:1535
#define AST_RTP_RTCP_FMT_NACK
Definition: rtp_engine.h:333
#define ast_debug_rtp(sublevel,...)
Log debug level RTP information.
Definition: rtp_engine.h:3099
void ast_rtp_instance_set_last_tx(struct ast_rtp_instance *rtp, time_t time)
Set the last RTP transmission time.
Definition: rtp_engine.c:4002
void ast_rtp_instance_set_data(struct ast_rtp_instance *instance, void *data)
Set the data portion of an RTP instance.
Definition: rtp_engine.c:586
int ast_rtp_codecs_payload_code_tx_sample_rate(struct ast_rtp_codecs *codecs, int asterisk_format, const struct ast_format *format, int code, unsigned int sample_rate)
Retrieve a tx mapped payload type based on whether it is an Asterisk format and the code.
Definition: rtp_engine.c:2091
void ast_rtp_instance_set_prop(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value)
Set the value of an RTP instance property.
Definition: rtp_engine.c:733
int ast_rtp_codecs_find_payload_code(struct ast_rtp_codecs *codecs, int payload)
Search for the tx payload type in the ast_rtp_codecs structure.
Definition: rtp_engine.c:2157
int ast_rtp_codecs_get_preferred_dtmf_format_rate(struct ast_rtp_codecs *codecs)
Retrieve rx preferred dtmf format sample rate.
Definition: rtp_engine.c:1604
void ast_rtp_instance_get_local_address(struct ast_rtp_instance *instance, struct ast_sockaddr *address)
Get the local address that we are expecting RTP on.
Definition: rtp_engine.c:671
@ AST_RTP_ICE_CANDIDATE_TYPE_RELAYED
Definition: rtp_engine.h:509
@ AST_RTP_ICE_CANDIDATE_TYPE_SRFLX
Definition: rtp_engine.h:508
@ AST_RTP_ICE_CANDIDATE_TYPE_HOST
Definition: rtp_engine.h:507
#define AST_DEBUG_CATEGORY_ICE
Definition: rtp_engine.h:3091
int ast_rtp_instance_set_local_address(struct ast_rtp_instance *instance, const struct ast_sockaddr *address)
Set the address that we are expecting to receive RTP on.
Definition: rtp_engine.c:616
int ast_rtp_get_rate(const struct ast_format *format)
Retrieve the sample rate of a format according to RTP specifications.
Definition: rtp_engine.c:4282
int ast_rtp_codecs_payload_code_tx(struct ast_rtp_codecs *codecs, int asterisk_format, const struct ast_format *format, int code)
Retrieve a tx mapped payload type based on whether it is an Asterisk format and the code.
Definition: rtp_engine.c:2152
ast_rtp_extension
Known RTP extensions.
Definition: rtp_engine.h:593
@ AST_RTP_EXTENSION_TRANSPORT_WIDE_CC
Definition: rtp_engine.h:599
@ AST_RTP_EXTENSION_ABS_SEND_TIME
Definition: rtp_engine.h:597
int ast_rtp_payload_mapping_tx_is_present(struct ast_rtp_codecs *codecs, const struct ast_rtp_payload_type *to_match)
Determine if a type of payload is already present in mappings.
Definition: rtp_engine.c:1226
#define ast_rtp_instance_set_remote_address(instance, address)
Set the address of the remote endpoint that we are sending RTP to.
Definition: rtp_engine.h:1138
#define AST_RTP_RTCP_FMT_REMB
Definition: rtp_engine.h:339
ast_rtp_dtls_connection
DTLS connection states.
Definition: rtp_engine.h:572
@ AST_RTP_DTLS_CONNECTION_NEW
Definition: rtp_engine.h:573
@ AST_RTP_DTLS_CONNECTION_EXISTING
Definition: rtp_engine.h:574
#define ast_debug_dtls(sublevel,...)
Log debug level DTLS information.
