Asterisk - The Open Source Telephony Project GIT-master-f36a736
res_rtp_asterisk.c
Go to the documentation of this file.
1/*
2 * Asterisk -- An open source telephony toolkit.
3 *
4 * Copyright (C) 1999 - 2008, Digium, Inc.
5 *
6 * Mark Spencer <markster@digium.com>
7 *
8 * See http://www.asterisk.org for more information about
9 * the Asterisk project. Please do not directly contact
10 * any of the maintainers of this project for assistance;
11 * the project provides a web site, mailing lists and IRC
12 * channels for your use.
13 *
14 * This program is free software, distributed under the terms of
15 * the GNU General Public License Version 2. See the LICENSE file
16 * at the top of the source tree.
17 */
18
19/*!
20 * \file
21 *
22 * \brief Supports RTP and RTCP with Symmetric RTP support for NAT traversal.
23 *
24 * \author Mark Spencer <markster@digium.com>
25 *
26 * \note RTP is defined in RFC 3550.
27 *
28 * \ingroup rtp_engines
29 */
30
31/*** MODULEINFO
32 <use type="external">openssl</use>
33 <use type="external">pjproject</use>
34 <support_level>core</support_level>
35 ***/
36
37#include "asterisk.h"
38
39#include <arpa/nameser.h>
40#include "asterisk/dns_core.h"
43
44#include <sys/time.h>
45#include <signal.h>
46#include <fcntl.h>
47#include <math.h>
48
49#ifdef HAVE_OPENSSL
50#include <openssl/opensslconf.h>
51#include <openssl/opensslv.h>
52#if !defined(OPENSSL_NO_SRTP) && (OPENSSL_VERSION_NUMBER >= 0x10001000L)
53#include <openssl/ssl.h>
54#include <openssl/err.h>
55#include <openssl/bio.h>
56#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L)
57#include <openssl/bn.h>
58#endif
59#ifndef OPENSSL_NO_DH
60#include <openssl/dh.h>
61#endif
62#endif
63#endif
64
65#ifdef HAVE_PJPROJECT
66#include <pjlib.h>
67#include <pjlib-util.h>
68#include <pjnath.h>
69#include <ifaddrs.h>
70#endif
71
73#include "asterisk/options.h"
75#include "asterisk/stun.h"
76#include "asterisk/pbx.h"
77#include "asterisk/frame.h"
79#include "asterisk/channel.h"
80#include "asterisk/acl.h"
81#include "asterisk/config.h"
82#include "asterisk/lock.h"
83#include "asterisk/utils.h"
84#include "asterisk/cli.h"
85#include "asterisk/manager.h"
86#include "asterisk/unaligned.h"
87#include "asterisk/module.h"
88#include "asterisk/rtp_engine.h"
89#include "asterisk/smoother.h"
90#include "asterisk/uuid.h"
91#include "asterisk/test.h"
93#ifdef HAVE_PJPROJECT
96#endif
97
98#define MAX_TIMESTAMP_SKEW 640
99
100#define RTP_SEQ_MOD (1<<16) /*!< A sequence number can't be more than 16 bits */
101#define RTCP_DEFAULT_INTERVALMS 5000 /*!< Default milli-seconds between RTCP reports we send */
102#define RTCP_MIN_INTERVALMS 500 /*!< Min milli-seconds between RTCP reports we send */
103#define RTCP_MAX_INTERVALMS 60000 /*!< Max milli-seconds between RTCP reports we send */
104
105#define DEFAULT_RTP_START 5000 /*!< Default port number to start allocating RTP ports from */
106#define DEFAULT_RTP_END 31000 /*!< Default maximum port number to end allocating RTP ports at */
107
108#define MINIMUM_RTP_PORT 1024 /*!< Minimum port number to accept */
109#define MAXIMUM_RTP_PORT 65535 /*!< Maximum port number to accept */
110
111#define DEFAULT_TURN_PORT 3478
112
113#define TURN_STATE_WAIT_TIME 2000
114
115#define DEFAULT_RTP_SEND_BUFFER_SIZE 250 /*!< The initial size of the RTP send buffer */
116#define MAXIMUM_RTP_SEND_BUFFER_SIZE (DEFAULT_RTP_SEND_BUFFER_SIZE + 200) /*!< Maximum RTP send buffer size */
117#define DEFAULT_RTP_RECV_BUFFER_SIZE 20 /*!< The initial size of the RTP receiver buffer */
118#define MAXIMUM_RTP_RECV_BUFFER_SIZE (DEFAULT_RTP_RECV_BUFFER_SIZE + 20) /*!< Maximum RTP receive buffer size */
119#define OLD_PACKET_COUNT 1000 /*!< The number of previous packets that are considered old */
120#define MISSING_SEQNOS_ADDED_TRIGGER 2 /*!< The number of immediate missing packets that will trigger an immediate NACK */
121
122#define SEQNO_CYCLE_OVER 65536 /*!< The number after the maximum allowed sequence number */
123
124/*! Full INTRA-frame Request / Fast Update Request (From RFC2032) */
125#define RTCP_PT_FUR 192
126/*! Sender Report (From RFC3550) */
127#define RTCP_PT_SR AST_RTP_RTCP_SR
128/*! Receiver Report (From RFC3550) */
129#define RTCP_PT_RR AST_RTP_RTCP_RR
130/*! Source Description (From RFC3550) */
131#define RTCP_PT_SDES 202
132/*! Goodbye (To remove SSRC's from tables) (From RFC3550) */
133#define RTCP_PT_BYE 203
134/*! Application defined (From RFC3550) */
135#define RTCP_PT_APP 204
136/* VP8: RTCP Feedback */
137/*! Payload Specific Feed Back (From RFC4585 also RFC5104) */
138#define RTCP_PT_PSFB AST_RTP_RTCP_PSFB
139
140#define RTP_MTU 1200
141
142#define DEFAULT_DTMF_TIMEOUT (150 * (8000 / 1000)) /*!< samples */
143
144#define ZFONE_PROFILE_ID 0x505a
145
146#define DEFAULT_LEARNING_MIN_SEQUENTIAL 4
147/*!
148 * \brief Calculate the min learning duration in ms.
149 *
150 * \details
151 * The min supported packet size represents 10 ms and we need to account
152 * for some jitter and fast clocks while learning. Some messed up devices
153 * have very bad jitter for a small packet sample size. Jitter can also
154 * be introduced by the network itself.
155 *
156 * So we'll allow packets to come in every 9ms on average for fast clocking
157 * with the last one coming in 5ms early for jitter.
158 */
159#define CALC_LEARNING_MIN_DURATION(count) (((count) - 1) * 9 - 5)
160#define DEFAULT_LEARNING_MIN_DURATION CALC_LEARNING_MIN_DURATION(DEFAULT_LEARNING_MIN_SEQUENTIAL)
161
162#define SRTP_MASTER_KEY_LEN 16
163#define SRTP_MASTER_SALT_LEN 14
164#define SRTP_MASTER_LEN (SRTP_MASTER_KEY_LEN + SRTP_MASTER_SALT_LEN)
165
166#define RTP_DTLS_ESTABLISHED -37
167
169 STRICT_RTP_OPEN = 0, /*! No RTP packets should be dropped, all sources accepted */
170 STRICT_RTP_LEARN, /*! Accept next packet as source */
171 STRICT_RTP_CLOSED, /*! Drop all RTP packets not coming from source that was learned */
172};
173
175 STRICT_RTP_NO = 0, /*! Don't adhere to any strict RTP rules */
176 STRICT_RTP_YES, /*! Strict RTP that restricts packets based on time and sequence number */
177 STRICT_RTP_SEQNO, /*! Strict RTP that restricts packets based on sequence number */
178};
179
180/*!
181 * \brief Strict RTP learning timeout time in milliseconds
182 *
183 * \note Set to 5 seconds to allow reinvite chains for direct media
184 * to settle before media actually starts to arrive. There may be a
185 * reinvite collision involved on the other leg.
186 */
187#define STRICT_RTP_LEARN_TIMEOUT 5000
188
189#define DEFAULT_STRICT_RTP STRICT_RTP_YES /*!< Enabled by default */
190#define DEFAULT_SRTP_REPLAY_PROTECTION 1
191#define DEFAULT_ICESUPPORT 1
192#define DEFAULT_STUN_SOFTWARE_ATTRIBUTE 1
193#define DEFAULT_DTLS_MTU 1200
194
195/*!
196 * Because both ends usually don't start sending RTP
197 * at the same time, some of the calculations like
198 * rtt and jitter will probably be unstable for a while
199 * so we'll skip some received packets before starting
200 * analyzing. This just affects analyzing; we still
201 * process the RTP as normal.
202 */
203#define RTP_IGNORE_FIRST_PACKETS_COUNT 15
204
205extern struct ast_srtp_res *res_srtp;
207
209
210static int rtpstart = DEFAULT_RTP_START; /*!< First port for RTP sessions (set in rtp.conf) */
211static int rtpend = DEFAULT_RTP_END; /*!< Last port for RTP sessions (set in rtp.conf) */
212static int rtcpstats; /*!< Are we debugging RTCP? */
213static int rtcpinterval = RTCP_DEFAULT_INTERVALMS; /*!< Time between rtcp reports in millisecs */
214static struct ast_sockaddr rtpdebugaddr; /*!< Debug packets to/from this host */
215static struct ast_sockaddr rtcpdebugaddr; /*!< Debug RTCP packets to/from this host */
216static int rtpdebugport; /*!< Debug only RTP packets from IP or IP+Port if port is > 0 */
217static int rtcpdebugport; /*!< Debug only RTCP packets from IP or IP+Port if port is > 0 */
218#ifdef SO_NO_CHECK
219static int nochecksums;
220#endif
221static int strictrtp = DEFAULT_STRICT_RTP; /*!< Only accept RTP frames from a defined source. If we receive an indication of a changing source, enter learning mode. */
222static int learning_min_sequential = DEFAULT_LEARNING_MIN_SEQUENTIAL; /*!< Number of sequential RTP frames needed from a single source during learning mode to accept new source. */
223static int learning_min_duration = DEFAULT_LEARNING_MIN_DURATION; /*!< Lowest acceptable timeout between the first and the last sequential RTP frame. */
225#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
226static int dtls_mtu = DEFAULT_DTLS_MTU;
227#endif
228#ifdef HAVE_PJPROJECT
229static int icesupport = DEFAULT_ICESUPPORT;
230static int stun_software_attribute = DEFAULT_STUN_SOFTWARE_ATTRIBUTE;
231static struct sockaddr_in stunaddr;
232static pj_str_t turnaddr;
233static int turnport = DEFAULT_TURN_PORT;
234static pj_str_t turnusername;
235static pj_str_t turnpassword;
237static struct ast_sockaddr lo6 = { .len = 0 };
238
239/*! ACL for ICE addresses */
240static struct ast_acl_list *ice_acl = NULL;
241static ast_rwlock_t ice_acl_lock = AST_RWLOCK_INIT_VALUE;
242
243/*! ACL for STUN requests */
244static struct ast_acl_list *stun_acl = NULL;
245static ast_rwlock_t stun_acl_lock = AST_RWLOCK_INIT_VALUE;
246
247/*! stunaddr recurring resolution */
248static ast_rwlock_t stunaddr_lock = AST_RWLOCK_INIT_VALUE;
249static struct ast_dns_query_recurring *stunaddr_resolver = NULL;
250
251/*! \brief Pool factory used by pjlib to allocate memory. */
252static pj_caching_pool cachingpool;
253
254/*! \brief Global memory pool for configuration and timers */
255static pj_pool_t *pool;
256
257/*! \brief Global timer heap */
258static pj_timer_heap_t *timer_heap;
259
260/*! \brief Thread executing the timer heap */
261static pj_thread_t *timer_thread;
262
263/*! \brief Used to tell the timer thread to terminate */
264static int timer_terminate;
265
266/*! \brief Structure which contains ioqueue thread information */
267struct ast_rtp_ioqueue_thread {
268 /*! \brief Pool used by the thread */
269 pj_pool_t *pool;
270 /*! \brief The thread handling the queue and timer heap */
271 pj_thread_t *thread;
272 /*! \brief Ioqueue which polls on sockets */
273 pj_ioqueue_t *ioqueue;
274 /*! \brief Timer heap for scheduled items */
275 pj_timer_heap_t *timerheap;
276 /*! \brief Termination request */
277 int terminate;
278 /*! \brief Current number of descriptors being waited on */
279 unsigned int count;
280 /*! \brief Linked list information */
281 AST_LIST_ENTRY(ast_rtp_ioqueue_thread) next;
282};
283
284/*! \brief List of ioqueue threads */
285static AST_LIST_HEAD_STATIC(ioqueues, ast_rtp_ioqueue_thread);
286
287/*! \brief Structure which contains ICE host candidate mapping information */
288struct ast_ice_host_candidate {
289 struct ast_sockaddr local;
290 struct ast_sockaddr advertised;
291 unsigned int include_local;
292 AST_RWLIST_ENTRY(ast_ice_host_candidate) next;
293};
294
295/*! \brief List of ICE host candidate mappings */
296static AST_RWLIST_HEAD_STATIC(host_candidates, ast_ice_host_candidate);
297
298static char *generate_random_string(char *buf, size_t size);
299
300#endif
301
302#define FLAG_3389_WARNING (1 << 0)
303#define FLAG_NAT_ACTIVE (3 << 1)
304#define FLAG_NAT_INACTIVE (0 << 1)
305#define FLAG_NAT_INACTIVE_NOWARN (1 << 1)
306#define FLAG_NEED_MARKER_BIT (1 << 3)
307#define FLAG_DTMF_COMPENSATE (1 << 4)
308#define FLAG_REQ_LOCAL_BRIDGE_BIT (1 << 5)
309
310#define TRANSPORT_SOCKET_RTP 0
311#define TRANSPORT_SOCKET_RTCP 1
312#define TRANSPORT_TURN_RTP 2
313#define TRANSPORT_TURN_RTCP 3
314
315/*! \brief RTP learning mode tracking information */
317 struct ast_sockaddr proposed_address; /*!< Proposed remote address for strict RTP */
318 struct timeval start; /*!< The time learning mode was started */
319 struct timeval received; /*!< The time of the first received packet */
320 int max_seq; /*!< The highest sequence number received */
321 int packets; /*!< The number of remaining packets before the source is accepted */
322 /*! Type of media stream carried by the RTP instance */
324};
325
326#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
327struct dtls_details {
328 SSL *ssl; /*!< SSL session */
329 BIO *read_bio; /*!< Memory buffer for reading */
330 BIO *write_bio; /*!< Memory buffer for writing */
331 enum ast_rtp_dtls_setup dtls_setup; /*!< Current setup state */
332 enum ast_rtp_dtls_connection connection; /*!< Whether this is a new or existing connection */
333 int timeout_timer; /*!< Scheduler id for timeout timer */
334};
335#endif
336
337#ifdef HAVE_PJPROJECT
338/*! An ao2 wrapper protecting the PJPROJECT ice structure with ref counting. */
339struct ice_wrap {
340 pj_ice_sess *real_ice; /*!< ICE session */
341};
342#endif
343
344/*! \brief Structure used for mapping an incoming SSRC to an RTP instance */
346 /*! \brief The received SSRC */
347 unsigned int ssrc;
348 /*! True if the SSRC is available. Otherwise, this is a placeholder mapping until the SSRC is set. */
349 unsigned int ssrc_valid;
350 /*! \brief The RTP instance this SSRC belongs to*/
352};
353
354/*! \brief Packet statistics (used for transport-cc) */
356 /*! The transport specific sequence number */
357 unsigned int seqno;
358 /*! The time at which the packet was received */
359 struct timeval received;
360 /*! The delta between this packet and the previous */
361 int delta;
362};
363
364/*! \brief Statistics information (used for transport-cc) */
366 /*! A vector of packet statistics */
367 AST_VECTOR(, struct rtp_transport_wide_cc_packet_statistics) packet_statistics; /*!< Packet statistics, used for transport-cc */
368 /*! The last sequence number received */
369 unsigned int last_seqno;
370 /*! The last extended sequence number */
372 /*! How many feedback packets have gone out */
373 unsigned int feedback_count;
374 /*! How many cycles have occurred for the sequence numbers */
375 unsigned int cycles;
376 /*! Scheduler id for periodic feedback transmission */
378};
379
380typedef struct {
381 unsigned int ts;
382 unsigned char is_set;
384
385/*! \brief RTP session description */
386struct ast_rtp {
387 int s;
388 /*! \note The f.subclass.format holds a ref. */
389 struct ast_frame f;
390 unsigned char rawdata[8192 + AST_FRIENDLY_OFFSET];
391 unsigned int ssrc; /*!< Synchronization source, RFC 3550, page 10. */
392 unsigned int ssrc_orig; /*!< SSRC used before native bridge activated */
393 unsigned char ssrc_saved; /*!< indicates if ssrc_orig has a value */
394 char cname[AST_UUID_STR_LEN]; /*!< Our local CNAME */
395 unsigned int themssrc; /*!< Their SSRC */
396 unsigned int themssrc_valid; /*!< True if their SSRC is available. */
397 unsigned int lastts;
398 unsigned int lastividtimestamp;
399 unsigned int lastovidtimestamp;
400 unsigned int lastitexttimestamp;
401 unsigned int lastotexttimestamp;
402 int prevrxseqno; /*!< Previous received packeted sequence number, from the network */
403 int lastrxseqno; /*!< Last received sequence number, from the network */
404 int expectedrxseqno; /*!< Next expected sequence number, from the network */
405 AST_VECTOR(, int) missing_seqno; /*!< A vector of sequence numbers we never received */
406 int expectedseqno; /*!< Next expected sequence number, from the core */
407 unsigned short seedrxseqno; /*!< What sequence number did they start with?*/
408 unsigned int rxcount; /*!< How many packets have we received? */
409 unsigned int rxoctetcount; /*!< How many octets have we received? should be rxcount *160*/
410 unsigned int txcount; /*!< How many packets have we sent? */
411 unsigned int txoctetcount; /*!< How many octets have we sent? (txcount*160)*/
412 unsigned int cycles; /*!< Shifted count of sequence number cycles */
415
416 /*
417 * RX RTP Timestamp and Jitter calculation.
418 */
419 double rxstart; /*!< RX time of the first packet in the session in seconds since EPOCH. */
420 double rxstart_stable; /*!< RX time of the first packet after RTP_IGNORE_FIRST_PACKETS_COUNT */
421 unsigned int remote_seed_rx_rtp_ts; /*!< RTP timestamp of first RX packet. */
422 unsigned int remote_seed_rx_rtp_ts_stable; /*!< RTP timestamp of first packet after RTP_IGNORE_FIRST_PACKETS_COUNT */
423 unsigned int last_transit_time_samples; /*!< The last transit time in samples */
424 double rxjitter; /*!< Last calculated Interarrival jitter in seconds. */
425 double rxjitter_samples; /*!< Last calculated Interarrival jitter in samples. */
426 double rxmes; /*!< Media Experince Score at the moment to be reported */
427
428 /* DTMF Reception Variables */
429 char resp; /*!< The current digit being processed */
430 unsigned int last_seqno; /*!< The last known sequence number for any DTMF packet */
431 optional_ts last_end_timestamp; /*!< The last known timestamp received from an END packet */
432 unsigned int dtmf_duration; /*!< Total duration in samples since the digit start event */
433 unsigned int dtmf_timeout; /*!< When this timestamp is reached we consider END frame lost and forcibly abort digit */
434 unsigned int dtmfsamples;
435 enum ast_rtp_dtmf_mode dtmfmode; /*!< The current DTMF mode of the RTP stream */
436 unsigned int dtmf_samplerate_ms; /*!< The sample rate of the current RTP stream in ms (sample rate / 1000) */
437 /* DTMF Transmission Variables */
438 unsigned int lastdigitts;
439 char sending_digit; /*!< boolean - are we sending digits */
440 char send_digit; /*!< digit we are sending */
443 unsigned int flags;
444 struct timeval rxcore;
445 struct timeval txcore;
446
447 struct timeval dtmfmute;
449 unsigned short seqno; /*!< Sequence number, RFC 3550, page 13. */
451 struct ast_rtcp *rtcp;
452 unsigned int asymmetric_codec; /*!< Indicate if asymmetric send/receive codecs are allowed */
453
454 struct ast_rtp_instance *bundled; /*!< The RTP instance we are bundled to */
455 /*!
456 * \brief The RTP instance owning us (used for debugging purposes)
457 * We don't hold a reference to the instance because it created
458 * us in the first place. It can't go away.
459 */
461 int stream_num; /*!< Stream num for this RTP instance */
462 AST_VECTOR(, struct rtp_ssrc_mapping) ssrc_mapping; /*!< Mappings of SSRC to RTP instances */
463 struct ast_sockaddr bind_address; /*!< Requested bind address for the sockets */
464
465 enum strict_rtp_state strict_rtp_state; /*!< Current state that strict RTP protection is in */
466 struct ast_sockaddr strict_rtp_address; /*!< Remote address information for strict RTP purposes */
467
468 /*
469 * Learning mode values based on pjmedia's probation mode. Many of these values are redundant to the above,
470 * but these are in place to keep learning mode sequence values sealed from their normal counterparts.