Definition: rtp_engine.h:3133
ast_rtp_property
Definition: rtp_engine.h:116
@ AST_RTP_PROPERTY_NAT
Definition: rtp_engine.h:118
@ AST_RTP_PROPERTY_RETRANS_RECV
Definition: rtp_engine.h:130
@ AST_RTP_PROPERTY_RETRANS_SEND
Definition: rtp_engine.h:132
@ AST_RTP_PROPERTY_RTCP
Definition: rtp_engine.h:126
@ AST_RTP_PROPERTY_ASYMMETRIC_CODEC
Definition: rtp_engine.h:128
@ AST_RTP_PROPERTY_DTMF
Definition: rtp_engine.h:120
@ AST_RTP_PROPERTY_DTMF_COMPENSATE
Definition: rtp_engine.h:122
@ AST_RTP_PROPERTY_REMB
Definition: rtp_engine.h:134
#define ast_debug_dtls_packet_is_allowed
Definition: rtp_engine.h:3137
#define AST_LOG_CATEGORY_RTP_PACKET
Definition: rtp_engine.h:3065
#define AST_RTP_STAT_STRCPY(current_stat, combined, placement, value)
Definition: rtp_engine.h:492
#define ast_debug_ice(sublevel,...)
Log debug level ICE information.
Definition: rtp_engine.h:3145
void ast_rtp_instance_get_requested_target_address(struct ast_rtp_instance *instance, struct ast_sockaddr *address)
Get the requested target address of the remote endpoint.
Definition: rtp_engine.c:701
int ast_rtp_instance_set_incoming_source_address(struct ast_rtp_instance *instance, const struct ast_sockaddr *address)
Set the incoming source address of the remote endpoint that we are sending RTP to.
Definition: rtp_engine.c:634
int ast_rtp_instance_extmap_get_id(struct ast_rtp_instance *instance, enum ast_rtp_extension extension)
Retrieve the id for an RTP extension.
Definition: rtp_engine.c:914
#define AST_RTP_CN
Definition: rtp_engine.h:296
int ast_rtp_codecs_get_preferred_dtmf_format_pt(struct ast_rtp_codecs *codecs)
Retrieve rx preferred dtmf format payload type.
Definition: rtp_engine.c:1595
int ast_rtp_engine_unregister(struct ast_rtp_engine *engine)
Unregister an RTP engine.
Definition: rtp_engine.c:370
#define AST_RTP_RTCP_FMT_TRANSPORT_WIDE_CC
Definition: rtp_engine.h:341
struct ast_rtp_codecs * ast_rtp_instance_get_codecs(struct ast_rtp_instance *instance)
Get the codecs structure of an RTP instance.
Definition: rtp_engine.c:755
const char * ast_rtp_instance_get_channel_id(struct ast_rtp_instance *instance)
Get the unique ID of the channel that owns this RTP instance.
Definition: rtp_engine.c:576
unsigned int ast_rtp_codecs_get_framing(struct ast_rtp_codecs *codecs)
Get the framing used for a set of codecs.
Definition: rtp_engine.c:1688
unsigned int ast_rtp_instance_get_ssrc(struct ast_rtp_instance *rtp)
Retrieve the local SSRC value that we will be using.
Definition: rtp_engine.c:4017
#define AST_RTP_STAT_SET(current_stat, combined, placement, value)
Definition: rtp_engine.h:484
#define DEFAULT_DTMF_SAMPLE_RATE_MS
Definition: rtp_engine.h:110
int ast_rtp_instance_add_srtp_policy(struct ast_rtp_instance *instance, struct ast_srtp_policy *remote_policy, struct ast_srtp_policy *local_policy, int rtcp)
Add or replace the SRTP policies for the given RTP instance.
Definition: rtp_engine.c:2942
#define AST_RTP_RTCP_FMT_PLI
Definition: rtp_engine.h:335
#define ast_rtp_engine_register(engine)
Definition: rtp_engine.h:852
#define AST_RTP_CISCO_DTMF
Definition: rtp_engine.h:298
#define AST_SCHED_DEL_UNREF(sched, id, refcall)
schedule task to get deleted and call unref function
Definition: sched.h:82
#define AST_SCHED_DEL(sched, id)
Remove a scheduler entry.
Definition: sched.h:46
int ast_sched_del(struct ast_sched_context *con, int id) attribute_warn_unused_result
Deletes a scheduled event.