471 */
472 struct rtp_learning_info rtp_source_learn; /* Learning mode track for the expected RTP source */
473
474 struct rtp_red *red;
475
476 struct ast_data_buffer *send_buffer; /*!< Buffer for storing sent packets for retransmission */
477 struct ast_data_buffer *recv_buffer; /*!< Buffer for storing received packets for retransmission */
478
479 struct rtp_transport_wide_cc_statistics transport_wide_cc; /*!< Transport-cc statistics information */
480
481#ifdef HAVE_PJPROJECT
482 ast_cond_t cond; /*!< ICE/TURN condition for signaling */
483
484 struct ice_wrap *ice; /*!< ao2 wrapped ICE session */
485 enum ast_rtp_ice_role role; /*!< Our role in ICE negotiation */
486 pj_turn_sock *turn_rtp; /*!< RTP TURN relay */
487 pj_turn_sock *turn_rtcp; /*!< RTCP TURN relay */
488 pj_turn_state_t turn_state; /*!< Current state of the TURN relay session */
489 unsigned int passthrough:1; /*!< Bit to indicate that the received packet should be passed through */
490 unsigned int rtp_passthrough:1; /*!< Bit to indicate that TURN RTP should be passed through */
491 unsigned int rtcp_passthrough:1; /*!< Bit to indicate that TURN RTCP should be passed through */
492 unsigned int ice_port; /*!< Port that ICE was started with if it was previously started */
493 struct ast_sockaddr rtp_loop; /*!< Loopback address for forwarding RTP from TURN */
494 struct ast_sockaddr rtcp_loop; /*!< Loopback address for forwarding RTCP from TURN */
495
496 struct ast_rtp_ioqueue_thread *ioqueue; /*!< The ioqueue thread handling us */
497
498 char remote_ufrag[256]; /*!< The remote ICE username */
499 char remote_passwd[256]; /*!< The remote ICE password */
500
501 char local_ufrag[256]; /*!< The local ICE username */
502 char local_passwd[256]; /*!< The local ICE password */
503
504 struct ao2_container *ice_local_candidates; /*!< The local ICE candidates */
505 struct ao2_container *ice_active_remote_candidates; /*!< The remote ICE candidates */
506 struct ao2_container *ice_proposed_remote_candidates; /*!< Incoming remote ICE candidates for new session */
507 struct ast_sockaddr ice_original_rtp_addr; /*!< rtp address that ICE started on first session */
508 unsigned int ice_num_components; /*!< The number of ICE components */
509 unsigned int ice_media_started:1; /*!< ICE media has started, either on a valid pair or on ICE completion */
510#endif
511
512#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
513 SSL_CTX *ssl_ctx; /*!< SSL context */
514 enum ast_rtp_dtls_verify dtls_verify; /*!< What to verify */
515 enum ast_srtp_suite suite; /*!< SRTP crypto suite */
516 enum ast_rtp_dtls_hash local_hash; /*!< Local hash used for the fingerprint */
517 char local_fingerprint[160]; /*!< Fingerprint of our certificate */
518 enum ast_rtp_dtls_hash remote_hash; /*!< Remote hash used for the fingerprint */
519 unsigned char remote_fingerprint[EVP_MAX_MD_SIZE]; /*!< Fingerprint of the peer certificate */
520 unsigned int rekey; /*!< Interval at which to renegotiate and rekey */
521 int rekeyid; /*!< Scheduled item id for rekeying */
522 struct dtls_details dtls; /*!< DTLS state information */
523#endif
524};
525
526/*!
527 * \brief Structure defining an RTCP session.
528 *
529 * The concept "RTCP session" is not defined in RFC 3550, but since
530 * this structure is analogous to ast_rtp, which tracks a RTP session,
531 * it is logical to think of this as a RTCP session.
532 *
533 * RTCP packet is defined on page 9 of RFC 3550.
534 *
535 */
536struct ast_rtcp {
538 int s; /*!< Socket */
539 struct ast_sockaddr us; /*!< Socket representation of the local endpoint. */
540 struct ast_sockaddr them; /*!< Socket representation of the remote endpoint. */
541 unsigned int soc; /*!< What they told us */
542 unsigned int spc; /*!< What they told us */
543 unsigned int themrxlsr; /*!< The middle 32 bits of the NTP timestamp in the last received SR*/
544 struct timeval rxlsr; /*!< Time when we got their last SR */
545 struct timeval txlsr; /*!< Time when we sent or last SR*/
546 unsigned int expected_prior; /*!< no. packets in previous interval */
547 unsigned int received_prior; /*!< no. packets received in previous interval */
548 int schedid; /*!< Schedid returned from ast_sched_add() to schedule RTCP-transmissions*/
549 unsigned int rr_count; /*!< number of RRs we've sent, not including report blocks in SR's */
550 unsigned int sr_count; /*!< number of SRs we've sent */
551 unsigned int lastsrtxcount; /*!< Transmit packet count when last SR sent */
552 double accumulated_transit; /*!< accumulated a-dlsr-lsr */
553 double rtt; /*!< Last reported rtt */
554 double reported_jitter; /*!< The contents of their last jitter entry in the RR in seconds */
555 unsigned int reported_lost; /*!< Reported lost packets in their RR */
556
557 double reported_maxjitter; /*!< Maximum reported interarrival jitter */
558 double reported_minjitter; /*!< Minimum reported interarrival jitter */
559 double reported_normdev_jitter; /*!< Mean of reported interarrival jitter */
560 double reported_stdev_jitter; /*!< Standard deviation of reported interarrival jitter */
561 unsigned int reported_jitter_count; /*!< Reported interarrival jitter count */
562
563 double reported_maxlost; /*!< Maximum reported packets lost */
564 double reported_minlost; /*!< Minimum reported packets lost */
565 double reported_normdev_lost; /*!< Mean of reported packets lost */
566 double reported_stdev_lost; /*!< Standard deviation of reported packets lost */
567 unsigned int reported_lost_count; /*!< Reported packets lost count */
568
569 double rxlost; /*!< Calculated number of lost packets since last report */
570 double maxrxlost; /*!< Maximum calculated lost number of packets between reports */
571 double minrxlost; /*!< Minimum calculated lost number of packets between reports */
572 double normdev_rxlost; /*!< Mean of calculated lost packets between reports */
573 double stdev_rxlost; /*!< Standard deviation of calculated lost packets between reports */
574 unsigned int rxlost_count; /*!< Calculated lost packets sample count */
575
576 double maxrxjitter; /*!< Maximum of calculated interarrival jitter */
577 double minrxjitter; /*!< Minimum of calculated interarrival jitter */
578 double normdev_rxjitter; /*!< Mean of calculated interarrival jitter */
579 double stdev_rxjitter; /*!< Standard deviation of calculated interarrival jitter */
580 unsigned int rxjitter_count; /*!< Calculated interarrival jitter count */
581
582 double maxrtt; /*!< Maximum of calculated round trip time */
583 double minrtt; /*!< Minimum of calculated round trip time */
584 double normdevrtt; /*!< Mean of calculated round trip time */
585 double stdevrtt; /*!< Standard deviation of calculated round trip time */
586 unsigned int rtt_count; /*!< Calculated round trip time count */
587
588 double reported_mes; /*!< The calculated MES from their last RR */
589 double reported_maxmes; /*!< Maximum reported mes */
590 double reported_minmes; /*!< Minimum reported mes */
591 double reported_normdev_mes; /*!< Mean of reported mes */
592 double reported_stdev_mes; /*!< Standard deviation of reported mes */
593 unsigned int reported_mes_count; /*!< Reported mes count */
594
595 double maxrxmes; /*!< Maximum of calculated mes */
596 double minrxmes; /*!< Minimum of calculated mes */
597 double normdev_rxmes; /*!< Mean of calculated mes */
598 double stdev_rxmes; /*!< Standard deviation of calculated mes */
599 unsigned int rxmes_count; /*!< mes count */
600
601 /* VP8: sequence number for the RTCP FIR FCI */
603
604#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
605 struct dtls_details dtls; /*!< DTLS state information */
606#endif
607
608 /* Cached local address string allows us to generate
609 * RTCP stasis messages without having to look up our
610 * own address every time
611 */
614 /* Buffer for frames created during RTCP interpretation */
615 unsigned char frame_buf[512 + AST_FRIENDLY_OFFSET];
616};
617
618struct rtp_red {
619 struct ast_frame t140; /*!< Primary data */
620 struct ast_frame t140red; /*!< Redundant t140*/
621 unsigned char pt[AST_RED_MAX_GENERATION]; /*!< Payload types for redundancy data */
622 unsigned char ts[AST_RED_MAX_GENERATION]; /*!< Time stamps */
623 unsigned char len[AST_RED_MAX_GENERATION]; /*!< length of each generation */
624 int num_gen; /*!< Number of generations */
625 int schedid; /*!< Timer id */
626 int ti; /*!< How long to buffer data before send */
627 unsigned char t140red_data[64000];
628 unsigned char buf_data[64000]; /*!< buffered primary data */
630 long int prev_ts;
631};
632
633/*! \brief Structure for storing RTP packets for retransmission */
635 size_t size; /*!< The size of the payload */
636 unsigned char buf[0]; /*!< The payload data */
637};
638
640
641/* Forward Declarations */
642static int ast_rtp_new(struct ast_rtp_instance *instance, struct ast_sched_context *sched, struct ast_sockaddr *addr, void *data);
643static int ast_rtp_destroy(struct ast_rtp_instance *instance);
644static int ast_rtp_dtmf_begin(struct ast_rtp_instance *instance, char digit);
645static int ast_rtp_dtmf_end(struct ast_rtp_instance *instance, char digit);
646static int ast_rtp_dtmf_end_with_duration(struct ast_rtp_instance *instance, char digit, unsigned int duration);
647static int ast_rtp_dtmf_mode_set(struct ast_rtp_instance *instance, enum ast_rtp_dtmf_mode dtmf_mode);
648static enum ast_rtp_dtmf_mode ast_rtp_dtmf_mode_get(struct ast_rtp_instance *instance);
649static void ast_rtp_update_source(struct ast_rtp_instance *instance);
650static void ast_rtp_change_source(struct ast_rtp_instance *instance);
651static int ast_rtp_write(struct ast_rtp_instance *instance, struct ast_frame *frame);
652static struct ast_frame *ast_rtp_read(struct ast_rtp_instance *instance, int rtcp);
653static void ast_rtp_prop_set(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value);
654static int ast_rtp_fd(struct ast_rtp_instance *instance, int rtcp);
655static void ast_rtp_remote_address_set(struct ast_rtp_instance *instance, struct ast_sockaddr *addr);
656static int rtp_red_init(struct ast_rtp_instance *instance, int buffer_time, int *payloads, int generations);
657static int rtp_red_buffer(struct ast_rtp_instance *instance, struct ast_frame *frame);
658static int ast_rtp_local_bridge(struct ast_rtp_instance *instance0, struct ast_rtp_instance *instance1);
659static int ast_rtp_get_stat(struct ast_rtp_instance *instance, struct ast_rtp_instance_stats *stats, enum ast_rtp_instance_stat stat);
660static int ast_rtp_dtmf_compatible(struct ast_channel *chan0, struct ast_rtp_instance *instance0, struct ast_channel *chan1, struct ast_rtp_instance *instance1);
661static void ast_rtp_stun_request(struct ast_rtp_instance *instance, struct ast_sockaddr *suggestion, const char *username);
662static void ast_rtp_stop(struct ast_rtp_instance *instance);
663static int ast_rtp_qos_set(struct ast_rtp_instance *instance, int tos, int cos, const char* desc);
664static int ast_rtp_sendcng(struct ast_rtp_instance *instance, int level);
665static unsigned int ast_rtp_get_ssrc(struct ast_rtp_instance *instance);
666static const char *ast_rtp_get_cname(struct ast_rtp_instance *instance);
667static void ast_rtp_set_remote_ssrc(struct ast_rtp_instance *instance, unsigned int ssrc);
668static void ast_rtp_set_stream_num(struct ast_rtp_instance *instance, int stream_num);
670static int ast_rtp_bundle(struct ast_rtp_instance *child, struct ast_rtp_instance *parent);
671static void update_reported_mes_stats(struct ast_rtp *rtp);
672static void update_local_mes_stats(struct ast_rtp *rtp);
673
674#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
675static int ast_rtp_activate(struct ast_rtp_instance *instance);
676static void dtls_srtp_start_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp);
677static void dtls_srtp_stop_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp);
678static int dtls_bio_write(BIO *bio, const char *buf, int len);
679static long dtls_bio_ctrl(BIO *bio, int cmd, long arg1, void *arg2);
680static int dtls_bio_new(BIO *bio);
681static int dtls_bio_free(BIO *bio);
682
683#ifndef HAVE_OPENSSL_BIO_METHOD
684static BIO_METHOD dtls_bio_methods = {
685 .type = BIO_TYPE_BIO,
686 .name = "rtp write",
687 .bwrite = dtls_bio_write,
688 .ctrl = dtls_bio_ctrl,
689 .create = dtls_bio_new,
690 .destroy = dtls_bio_free,
691};
692#else
693static BIO_METHOD *dtls_bio_methods;
694#endif
695#endif
696
697static int __rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp, int *via_ice, int use_srtp);
698
699#ifdef HAVE_PJPROJECT
700static void stunaddr_resolve_callback(const struct ast_dns_query *query);
701static int store_stunaddr_resolved(const struct ast_dns_query *query);
702#endif
703
704#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
705static int dtls_bio_new(BIO *bio)
706{
707#ifdef HAVE_OPENSSL_BIO_METHOD
708 BIO_set_init(bio, 1);
709 BIO_set_data(bio, NULL);
710 BIO_set_shutdown(bio, 0);
711#else
712 bio->init = 1;
713 bio->ptr = NULL;
714 bio->flags = 0;
715#endif
716 return 1;
717}
718
719static int dtls_bio_free(BIO *bio)
720{
721 /* The pointer on the BIO is that of the RTP instance. It is not reference counted as the BIO
722 * lifetime is tied to the instance, and actions on the BIO are taken by the thread handling
723 * the RTP instance - not another thread.
724 */
725#ifdef HAVE_OPENSSL_BIO_METHOD
726 BIO_set_data(bio, NULL);
727#else
728 bio->ptr = NULL;
729#endif
730 return 1;
731}
732
733static int dtls_bio_write(BIO *bio, const char *buf, int len)
734{
735#ifdef HAVE_OPENSSL_BIO_METHOD
736 struct ast_rtp_instance *instance = BIO_get_data(bio);
737#else
738 struct ast_rtp_instance *instance = bio->ptr;
739#endif
740 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
741 int rtcp = 0;
742 struct ast_sockaddr remote_address = { {0, } };
743 int ice;
744 int bytes_sent;
745
746 /* OpenSSL can't tolerate a packet not being sent, so we always state that
747 * we sent the packet. If it isn't then retransmission will occur.
748 */
749
750 if (rtp->rtcp && rtp->rtcp->dtls.write_bio == bio) {
751 rtcp = 1;
752 ast_sockaddr_copy(&remote_address, &rtp->rtcp->them);
753 } else {
754 ast_rtp_instance_get_remote_address(instance, &remote_address);
755 }
756
757 if (ast_sockaddr_isnull(&remote_address)) {
758 return len;
759 }
760
761 bytes_sent = __rtp_sendto(instance, (char *)buf, len, 0, &remote_address, rtcp, &ice, 0);
762
763 if (bytes_sent > 0 && ast_debug_dtls_packet_is_allowed) {
764 ast_debug(0, "(%p) DTLS - sent %s packet to %s%s (len %-6.6d)\n",
765 instance, rtcp ? "RTCP" : "RTP", ast_sockaddr_stringify(&remote_address),
766 ice ? " (via ICE)" : "", bytes_sent);
767 }
768
769 return len;
770}
771
772static long dtls_bio_ctrl(BIO *bio, int cmd, long arg1, void *arg2)
773{
774 switch (cmd) {
775 case BIO_CTRL_FLUSH:
776 return 1;
777 case BIO_CTRL_DGRAM_QUERY_MTU:
778 return dtls_mtu;
779 case BIO_CTRL_WPENDING:
780 case BIO_CTRL_PENDING:
781 return 0L;
782 default:
783 return 0;
784 }
785}
786
787#endif
788
789#ifdef HAVE_PJPROJECT
790/*! \brief Helper function which clears the ICE host candidate mapping */
791static void host_candidate_overrides_clear(void)
792{
793 struct ast_ice_host_candidate *candidate;
794
795 AST_RWLIST_WRLOCK(&host_candidates);
796 AST_RWLIST_TRAVERSE_SAFE_BEGIN(&host_candidates, candidate, next) {
798 ast_free(candidate);
799 }
801 AST_RWLIST_UNLOCK(&host_candidates);
802}
803
804/*! \brief Helper function which updates an ast_sockaddr with the candidate used for the component */
805static void update_address_with_ice_candidate(pj_ice_sess *ice, enum ast_rtp_ice_component_type component,
806 struct ast_sockaddr *cand_address)
807{
808 char address[PJ_INET6_ADDRSTRLEN];
809
810 if (component < 1 || !ice->comp[component - 1].valid_check) {
811 return;
812 }
813
814 ast_sockaddr_parse(cand_address,
815 pj_sockaddr_print(&ice->comp[component - 1].valid_check->rcand->addr, address,
816 sizeof(address), 0), 0);
817 ast_sockaddr_set_port(cand_address,
818 pj_sockaddr_get_port(&ice->comp[component - 1].valid_check->rcand->addr));
819}
820
821/*! \brief Destructor for locally created ICE candidates */
822static void ast_rtp_ice_candidate_destroy(void *obj)
823{
824 struct ast_rtp_engine_ice_candidate *candidate = obj;
825
826 if (candidate->foundation) {
827 ast_free(candidate->foundation);
828 }
829
830 if (candidate->transport) {
831 ast_free(candidate->transport);
832 }
833}
834
835/*! \pre instance is locked */
836static void ast_rtp_ice_set_authentication(struct ast_rtp_instance *instance, const char *ufrag, const char *password)
837{
838 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
839 int ice_attrb_reset = 0;
840
841 if (!ast_strlen_zero(ufrag)) {
842 if (!ast_strlen_zero(rtp->remote_ufrag) && strcmp(ufrag, rtp->remote_ufrag)) {
843 ice_attrb_reset = 1;
844 }
845 ast_copy_string(rtp->remote_ufrag, ufrag, sizeof(rtp->remote_ufrag));
846 }
847
848 if (!ast_strlen_zero(password)) {
849 if (!ast_strlen_zero(rtp->remote_passwd) && strcmp(password, rtp->remote_passwd)) {
850 ice_attrb_reset = 1;
851 }
852 ast_copy_string(rtp->remote_passwd, password, sizeof(rtp->remote_passwd));
853 }
854
855 /* If the remote ufrag or passwd changed, local ufrag and passwd need to regenerate */
856 if (ice_attrb_reset) {
857 generate_random_string(rtp->local_ufrag, sizeof(rtp->local_ufrag));
858 generate_random_string(rtp->local_passwd, sizeof(rtp->local_passwd));
859 }
860}
861
862static int ice_candidate_cmp(void *obj, void *arg, int flags)
863{
864 struct ast_rtp_engine_ice_candidate *candidate1 = obj, *candidate2 = arg;
865
866 if (strcmp(candidate1->foundation, candidate2->foundation) ||
867 candidate1->id != candidate2->id ||
868 candidate1->type != candidate2->type ||
869 ast_sockaddr_cmp(&candidate1->address, &candidate2->address)) {
870 return 0;
871 }
872
873 return CMP_MATCH | CMP_STOP;
874}
875
876/*! \pre instance is locked */
877static void ast_rtp_ice_add_remote_candidate(struct ast_rtp_instance *instance, const struct ast_rtp_engine_ice_candidate *candidate)
878{
879 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
880 struct ast_rtp_engine_ice_candidate *remote_candidate;
881
882 /* ICE sessions only support UDP candidates */
883 if (strcasecmp(candidate->transport, "udp")) {
884 return;
885 }
886
887 if (!rtp->ice_proposed_remote_candidates) {
888 rtp->ice_proposed_remote_candidates = ao2_container_alloc_list(
889 AO2_ALLOC_OPT_LOCK_MUTEX, 0, NULL, ice_candidate_cmp);
890 if (!rtp->ice_proposed_remote_candidates) {
891 return;
892 }
893 }
894
895 /* If this is going to exceed the maximum number of ICE candidates don't even add it */
896 if (ao2_container_count(rtp->ice_proposed_remote_candidates) == PJ_ICE_MAX_CAND) {
897 return;
898 }
899
900 if (!(remote_candidate = ao2_alloc(sizeof(*remote_candidate), ast_rtp_ice_candidate_destroy))) {
901 return;
902 }
903
904 remote_candidate->foundation = ast_strdup(candidate->foundation);
905 remote_candidate->id = candidate->id;
906 remote_candidate->transport = ast_strdup(candidate->transport);
907 remote_candidate->priority = candidate->priority;
908 ast_sockaddr_copy(&remote_candidate->address, &candidate->address);
909 ast_sockaddr_copy(&remote_candidate->relay_address, &candidate->relay_address);
910 remote_candidate->type = candidate->type;
911
912 ast_debug_ice(2, "(%p) ICE add remote candidate\n", instance);
913
914 ao2_link(rtp->ice_proposed_remote_candidates, remote_candidate);
915 ao2_ref(remote_candidate, -1);
916}
917
919
920/*! \brief Function used to check if the calling thread is registered with pjlib. If it is not it will be registered. */
921static void pj_thread_register_check(void)
922{
923 pj_thread_desc *desc;
924 pj_thread_t *thread;
925
926 if (pj_thread_is_registered() == PJ_TRUE) {
927 return;
928 }
929
930 desc = ast_threadstorage_get(&pj_thread_storage, sizeof(pj_thread_desc));
931 if (!desc) {
932 ast_log(LOG_ERROR, "Could not get thread desc from thread-local storage. Expect awful things to occur\n");
933 return;
934 }
935 pj_bzero(*desc, sizeof(*desc));
936
937 if (pj_thread_register("Asterisk Thread", *desc, &thread) != PJ_SUCCESS) {
938 ast_log(LOG_ERROR, "Coudln't register thread with PJLIB.\n");
939 }
940 return;
941}
942
943static int ice_create(struct ast_rtp_instance *instance, struct ast_sockaddr *addr,
944 int port, int replace);
945
946/*! \pre instance is locked */
947static void ast_rtp_ice_stop(struct ast_rtp_instance *instance)
948{
949 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
950 struct ice_wrap *ice;
951
952 ice = rtp->ice;
953 rtp->ice = NULL;
954 if (ice) {
955 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
956 ao2_unlock(instance);
957 ao2_ref(ice, -1);
958 ao2_lock(instance);
959 ast_debug_ice(2, "(%p) ICE stopped\n", instance);
960 }
961}
962
963/*!