Definition: sched.c:614
int ast_sched_add(struct ast_sched_context *con, int when, ast_sched_cb callback, const void *data) attribute_warn_unused_result
Adds a scheduled event.
Definition: sched.c:567
int ast_sched_add_variable(struct ast_sched_context *con, int when, ast_sched_cb callback, const void *data, int variable) attribute_warn_unused_result
Adds a scheduled event with rescheduling support.
Definition: sched.c:526
int(* ast_sched_cb)(const void *data)
scheduler callback
Definition: sched.h:178
Security Event Reporting API.
struct stasis_topic * ast_security_topic(void)
A stasis_topic which publishes messages for security related issues.
Asterisk internal frame definitions.
void ast_smoother_set_flags(struct ast_smoother *smoother, int flags)
Definition: smoother.c:123
#define ast_smoother_feed_be(s, f)
Definition: smoother.h:80
int ast_smoother_test_flag(struct ast_smoother *s, int flag)
Definition: smoother.c:128
void ast_smoother_free(struct ast_smoother *s)
Definition: smoother.c:220
#define AST_SMOOTHER_FLAG_FORCED
Definition: smoother.h:36
struct ast_frame * ast_smoother_read(struct ast_smoother *s)
Definition: smoother.c:169
#define ast_smoother_feed(s, f)
Definition: smoother.h:75
struct ast_smoother * ast_smoother_new(int bytes)
Definition: smoother.c:108
#define AST_SMOOTHER_FLAG_BE
Definition: smoother.h:35
struct stasis_message_type * stasis_message_type(const struct stasis_message *msg)
Get the message type for a stasis_message.
@ STASIS_SUBSCRIPTION_FILTER_SELECTIVE
Definition: stasis.h:297
int stasis_subscription_accept_message_type(struct stasis_subscription *subscription, const struct stasis_message_type *type)
Indicate to a subscription that we are interested in a message type.
Definition: stasis.c:1050
int stasis_subscription_set_filter(struct stasis_subscription *subscription, enum stasis_subscription_message_filter filter)
Set the message type filtering level on a subscription.
Definition: stasis.c:1104
struct stasis_subscription * stasis_unsubscribe_and_join(struct stasis_subscription *subscription)
Cancel a subscription, blocking until the last message is processed.
Definition: stasis.c:1161
#define stasis_subscribe(topic, callback, data)
Definition: stasis.h:649
#define S_OR(a, b)
returns the equivalent of logic or for strings: first one if not empty, otherwise second one.
Definition: strings.h:80
int attribute_pure ast_true(const char *val)
Make sure something is true. Determine if a string containing a boolean value is "true"....
Definition: utils.c:2199
static force_inline int attribute_pure ast_strlen_zero(const char *s)
Definition: strings.h:65
int attribute_pure ast_false(const char *val)
Make sure something is false. Determine if a string containing a boolean value is "false"....
Definition: utils.c:2216
void ast_copy_string(char *dst, const char *src, size_t size)
Size-limited null-terminating string copy.
Definition: strings.h:425
char * ast_skip_blanks(const char *str)
Gets a pointer to the first non-whitespace character in a string.
Definition: strings.h:161
Definition: test_acl.c:111
Generic container type.
When we need to walk through a container, we use an ao2_iterator to keep track of the current positio...
Definition: astobj2.h:1821
Wrapper for an ast_acl linked list.
Definition: acl.h:76
Main Channel structure associated with a channel.
descriptor for a cli entry.
Definition: cli.h:171
int args
This gets set in ast_cli_register()
Definition: cli.h:185
char * command
Definition: cli.h:186
const char * usage
Definition: cli.h:177
Data buffer containing fixed number of data payloads.
Definition: data_buffer.c:59
A recurring DNS query.
Definition: dns_internal.h:157
A DNS query.
Definition: dns_internal.h:137
For AST_LIST.
Definition: dns_internal.h:39
char data[0]
The raw DNS record.
Definition: dns_internal.h:60
int rr_type
Resource record type.
Definition: dns_internal.h:41
The result of a DNS query.
Definition: dns_internal.h:117
Structure used to handle boolean flags.