964 * \brief ao2 ICE wrapper object destructor.
965 *
966 * \param vdoomed Object being destroyed.
967 *
968 * \note The associated struct ast_rtp_instance object must not
969 * be locked when unreffing the object. Otherwise we could
970 * deadlock trying to destroy the PJPROJECT ICE structure.
971 */
972static void ice_wrap_dtor(void *vdoomed)
973{
974 struct ice_wrap *ice = vdoomed;
975
976 if (ice->real_ice) {
977 pj_thread_register_check();
978
979 pj_ice_sess_destroy(ice->real_ice);
980 }
981}
982
983static void ast2pj_rtp_ice_role(enum ast_rtp_ice_role ast_role, enum pj_ice_sess_role *pj_role)
984{
985 switch (ast_role) {
987 *pj_role = PJ_ICE_SESS_ROLE_CONTROLLED;
988 break;
990 *pj_role = PJ_ICE_SESS_ROLE_CONTROLLING;
991 break;
992 }
993}
994
995static void pj2ast_rtp_ice_role(enum pj_ice_sess_role pj_role, enum ast_rtp_ice_role *ast_role)
996{
997 switch (pj_role) {
998 case PJ_ICE_SESS_ROLE_CONTROLLED:
999 *ast_role = AST_RTP_ICE_ROLE_CONTROLLED;
1000 return;
1001 case PJ_ICE_SESS_ROLE_CONTROLLING:
1002 *ast_role = AST_RTP_ICE_ROLE_CONTROLLING;
1003 return;
1004 case PJ_ICE_SESS_ROLE_UNKNOWN:
1005 /* Don't change anything */
1006 return;
1007 default:
1008 /* If we aren't explicitly handling something, it's a bug */
1009 ast_assert(0);
1010 return;
1011 }
1012}
1013
1014/*! \pre instance is locked */
1015static int ice_reset_session(struct ast_rtp_instance *instance)
1016{
1017 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1018 int res;
1019
1020 ast_debug_ice(3, "(%p) ICE resetting\n", instance);
1021 if (!rtp->ice->real_ice->is_nominating && !rtp->ice->real_ice->is_complete) {
1022 ast_debug_ice(3, " (%p) ICE nevermind, not ready for a reset\n", instance);
1023 return 0;
1024 }
1025
1026 ast_debug_ice(3, "(%p) ICE recreating ICE session %s (%d)\n",
1027 instance, ast_sockaddr_stringify(&rtp->ice_original_rtp_addr), rtp->ice_port);
1028 res = ice_create(instance, &rtp->ice_original_rtp_addr, rtp->ice_port, 1);
1029 if (!res) {
1030 /* Use the current expected role for the ICE session */
1031 enum pj_ice_sess_role role = PJ_ICE_SESS_ROLE_UNKNOWN;
1032 ast2pj_rtp_ice_role(rtp->role, &role);
1033 pj_ice_sess_change_role(rtp->ice->real_ice, role);
1034 }
1035
1036 /* If we only have one component now, and we previously set up TURN for RTCP,
1037 * we need to destroy that TURN socket.
1038 */
1039 if (rtp->ice_num_components == 1 && rtp->turn_rtcp) {
1040 struct timeval wait = ast_tvadd(ast_tvnow(), ast_samp2tv(TURN_STATE_WAIT_TIME, 1000));
1041 struct timespec ts = { .tv_sec = wait.tv_sec, .tv_nsec = wait.tv_usec * 1000, };
1042
1043 rtp->turn_state = PJ_TURN_STATE_NULL;
1044
1045 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1046 ao2_unlock(instance);
1047 pj_turn_sock_destroy(rtp->turn_rtcp);
1048 ao2_lock(instance);
1049 while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
1050 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
1051 }
1052 }
1053
1054 rtp->ice_media_started = 0;
1055
1056 return res;
1057}
1058
1059static int ice_candidates_compare(struct ao2_container *left, struct ao2_container *right)
1060{
1061 struct ao2_iterator i;
1062 struct ast_rtp_engine_ice_candidate *right_candidate;
1063
1064 if (ao2_container_count(left) != ao2_container_count(right)) {
1065 return -1;
1066 }
1067
1068 i = ao2_iterator_init(right, 0);
1069 while ((right_candidate = ao2_iterator_next(&i))) {
1070 struct ast_rtp_engine_ice_candidate *left_candidate = ao2_find(left, right_candidate, OBJ_POINTER);
1071
1072 if (!left_candidate) {
1073 ao2_ref(right_candidate, -1);
1075 return -1;
1076 }
1077
1078 ao2_ref(left_candidate, -1);
1079 ao2_ref(right_candidate, -1);
1080 }
1082
1083 return 0;
1084}
1085
1086/*! \pre instance is locked */
1087static void ast_rtp_ice_start(struct ast_rtp_instance *instance)
1088{
1089 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1090 pj_str_t ufrag = pj_str(rtp->remote_ufrag), passwd = pj_str(rtp->remote_passwd);
1091 pj_ice_sess_cand candidates[PJ_ICE_MAX_CAND];
1092 struct ao2_iterator i;
1093 struct ast_rtp_engine_ice_candidate *candidate;
1094 int cand_cnt = 0, has_rtp = 0, has_rtcp = 0;
1095
1096 if (!rtp->ice || !rtp->ice_proposed_remote_candidates) {
1097 return;
1098 }
1099
1100 /* Check for equivalence in the lists */
1101 if (rtp->ice_active_remote_candidates &&
1102 !ice_candidates_compare(rtp->ice_proposed_remote_candidates, rtp->ice_active_remote_candidates)) {
1103 ast_debug_ice(2, "(%p) ICE proposed equals active candidates\n", instance);
1104 ao2_cleanup(rtp->ice_proposed_remote_candidates);
1105 rtp->ice_proposed_remote_candidates = NULL;
1106 /* If this ICE session is being preserved then go back to the role it currently is */
1107 pj2ast_rtp_ice_role(rtp->ice->real_ice->role, &rtp->role);
1108 return;
1109 }
1110
1111 /* Out with the old, in with the new */
1112 ao2_cleanup(rtp->ice_active_remote_candidates);
1113 rtp->ice_active_remote_candidates = rtp->ice_proposed_remote_candidates;
1114 rtp->ice_proposed_remote_candidates = NULL;
1115
1116 ast_debug_ice(2, "(%p) ICE start\n", instance);
1117
1118 /* Reset the ICE session. Is this going to work? */
1119 if (ice_reset_session(instance)) {
1120 ast_log(LOG_NOTICE, "(%p) ICE failed to create replacement session\n", instance);
1121 return;
1122 }
1123
1124 pj_thread_register_check();
1125
1126 i = ao2_iterator_init(rtp->ice_active_remote_candidates, 0);
1127
1128 while ((candidate = ao2_iterator_next(&i)) && (cand_cnt < PJ_ICE_MAX_CAND)) {
1129 pj_str_t address;
1130
1131 /* there needs to be at least one rtp and rtcp candidate in the list */
1132 has_rtp |= candidate->id == AST_RTP_ICE_COMPONENT_RTP;
1133 has_rtcp |= candidate->id == AST_RTP_ICE_COMPONENT_RTCP;
1134
1135 pj_strdup2(rtp->ice->real_ice->pool, &candidates[cand_cnt].foundation,
1136 candidate->foundation);
1137 candidates[cand_cnt].comp_id = candidate->id;
1138 candidates[cand_cnt].prio = candidate->priority;
1139
1140 pj_sockaddr_parse(pj_AF_UNSPEC(), 0, pj_cstr(&address, ast_sockaddr_stringify(&candidate->address)), &candidates[cand_cnt].addr);
1141
1142 if (!ast_sockaddr_isnull(&candidate->relay_address)) {
1143 pj_sockaddr_parse(pj_AF_UNSPEC(), 0, pj_cstr(&address, ast_sockaddr_stringify(&candidate->relay_address)), &candidates[cand_cnt].rel_addr);
1144 }
1145
1146 if (candidate->type == AST_RTP_ICE_CANDIDATE_TYPE_HOST) {
1147 candidates[cand_cnt].type = PJ_ICE_CAND_TYPE_HOST;
1148 } else if (candidate->type == AST_RTP_ICE_CANDIDATE_TYPE_SRFLX) {
1149 candidates[cand_cnt].type = PJ_ICE_CAND_TYPE_SRFLX;
1150 } else if (candidate->type == AST_RTP_ICE_CANDIDATE_TYPE_RELAYED) {
1151 candidates[cand_cnt].type = PJ_ICE_CAND_TYPE_RELAYED;
1152 }
1153
1154 if (candidate->id == AST_RTP_ICE_COMPONENT_RTP && rtp->turn_rtp) {
1155 ast_debug_ice(2, "(%p) ICE RTP candidate %s\n", instance, ast_sockaddr_stringify(&candidate->address));
1156 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1157 ao2_unlock(instance);
1158 pj_turn_sock_set_perm(rtp->turn_rtp, 1, &candidates[cand_cnt].addr, 1);
1159 ao2_lock(instance);
1160 } else if (candidate->id == AST_RTP_ICE_COMPONENT_RTCP && rtp->turn_rtcp) {
1161 ast_debug_ice(2, "(%p) ICE RTCP candidate %s\n", instance, ast_sockaddr_stringify(&candidate->address));
1162 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1163 ao2_unlock(instance);
1164 pj_turn_sock_set_perm(rtp->turn_rtcp, 1, &candidates[cand_cnt].addr, 1);
1165 ao2_lock(instance);
1166 }
1167
1168 cand_cnt++;
1169 ao2_ref(candidate, -1);
1170 }
1171
1173
1174 if (cand_cnt < ao2_container_count(rtp->ice_active_remote_candidates)) {
1175 ast_log(LOG_WARNING, "(%p) ICE lost %d candidates. Consider increasing PJ_ICE_MAX_CAND in PJSIP\n",
1176 instance, ao2_container_count(rtp->ice_active_remote_candidates) - cand_cnt);
1177 }
1178
1179 if (!has_rtp) {
1180 ast_log(LOG_WARNING, "(%p) ICE no RTP candidates; skipping checklist\n", instance);
1181 }
1182
1183 /* If we're only dealing with one ICE component, then we don't care about the lack of RTCP candidates */
1184 if (!has_rtcp && rtp->ice_num_components > 1) {
1185 ast_log(LOG_WARNING, "(%p) ICE no RTCP candidates; skipping checklist\n", instance);
1186 }
1187
1188 if (rtp->ice && has_rtp && (has_rtcp || rtp->ice_num_components == 1)) {
1189 pj_status_t res;
1190 char reason[80];
1191 struct ice_wrap *ice;
1192
1193 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1194 ice = rtp->ice;
1195 ao2_ref(ice, +1);
1196 ao2_unlock(instance);
1197 res = pj_ice_sess_create_check_list(ice->real_ice, &ufrag, &passwd, cand_cnt, &candidates[0]);
1198 if (res == PJ_SUCCESS) {
1199 ast_debug_ice(2, "(%p) ICE successfully created checklist\n", instance);
1200 ast_test_suite_event_notify("ICECHECKLISTCREATE", "Result: SUCCESS");
1201 pj_ice_sess_start_check(ice->real_ice);
1202 pj_timer_heap_poll(timer_heap, NULL);
1203 ao2_ref(ice, -1);
1204 ao2_lock(instance);
1206 return;
1207 }
1208 ao2_ref(ice, -1);
1209 ao2_lock(instance);
1210
1211 pj_strerror(res, reason, sizeof(reason));
1212 ast_log(LOG_WARNING, "(%p) ICE failed to create session check list: %s\n", instance, reason);
1213 }
1214
1215 ast_test_suite_event_notify("ICECHECKLISTCREATE", "Result: FAILURE");
1216
1217 /* even though create check list failed don't stop ice as
1218 it might still work */
1219 /* however we do need to reset remote candidates since
1220 this function may be re-entered */
1221 ao2_ref(rtp->ice_active_remote_candidates, -1);
1222 rtp->ice_active_remote_candidates = NULL;
1223 if (rtp->ice) {
1224 rtp->ice->real_ice->rcand_cnt = rtp->ice->real_ice->clist.count = 0;
1225 }
1226}
1227
1228/*! \pre instance is locked */
1229static const char *ast_rtp_ice_get_ufrag(struct ast_rtp_instance *instance)
1230{
1231 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1232
1233 return rtp->local_ufrag;
1234}
1235
1236/*! \pre instance is locked */
1237static const char *ast_rtp_ice_get_password(struct ast_rtp_instance *instance)
1238{
1239 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1240
1241 return rtp->local_passwd;
1242}
1243
1244/*! \pre instance is locked */
1245static struct ao2_container *ast_rtp_ice_get_local_candidates(struct ast_rtp_instance *instance)
1246{
1247 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1248
1249 if (rtp->ice_local_candidates) {
1250 ao2_ref(rtp->ice_local_candidates, +1);
1251 }
1252
1253 return rtp->ice_local_candidates;
1254}
1255
1256/*! \pre instance is locked */
1257static void ast_rtp_ice_lite(struct ast_rtp_instance *instance)
1258{
1259 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1260
1261 if (!rtp->ice) {
1262 return;
1263 }
1264
1265 pj_thread_register_check();
1266
1267 pj_ice_sess_change_role(rtp->ice->real_ice, PJ_ICE_SESS_ROLE_CONTROLLING);
1268}
1269
1270/*! \pre instance is locked */
1271static void ast_rtp_ice_set_role(struct ast_rtp_instance *instance, enum ast_rtp_ice_role role)
1272{
1273 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1274
1275 if (!rtp->ice) {
1276 ast_debug_ice(3, "(%p) ICE set role failed; no ice instance\n", instance);
1277 return;
1278 }
1279
1280 rtp->role = role;
1281
1282 if (!rtp->ice->real_ice->is_nominating && !rtp->ice->real_ice->is_complete) {
1283 pj_thread_register_check();
1284 ast_debug_ice(2, "(%p) ICE set role to %s\n",
1285 instance, role == AST_RTP_ICE_ROLE_CONTROLLED ? "CONTROLLED" : "CONTROLLING");
1286 pj_ice_sess_change_role(rtp->ice->real_ice, role == AST_RTP_ICE_ROLE_CONTROLLED ?
1287 PJ_ICE_SESS_ROLE_CONTROLLED : PJ_ICE_SESS_ROLE_CONTROLLING);
1288 } else {
1289 ast_debug_ice(2, "(%p) ICE not setting role because state is %s\n",
1290 instance, rtp->ice->real_ice->is_nominating ? "nominating" : "complete");
1291 }
1292}
1293
1294/*! \pre instance is locked */
1295static void ast_rtp_ice_add_cand(struct ast_rtp_instance *instance, struct ast_rtp *rtp,
1296 unsigned comp_id, unsigned transport_id, pj_ice_cand_type type, pj_uint16_t local_pref,
1297 const pj_sockaddr_t *addr, const pj_sockaddr_t *base_addr, const pj_sockaddr_t *rel_addr,
1298 int addr_len)
1299{
1300 pj_str_t foundation;
1301 struct ast_rtp_engine_ice_candidate *candidate, *existing;
1302 struct ice_wrap *ice;
1303 char address[PJ_INET6_ADDRSTRLEN];
1304 pj_status_t status;
1305
1306 if (!rtp->ice) {
1307 return;
1308 }
1309
1310 pj_thread_register_check();
1311
1312 pj_ice_calc_foundation(rtp->ice->real_ice->pool, &foundation, type, addr);
1313
1314 if (!rtp->ice_local_candidates) {
1315 rtp->ice_local_candidates = ao2_container_alloc_list(AO2_ALLOC_OPT_LOCK_MUTEX, 0,
1316 NULL, ice_candidate_cmp);
1317 if (!rtp->ice_local_candidates) {
1318 return;
1319 }
1320 }
1321
1322 if (!(candidate = ao2_alloc(sizeof(*candidate), ast_rtp_ice_candidate_destroy))) {
1323 return;
1324 }
1325
1326 candidate->foundation = ast_strndup(pj_strbuf(&foundation), pj_strlen(&foundation));
1327 candidate->id = comp_id;
1328 candidate->transport = ast_strdup("UDP");
1329
1330 ast_sockaddr_parse(&candidate->address, pj_sockaddr_print(addr, address, sizeof(address), 0), 0);
1331 ast_sockaddr_set_port(&candidate->address, pj_sockaddr_get_port(addr));
1332
1333 if (rel_addr) {
1334 ast_sockaddr_parse(&candidate->relay_address, pj_sockaddr_print(rel_addr, address, sizeof(address), 0), 0);
1335 ast_sockaddr_set_port(&candidate->relay_address, pj_sockaddr_get_port(rel_addr));
1336 }
1337
1338 if (type == PJ_ICE_CAND_TYPE_HOST) {
1340 } else if (type == PJ_ICE_CAND_TYPE_SRFLX) {
1342 } else if (type == PJ_ICE_CAND_TYPE_RELAYED) {
1344 }
1345
1346 if ((existing = ao2_find(rtp->ice_local_candidates, candidate, OBJ_POINTER))) {
1347 ao2_ref(existing, -1);
1348 ao2_ref(candidate, -1);
1349 return;
1350 }
1351
1352 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1353 ice = rtp->ice;
1354 ao2_ref(ice, +1);
1355 ao2_unlock(instance);
1356 status = pj_ice_sess_add_cand(ice->real_ice, comp_id, transport_id, type, local_pref,
1357 &foundation, addr, base_addr, rel_addr, addr_len, NULL);
1358 ao2_ref(ice, -1);
1359 ao2_lock(instance);
1360 if (!rtp->ice || status != PJ_SUCCESS) {
1361 ast_debug_ice(2, "(%p) ICE unable to add candidate: %s, %d\n", instance, ast_sockaddr_stringify(
1362 &candidate->address), candidate->priority);
1363 ao2_ref(candidate, -1);
1364 return;
1365 }
1366
1367 /* By placing the candidate into the ICE session it will have produced the priority, so update the local candidate with it */
1368 candidate->priority = rtp->ice->real_ice->lcand[rtp->ice->real_ice->lcand_cnt - 1].prio;
1369
1370 ast_debug_ice(2, "(%p) ICE add candidate: %s, %d\n", instance, ast_sockaddr_stringify(
1371 &candidate->address), candidate->priority);
1372
1373 ao2_link(rtp->ice_local_candidates, candidate);
1374 ao2_ref(candidate, -1);
1375}
1376
1377/* PJPROJECT TURN callback */
1378static void ast_rtp_on_turn_rx_rtp_data(pj_turn_sock *turn_sock, void *pkt, unsigned pkt_len, const pj_sockaddr_t *peer_addr, unsigned addr_len)
1379{
1380 struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
1381 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1382 struct ice_wrap *ice;
1383 pj_status_t status;
1384
1385 ao2_lock(instance);
1386 ice = ao2_bump(rtp->ice);
1387 ao2_unlock(instance);
1388
1389 if (ice) {
1390 status = pj_ice_sess_on_rx_pkt(ice->real_ice, AST_RTP_ICE_COMPONENT_RTP,
1391 TRANSPORT_TURN_RTP, pkt, pkt_len, peer_addr, addr_len);
1392 ao2_ref(ice, -1);
1393 if (status != PJ_SUCCESS) {
1394 char buf[100];
1395
1396 pj_strerror(status, buf, sizeof(buf));
1397 ast_log(LOG_WARNING, "(%p) ICE PJ Rx error status code: %d '%s'.\n",
1398 instance, (int)status, buf);
1399 return;
1400 }
1401 if (!rtp->rtp_passthrough) {
1402 return;
1403 }
1404 rtp->rtp_passthrough = 0;
1405 }
1406
1407 ast_sendto(rtp->s, pkt, pkt_len, 0, &rtp->rtp_loop);
1408}
1409
1410/* PJPROJECT TURN callback */
1411static void ast_rtp_on_turn_rtp_state(pj_turn_sock *turn_sock, pj_turn_state_t old_state, pj_turn_state_t new_state)
1412{
1413 struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
1414 struct ast_rtp *rtp;
1415
1416 /* If this is a leftover from an already notified RTP instance just ignore the state change */
1417 if (!instance) {
1418 return;
1419 }
1420
1421 rtp = ast_rtp_instance_get_data(instance);
1422
1423 ao2_lock(instance);
1424
1425 /* We store the new state so the other thread can actually handle it */
1426 rtp->turn_state = new_state;
1427 ast_cond_signal(&rtp->cond);
1428
1429 if (new_state == PJ_TURN_STATE_DESTROYING) {
1430 pj_turn_sock_set_user_data(rtp->turn_rtp, NULL);