Definition: utils.h:199
Definition of a media format.
Definition: format.c:43
struct ast_codec * codec
Pointer to the codec in use for this format.
Definition: format.c:47
struct ast_format * format
Data structure associated with a single frame of data.
union ast_frame::@228 data
struct ast_frame_subclass subclass
struct timeval delivery
enum ast_frame_type frametype
unsigned int flags
const char * src
Abstract JSON element (object, array, string, int, ...).
Structure defining an RTCP session.
double maxrxmes
double reported_mes
double maxrxlost
unsigned int themrxlsr
unsigned int rxmes_count
unsigned int received_prior
unsigned int sr_count
unsigned char frame_buf[512+AST_FRIENDLY_OFFSET]
double reported_maxjitter
unsigned int reported_mes_count
double reported_normdev_lost
double reported_minlost
double normdevrtt
double reported_normdev_mes
double stdevrtt
double minrxjitter
unsigned int soc
unsigned int lastsrtxcount
double reported_maxmes
struct ast_sockaddr them
unsigned int reported_lost
double reported_stdev_jitter
unsigned int reported_jitter_count
double normdev_rxjitter
double accumulated_transit
double reported_stdev_lost
struct timeval txlsr
enum ast_rtp_instance_rtcp type
unsigned int spc
unsigned int rxjitter_count
unsigned int reported_lost_count
double normdev_rxlost
double reported_stdev_mes
unsigned int rtt_count
double normdev_rxmes
double maxrxjitter
double reported_normdev_jitter
double reported_maxlost
unsigned int rxlost_count
unsigned int rr_count
double stdev_rxjitter
double reported_jitter
double stdev_rxmes
double reported_minjitter
double minrxlost
struct ast_sockaddr us
struct timeval rxlsr
double minrxmes
char * local_addr_str
unsigned int expected_prior
double reported_minmes
double stdev_rxlost
DTLS configuration structure.
Definition: rtp_engine.h:605
enum ast_rtp_dtls_setup default_setup
Definition: rtp_engine.h:608
enum ast_rtp_dtls_verify verify
Definition: rtp_engine.h:611
unsigned int rekey
Definition: rtp_engine.h:607
enum ast_rtp_dtls_hash hash
Definition: rtp_engine.h:610
unsigned int enabled
Definition: rtp_engine.h:606
unsigned int ephemeral_cert
Definition: rtp_engine.h:617
enum ast_srtp_suite suite
Definition: rtp_engine.h:609
Structure that represents the optional DTLS SRTP support within an RTP engine.
Definition: rtp_engine.h:621
int(* set_configuration)(struct ast_rtp_instance *instance, const struct ast_rtp_dtls_cfg *dtls_cfg)
Definition: rtp_engine.h:623
Structure for an ICE candidate.
Definition: rtp_engine.h:525
struct ast_sockaddr address
Definition: rtp_engine.h:530
enum ast_rtp_ice_component_type id
Definition: rtp_engine.h:527
struct ast_sockaddr relay_address
Definition: rtp_engine.h:531
enum ast_rtp_ice_candidate_type type
Definition: rtp_engine.h:532
Structure that represents the optional ICE support within an RTP engine.
Definition: rtp_engine.h:536
void(* set_authentication)(struct ast_rtp_instance *instance, const char *ufrag, const char *password)
Definition: rtp_engine.h:538
const char * name
Definition: rtp_engine.h:667
struct ast_rtp_engine_dtls * dtls
Definition: rtp_engine.h:744
unsigned int remote_ssrc
Definition: rtp_engine.h:454
unsigned int rxcount
Definition: rtp_engine.h:400
unsigned int local_ssrc
Definition: rtp_engine.h:452
unsigned int rxoctetcount
Definition: rtp_engine.h:460
unsigned int rxploss
Definition: rtp_engine.h:424
unsigned int txcount
Definition: rtp_engine.h:398
unsigned int txploss
Definition: rtp_engine.h:422
unsigned int txoctetcount
Definition: rtp_engine.h:458
char channel_uniqueid[MAX_CHANNEL_ID]
Definition: rtp_engine.h:456
An object that represents data received in a feedback report.
Definition: rtp_engine.h:388
unsigned int fmt
Definition: rtp_engine.h:389
struct ast_rtp_rtcp_feedback_remb remb
Definition: rtp_engine.h:391
Structure for storing RTP packets for retransmission.
A report block within a SR/RR report.
Definition: rtp_engine.h:346
unsigned int highest_seq_no
Definition: rtp_engine.h:352
unsigned short fraction
Definition: rtp_engine.h:349
unsigned int source_ssrc
Definition: rtp_engine.h:347
struct ast_rtp_rtcp_report_block::@274 lost_count
An object that represents data sent during a SR/RR RTCP report.
Definition: rtp_engine.h:361
unsigned int type
Definition: rtp_engine.h:364
unsigned short reception_report_count
Definition: rtp_engine.h:362
unsigned int rtp_timestamp
Definition: rtp_engine.h:367
struct ast_rtp_rtcp_report_block * report_block[0]
Definition: rtp_engine.h:374
struct ast_rtp_rtcp_report::@275 sender_information
struct timeval ntp_timestamp
Definition: rtp_engine.h:366
unsigned int octet_count
Definition: rtp_engine.h:369
unsigned int ssrc
Definition: rtp_engine.h:363
unsigned int packet_count
Definition: rtp_engine.h:368
RTP session description.
unsigned int rxcount
unsigned int lastividtimestamp
unsigned int dtmf_duration
unsigned int dtmfsamples
unsigned int ssrc_orig
struct ast_format * lasttxformat
struct rtp_transport_wide_cc_statistics transport_wide_cc
unsigned int lastts
struct ast_smoother * smoother
struct ast_sched_context * sched
unsigned short seedrxseqno
struct timeval txcore
unsigned int remote_seed_rx_rtp_ts_stable
double rxmes
struct ast_rtp::@474 missing_seqno
enum ast_rtp_dtmf_mode dtmfmode
struct ast_sockaddr strict_rtp_address
double rxstart
double rxstart_stable
enum strict_rtp_state strict_rtp_state
unsigned short seqno
unsigned int rxoctetcount
struct timeval rxcore
unsigned int last_seqno
struct ast_frame f
struct ast_rtcp * rtcp
int expectedrxseqno
unsigned int themssrc_valid
double rxjitter
unsigned int dtmf_timeout
char cname[AST_UUID_STR_LEN]
unsigned int txcount
unsigned char rawdata[8192+AST_FRIENDLY_OFFSET]
unsigned int last_transit_time_samples
unsigned int cycles
unsigned int lastovidtimestamp
unsigned int ssrc
unsigned int asymmetric_codec
double rxjitter_samples
struct ast_data_buffer * recv_buffer
optional_ts last_end_timestamp
unsigned int lastotexttimestamp
unsigned int flags
struct timeval dtmfmute
struct ast_sockaddr bind_address
unsigned char ssrc_saved
struct ast_data_buffer * send_buffer
struct rtp_learning_info rtp_source_learn
struct ast_rtp::@475 ssrc_mapping
struct ast_rtp_instance * owner
The RTP instance owning us (used for debugging purposes) We don't hold a reference to the instance be...
unsigned int remote_seed_rx_rtp_ts
unsigned int lastitexttimestamp
unsigned int dtmf_samplerate_ms
unsigned int lastdigitts
unsigned int txoctetcount
struct ast_rtp_instance * bundled
char sending_digit
struct rtp_red * red
struct ast_format * lastrxformat
unsigned int themssrc
Structure for rwlock and tracking information.
Definition: lock.h:161
Socket address structure.