1431 rtp->turn_rtp = NULL;
1432 }
1433
1434 ao2_unlock(instance);
1435}
1436
1437/* RTP TURN Socket interface declaration */
1438static pj_turn_sock_cb ast_rtp_turn_rtp_sock_cb = {
1439 .on_rx_data = ast_rtp_on_turn_rx_rtp_data,
1440 .on_state = ast_rtp_on_turn_rtp_state,
1441};
1442
1443/* PJPROJECT TURN callback */
1444static void ast_rtp_on_turn_rx_rtcp_data(pj_turn_sock *turn_sock, void *pkt, unsigned pkt_len, const pj_sockaddr_t *peer_addr, unsigned addr_len)
1445{
1446 struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
1447 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1448 struct ice_wrap *ice;
1449 pj_status_t status;
1450
1451 ao2_lock(instance);
1452 ice = ao2_bump(rtp->ice);
1453 ao2_unlock(instance);
1454
1455 if (ice) {
1456 status = pj_ice_sess_on_rx_pkt(ice->real_ice, AST_RTP_ICE_COMPONENT_RTCP,
1457 TRANSPORT_TURN_RTCP, pkt, pkt_len, peer_addr, addr_len);
1458 ao2_ref(ice, -1);
1459 if (status != PJ_SUCCESS) {
1460 char buf[100];
1461
1462 pj_strerror(status, buf, sizeof(buf));
1463 ast_log(LOG_WARNING, "PJ ICE Rx error status code: %d '%s'.\n",
1464 (int)status, buf);
1465 return;
1466 }
1467 if (!rtp->rtcp_passthrough) {
1468 return;
1469 }
1470 rtp->rtcp_passthrough = 0;
1471 }
1472
1473 ast_sendto(rtp->rtcp->s, pkt, pkt_len, 0, &rtp->rtcp_loop);
1474}
1475
1476/* PJPROJECT TURN callback */
1477static void ast_rtp_on_turn_rtcp_state(pj_turn_sock *turn_sock, pj_turn_state_t old_state, pj_turn_state_t new_state)
1478{
1479 struct ast_rtp_instance *instance = pj_turn_sock_get_user_data(turn_sock);
1480 struct ast_rtp *rtp;
1481
1482 /* If this is a leftover from an already destroyed RTP instance just ignore the state change */
1483 if (!instance) {
1484 return;
1485 }
1486
1487 rtp = ast_rtp_instance_get_data(instance);
1488
1489 ao2_lock(instance);
1490
1491 /* We store the new state so the other thread can actually handle it */
1492 rtp->turn_state = new_state;
1493 ast_cond_signal(&rtp->cond);
1494
1495 if (new_state == PJ_TURN_STATE_DESTROYING) {
1496 pj_turn_sock_set_user_data(rtp->turn_rtcp, NULL);
1497 rtp->turn_rtcp = NULL;
1498 }
1499
1500 ao2_unlock(instance);
1501}
1502
1503/* RTCP TURN Socket interface declaration */
1504static pj_turn_sock_cb ast_rtp_turn_rtcp_sock_cb = {
1505 .on_rx_data = ast_rtp_on_turn_rx_rtcp_data,
1506 .on_state = ast_rtp_on_turn_rtcp_state,
1507};
1508
1509/*! \brief Worker thread for ioqueue and timerheap */
1510static int ioqueue_worker_thread(void *data)
1511{
1512 struct ast_rtp_ioqueue_thread *ioqueue = data;
1513
1514 while (!ioqueue->terminate) {
1515 const pj_time_val delay = {0, 10};
1516
1517 pj_ioqueue_poll(ioqueue->ioqueue, &delay);
1518
1519 pj_timer_heap_poll(ioqueue->timerheap, NULL);
1520 }
1521
1522 return 0;
1523}
1524
1525/*! \brief Destroyer for ioqueue thread */
1526static void rtp_ioqueue_thread_destroy(struct ast_rtp_ioqueue_thread *ioqueue)
1527{
1528 if (ioqueue->thread) {
1529 ioqueue->terminate = 1;
1530 pj_thread_join(ioqueue->thread);
1531 pj_thread_destroy(ioqueue->thread);
1532 }
1533
1534 if (ioqueue->pool) {
1535 /* This mimics the behavior of pj_pool_safe_release
1536 * which was introduced in pjproject 2.6.
1537 */
1538 pj_pool_t *temp_pool = ioqueue->pool;
1539
1540 ioqueue->pool = NULL;
1541 pj_pool_release(temp_pool);
1542 }
1543
1544 ast_free(ioqueue);
1545}
1546
1547/*! \brief Removal function for ioqueue thread, determines if it should be terminated and destroyed */
1548static void rtp_ioqueue_thread_remove(struct ast_rtp_ioqueue_thread *ioqueue)
1549{
1550 int destroy = 0;
1551
1552 /* If nothing is using this ioqueue thread destroy it */
1553 AST_LIST_LOCK(&ioqueues);
1554 if ((ioqueue->count -= 2) == 0) {
1555 destroy = 1;
1556 AST_LIST_REMOVE(&ioqueues, ioqueue, next);
1557 }
1558 AST_LIST_UNLOCK(&ioqueues);
1559
1560 if (!destroy) {
1561 return;
1562 }
1563
1564 rtp_ioqueue_thread_destroy(ioqueue);
1565}
1566
1567/*! \brief Finder and allocator for an ioqueue thread */
1568static struct ast_rtp_ioqueue_thread *rtp_ioqueue_thread_get_or_create(void)
1569{
1570 struct ast_rtp_ioqueue_thread *ioqueue;
1571 pj_lock_t *lock;
1572
1573 AST_LIST_LOCK(&ioqueues);
1574
1575 /* See if an ioqueue thread exists that can handle more */
1576 AST_LIST_TRAVERSE(&ioqueues, ioqueue, next) {
1577 if ((ioqueue->count + 2) < PJ_IOQUEUE_MAX_HANDLES) {
1578 break;
1579 }
1580 }
1581
1582 /* If we found one bump it up and return it */
1583 if (ioqueue) {
1584 ioqueue->count += 2;
1585 goto end;
1586 }
1587
1588 ioqueue = ast_calloc(1, sizeof(*ioqueue));
1589 if (!ioqueue) {
1590 goto end;
1591 }
1592
1593 ioqueue->pool = pj_pool_create(&cachingpool.factory, "rtp", 512, 512, NULL);
1594
1595 /* We use a timer on the ioqueue thread for TURN so that two threads aren't operating
1596 * on a session at the same time
1597 */
1598 if (pj_timer_heap_create(ioqueue->pool, 4, &ioqueue->timerheap) != PJ_SUCCESS) {
1599 goto fatal;
1600 }
1601
1602 if (pj_lock_create_recursive_mutex(ioqueue->pool, "rtp%p", &lock) != PJ_SUCCESS) {
1603 goto fatal;
1604 }
1605
1606 pj_timer_heap_set_lock(ioqueue->timerheap, lock, PJ_TRUE);
1607
1608 if (pj_ioqueue_create(ioqueue->pool, PJ_IOQUEUE_MAX_HANDLES, &ioqueue->ioqueue) != PJ_SUCCESS) {
1609 goto fatal;
1610 }
1611
1612 if (pj_thread_create(ioqueue->pool, "ice", &ioqueue_worker_thread, ioqueue, 0, 0, &ioqueue->thread) != PJ_SUCCESS) {
1613 goto fatal;
1614 }
1615
1616 AST_LIST_INSERT_HEAD(&ioqueues, ioqueue, next);
1617
1618 /* Since this is being returned to an active session the count always starts at 2 */
1619 ioqueue->count = 2;
1620
1621 goto end;
1622
1623fatal:
1624 rtp_ioqueue_thread_destroy(ioqueue);
1625 ioqueue = NULL;
1626
1627end:
1628 AST_LIST_UNLOCK(&ioqueues);
1629 return ioqueue;
1630}
1631
1632/*! \pre instance is locked */
1633static void ast_rtp_ice_turn_request(struct ast_rtp_instance *instance, enum ast_rtp_ice_component_type component,
1634 enum ast_transport transport, const char *server, unsigned int port, const char *username, const char *password)
1635{
1636 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1637 pj_turn_sock **turn_sock;
1638 const pj_turn_sock_cb *turn_cb;
1639 pj_turn_tp_type conn_type;
1640 int conn_transport;
1641 pj_stun_auth_cred cred = { 0, };
1642 pj_str_t turn_addr;
1643 struct ast_sockaddr addr = { { 0, } };
1644 pj_stun_config stun_config;
1645 struct timeval wait = ast_tvadd(ast_tvnow(), ast_samp2tv(TURN_STATE_WAIT_TIME, 1000));
1646 struct timespec ts = { .tv_sec = wait.tv_sec, .tv_nsec = wait.tv_usec * 1000, };
1647 pj_turn_session_info info;
1648 struct ast_sockaddr local, loop;
1649 pj_status_t status;
1650 pj_turn_sock_cfg turn_sock_cfg;
1651 struct ice_wrap *ice;
1652
1653 ast_rtp_instance_get_local_address(instance, &local);
1654 if (ast_sockaddr_is_ipv4(&local)) {
1655 ast_sockaddr_parse(&loop, "127.0.0.1", PARSE_PORT_FORBID);
1656 } else {
1658 }
1659
1660 /* Determine what component we are requesting a TURN session for */
1661 if (component == AST_RTP_ICE_COMPONENT_RTP) {
1662 turn_sock = &rtp->turn_rtp;
1663 turn_cb = &ast_rtp_turn_rtp_sock_cb;
1664 conn_transport = TRANSPORT_TURN_RTP;
1666 } else if (component == AST_RTP_ICE_COMPONENT_RTCP) {
1667 turn_sock = &rtp->turn_rtcp;
1668 turn_cb = &ast_rtp_turn_rtcp_sock_cb;
1669 conn_transport = TRANSPORT_TURN_RTCP;
1671 } else {
1672 return;
1673 }
1674
1675 if (transport == AST_TRANSPORT_UDP) {
1676 conn_type = PJ_TURN_TP_UDP;
1677 } else if (transport == AST_TRANSPORT_TCP) {
1678 conn_type = PJ_TURN_TP_TCP;
1679 } else {
1680 ast_assert(0);
1681 return;
1682 }
1683
1684 ast_sockaddr_parse(&addr, server, PARSE_PORT_FORBID);
1685
1686 if (*turn_sock) {
1687 rtp->turn_state = PJ_TURN_STATE_NULL;
1688
1689 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1690 ao2_unlock(instance);
1691 pj_turn_sock_destroy(*turn_sock);
1692 ao2_lock(instance);
1693 while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
1694 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
1695 }
1696 }
1697
1698 if (component == AST_RTP_ICE_COMPONENT_RTP && !rtp->ioqueue) {
1699 /*
1700 * We cannot hold the instance lock because we could wait
1701 * for the ioqueue thread to die and we might deadlock as
1702 * a result.