Definition: netsock2.h:97
socklen_t len
Definition: netsock2.h:99
void(* destroy)(struct ast_srtp_policy *policy)
Definition: res_srtp.h:72
int(* set_master_key)(struct ast_srtp_policy *policy, const unsigned char *key, size_t key_len, const unsigned char *salt, size_t salt_len)
Definition: res_srtp.h:74
void(* set_ssrc)(struct ast_srtp_policy *policy, unsigned long ssrc, int inbound)
Definition: res_srtp.h:75
int(* set_suite)(struct ast_srtp_policy *policy, enum ast_srtp_suite suite)
Definition: res_srtp.h:73
struct ast_srtp_policy *(* alloc)(void)
Definition: res_srtp.h:71
int(* unprotect)(struct ast_srtp *srtp, void *buf, int *size, int rtcp)
Definition: res_srtp.h:48
int(* change_source)(struct ast_srtp *srtp, unsigned int from_ssrc, unsigned int to_ssrc)
Definition: res_srtp.h:44
int(* protect)(struct ast_srtp *srtp, void **buf, int *size, int rtcp)
Definition: res_srtp.h:50
struct ast_rtp_instance * rtp
Definition: res_srtp.c:67
Structure for variables, used for configurations and for channel variables.
Definition: astman.c:222
structure to hold extensions
unsigned int ts
unsigned char is_set
RTP learning mode tracking information.
enum ast_media_type stream_type
struct timeval received
struct ast_sockaddr proposed_address
struct timeval start
struct ast_frame t140
unsigned char t140red_data[64000]
unsigned char ts[AST_RED_MAX_GENERATION]
unsigned char len[AST_RED_MAX_GENERATION]
unsigned char buf_data[64000]
unsigned char pt[AST_RED_MAX_GENERATION]
long int prev_ts
struct ast_frame t140red
Structure used for mapping an incoming SSRC to an RTP instance.
unsigned int ssrc
The received SSRC.
unsigned int ssrc_valid
struct ast_rtp_instance * instance
The RTP instance this SSRC belongs to.
Packet statistics (used for transport-cc)
Statistics information (used for transport-cc)
struct rtp_transport_wide_cc_statistics::@473 packet_statistics
Definition: sched.c:76
Definition: ast_expr2.c:325
STUN support.
int ast_stun_request(int s, struct sockaddr_in *dst, const char *username, struct sockaddr_in *answer)
Generic STUN request.
Definition: stun.c:415
int ast_stun_handle_packet(int s, struct sockaddr_in *src, unsigned char *data, size_t len, stun_cb_f *stun_cb, void *arg)
handle an incoming STUN message.
Definition: stun.c:293
#define ast_debug_stun(sublevel,...)
Log debug level STUN information.
Definition: stun.h:54
#define AST_DEBUG_CATEGORY_STUN
Definition: stun.h:45
static const int STANDARD_STUN_PORT
Definition: stun.h:61
@ AST_STUN_ACCEPT
Definition: stun.h:65
int value
Definition: syslog.c:37
Test Framework API.
#define ast_test_suite_event_notify(s, f,...)
Definition: test.h:189
static struct test_options options
static struct test_val b
static struct test_val a
static struct test_val d
void * ast_threadstorage_get(struct ast_threadstorage *ts, size_t init_size)
Retrieve thread storage.
#define AST_THREADSTORAGE(name)
Define a thread storage variable.
Definition: threadstorage.h:86
int64_t ast_tvdiff_us(struct timeval end, struct timeval start)
Computes the difference (in microseconds) between two struct timeval instances.
Definition: time.h:87
struct timeval ast_samp2tv(unsigned int _nsamp, unsigned int _rate)
Returns a timeval corresponding to the duration of n samples at rate r. Useful to convert samples to ...
Definition: time.h:282
int ast_tvzero(const struct timeval t)
Returns true if the argument is 0,0.
Definition: time.h:117
@ TIME_UNIT_MICROSECOND
Definition: time.h:341
int ast_tvcmp(struct timeval _a, struct timeval _b)
Compress two struct timeval instances returning -1, 0, 1 if the first arg is smaller,...
Definition: time.h:137
struct timeval ast_time_create_by_unit(unsigned long val, enum TIME_UNIT unit)
Convert the given unit value, and create a timeval object from it.
Definition: time.c:113
double ast_samp2sec(unsigned int _nsamp, unsigned int _rate)
Returns the duration in seconds of _nsamp samples at rate _rate.
Definition: time.h:316
unsigned int ast_sec2samp(double _seconds, int _rate)
Returns the number of samples at _rate in the duration in _seconds.
Definition: time.h:333
struct timeval ast_tvadd(struct timeval a, struct timeval b)
Returns the sum of two timevals a + b.
Definition: extconf.c:2282
struct timeval ast_time_create_by_unit_str(unsigned long val, const char *unit)
Convert the given unit value, and create a timeval object from it.
Definition: time.c:143
struct timeval ast_tvsub(struct timeval a, struct timeval b)
Returns the difference of two timevals a - b.
Definition: extconf.c:2297
double ast_tv2double(const struct timeval *tv)
Returns a double corresponding to the number of seconds in the timeval tv.
Definition: time.h:270
ast_suseconds_t ast_time_tv_to_usec(const struct timeval *tv)
Convert a timeval structure to microseconds.
Definition: time.c:90
int64_t ast_tvdiff_ms(struct timeval end, struct timeval start)
Computes the difference (in milliseconds) between two struct timeval instances.
Definition: time.h:107
struct timeval ast_tvnow(void)
Returns current timeval. Meant to replace calls to gettimeofday().
Definition: time.h:159
struct timeval ast_tv(ast_time_t sec, ast_suseconds_t usec)
Returns a timeval from sec, usec.
Definition: time.h:235
static void destroy(struct ast_trans_pvt *pvt)
Definition: translate.c:292
Handle unaligned data access.
static void put_unaligned_uint16(void *p, unsigned short datum)
Definition: unaligned.h:65
static void put_unaligned_uint32(void *p, unsigned int datum)
Definition: unaligned.h:58
int error(const char *format,...)
Definition: utils/frame.c:999
static void statistics(void)
Definition: utils/frame.c:287
FILE * in
Definition: utils/frame.c:33
Utility functions.
#define ast_test_flag(p, flag)
Definition: utils.h:63
#define RAII_VAR(vartype, varname, initval, dtor)
Declare a variable that will call a destructor function when it goes out of scope.
Definition: utils.h:941
#define ast_assert(a)
Definition: utils.h:739
#define MIN(a, b)
Definition: utils.h:231
#define ast_socket_nonblock(domain, type, protocol)
Create a non-blocking socket.
Definition: utils.h:1073
#define ast_clear_flag(p, flag)
Definition: utils.h:77
long int ast_random(void)
Definition: utils.c:2312
#define ast_set_flag(p, flag)
Definition: utils.h:70
#define ARRAY_LEN(a)
Definition: utils.h:666
Universally unique identifier support.
#define AST_UUID_STR_LEN
Definition: uuid.h:27
char * ast_uuid_generate_str(char *buf, size_t size)
Generate a UUID string.
Definition: uuid.c:141
#define AST_VECTOR_RESET(vec, cleanup)
Reset vector.
Definition: vector.h:625
#define AST_VECTOR_ELEM_CLEANUP_NOOP(elem)
Vector element cleanup that does nothing.
Definition: vector.h:571
#define AST_VECTOR_SIZE(vec)
Get the number of elements in a vector.
Definition: vector.h:609
#define AST_VECTOR_REMOVE_CMP_ORDERED(vec, value, cmp, cleanup)
Remove an element from a vector that matches the given comparison while maintaining order.
Definition: vector.h:540
#define AST_VECTOR_FREE(vec)
Deallocates this vector.
Definition: vector.h:174
#define AST_VECTOR_REMOVE_CMP_UNORDERED(vec, value, cmp, cleanup)
Remove an element from a vector that matches the given comparison.
Definition: vector.h:488
#define AST_VECTOR_GET_CMP(vec, value, cmp)
Get an element from a vector that matches the given comparison.
Definition: vector.h:731
#define AST_VECTOR_ADD_SORTED(vec, elem, cmp)
Add an element into a sorted vector.
Definition: vector.h:371
#define AST_VECTOR_INIT(vec, size)
Initialize a vector.
Definition: vector.h:113
#define AST_VECTOR_APPEND(vec, elem)
Append an element to a vector, growing the vector if needed.
Definition: vector.h:256
#define AST_VECTOR(name, type)
Define a vector structure.
Definition: vector.h:44
#define AST_VECTOR_GET_ADDR(vec, idx)
Get an address of element in a vector.
Definition: vector.h:668