1703 */
1704 ao2_unlock(instance);
1705 rtp->ioqueue = rtp_ioqueue_thread_get_or_create();
1706 ao2_lock(instance);
1707 if (!rtp->ioqueue) {
1708 return;
1709 }
1710 }
1711
1712 pj_stun_config_init(&stun_config, &cachingpool.factory, 0, rtp->ioqueue->ioqueue, rtp->ioqueue->timerheap);
1713 if (!stun_software_attribute) {
1714 stun_config.software_name = pj_str(NULL);
1715 }
1716
1717 /* Use ICE session group lock for TURN session to avoid deadlock */
1718 pj_turn_sock_cfg_default(&turn_sock_cfg);
1719 ice = rtp->ice;
1720 if (ice) {
1721 turn_sock_cfg.grp_lock = ice->real_ice->grp_lock;
1722 ao2_ref(ice, +1);
1723 }
1724
1725 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
1726 ao2_unlock(instance);
1727 status = pj_turn_sock_create(&stun_config,
1728 ast_sockaddr_is_ipv4(&addr) ? pj_AF_INET() : pj_AF_INET6(), conn_type,
1729 turn_cb, &turn_sock_cfg, instance, turn_sock);
1730 ao2_cleanup(ice);
1731 if (status != PJ_SUCCESS) {
1732 ast_log(LOG_WARNING, "(%p) Could not create a TURN client socket\n", instance);
1733 ao2_lock(instance);
1734 return;
1735 }
1736
1737 cred.type = PJ_STUN_AUTH_CRED_STATIC;
1738 pj_strset2(&cred.data.static_cred.username, (char*)username);
1739 cred.data.static_cred.data_type = PJ_STUN_PASSWD_PLAIN;
1740 pj_strset2(&cred.data.static_cred.data, (char*)password);
1741
1742 pj_turn_sock_alloc(*turn_sock, pj_cstr(&turn_addr, server), port, NULL, &cred, NULL);
1743
1744 ast_debug_ice(2, "(%p) ICE request TURN %s %s candidate\n", instance,
1745 transport == AST_TRANSPORT_UDP ? "UDP" : "TCP",
1746 component == AST_RTP_ICE_COMPONENT_RTP ? "RTP" : "RTCP");
1747
1748 ao2_lock(instance);
1749
1750 /*
1751 * Because the TURN socket is asynchronous and we are synchronous we need to
1752 * wait until it is done
1753 */
1754 while (rtp->turn_state < PJ_TURN_STATE_READY) {
1755 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
1756 }
1757
1758 /* If a TURN session was allocated add it as a candidate */
1759 if (rtp->turn_state != PJ_TURN_STATE_READY) {
1760 return;
1761 }
1762
1763 pj_turn_sock_get_info(*turn_sock, &info);
1764
1765 ast_rtp_ice_add_cand(instance, rtp, component, conn_transport,
1766 PJ_ICE_CAND_TYPE_RELAYED, 65535, &info.relay_addr, &info.relay_addr,
1767 &info.mapped_addr, pj_sockaddr_get_len(&info.relay_addr));
1768
1769 if (component == AST_RTP_ICE_COMPONENT_RTP) {
1770 ast_sockaddr_copy(&rtp->rtp_loop, &loop);
1771 } else if (component == AST_RTP_ICE_COMPONENT_RTCP) {
1772 ast_sockaddr_copy(&rtp->rtcp_loop, &loop);
1773 }
1774}
1775
1776static char *generate_random_string(char *buf, size_t size)
1777{
1778 long val[4];
1779 int x;
1780
1781 for (x=0; x<4; x++) {
1782 val[x] = ast_random();
1783 }
1784 snprintf(buf, size, "%08lx%08lx%08lx%08lx", (long unsigned)val[0], (long unsigned)val[1], (long unsigned)val[2], (long unsigned)val[3]);
1785
1786 return buf;
1787}
1788
1789/*! \pre instance is locked */
1790static void ast_rtp_ice_change_components(struct ast_rtp_instance *instance, int num_components)
1791{
1792 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1793
1794 /* Don't do anything if ICE is unsupported or if we're not changing the
1795 * number of components
1796 */
1797 if (!icesupport || !rtp->ice || rtp->ice_num_components == num_components) {
1798 return;
1799 }
1800
1801 ast_debug_ice(2, "(%p) ICE change number of components %u -> %u\n", instance,
1802 rtp->ice_num_components, num_components);
1803
1804 rtp->ice_num_components = num_components;
1805 ice_reset_session(instance);
1806}
1807
1808/* ICE RTP Engine interface declaration */
1809static struct ast_rtp_engine_ice ast_rtp_ice = {
1810 .set_authentication = ast_rtp_ice_set_authentication,
1811 .add_remote_candidate = ast_rtp_ice_add_remote_candidate,
1812 .start = ast_rtp_ice_start,
1813 .stop = ast_rtp_ice_stop,
1814 .get_ufrag = ast_rtp_ice_get_ufrag,
1815 .get_password = ast_rtp_ice_get_password,
1816 .get_local_candidates = ast_rtp_ice_get_local_candidates,
1817 .ice_lite = ast_rtp_ice_lite,
1818 .set_role = ast_rtp_ice_set_role,
1819 .turn_request = ast_rtp_ice_turn_request,
1820 .change_components = ast_rtp_ice_change_components,
1821};
1822#endif
1823
1824#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
1825static int dtls_verify_callback(int preverify_ok, X509_STORE_CTX *ctx)
1826{
1827 /* We don't want to actually verify the certificate so just accept what they have provided */
1828 return 1;
1829}
1830
1831static int dtls_details_initialize(struct dtls_details *dtls, SSL_CTX *ssl_ctx,
1832 enum ast_rtp_dtls_setup setup, struct ast_rtp_instance *instance)
1833{
1834 dtls->dtls_setup = setup;
1835
1836 if (!(dtls->ssl = SSL_new(ssl_ctx))) {
1837 ast_log(LOG_ERROR, "Failed to allocate memory for SSL\n");
1838 goto error;
1839 }
1840
1841 if (!(dtls->read_bio = BIO_new(BIO_s_mem()))) {
1842 ast_log(LOG_ERROR, "Failed to allocate memory for inbound SSL traffic\n");
1843 goto error;
1844 }
1845 BIO_set_mem_eof_return(dtls->read_bio, -1);
1846
1847#ifdef HAVE_OPENSSL_BIO_METHOD
1848 if (!(dtls->write_bio = BIO_new(dtls_bio_methods))) {
1849 ast_log(LOG_ERROR, "Failed to allocate memory for outbound SSL traffic\n");
1850 goto error;
1851 }
1852
1853 BIO_set_data(dtls->write_bio, instance);
1854#else
1855 if (!(dtls->write_bio = BIO_new(&dtls_bio_methods))) {
1856 ast_log(LOG_ERROR, "Failed to allocate memory for outbound SSL traffic\n");
1857 goto error;
1858 }
1859 dtls->write_bio->ptr = instance;
1860#endif
1861 SSL_set_bio(dtls->ssl, dtls->read_bio, dtls->write_bio);
1862
1863 if (dtls->dtls_setup == AST_RTP_DTLS_SETUP_PASSIVE) {
1864 SSL_set_accept_state(dtls->ssl);
1865 } else {
1866 SSL_set_connect_state(dtls->ssl);
1867 }
1868 dtls->connection = AST_RTP_DTLS_CONNECTION_NEW;
1869
1870 return 0;
1871
1872error:
1873 if (dtls->read_bio) {
1874 BIO_free(dtls->read_bio);
1875 dtls->read_bio = NULL;
1876 }
1877
1878 if (dtls->write_bio) {
1879 BIO_free(dtls->write_bio);
1880 dtls->write_bio = NULL;
1881 }
1882
1883 if (dtls->ssl) {
1884 SSL_free(dtls->ssl);
1885 dtls->ssl = NULL;
1886 }
1887 return -1;
1888}
1889
1890static int dtls_setup_rtcp(struct ast_rtp_instance *instance)
1891{
1892 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
1893
1894 if (!rtp->ssl_ctx || !rtp->rtcp) {
1895 return 0;
1896 }
1897
1898 ast_debug_dtls(3, "(%p) DTLS RTCP setup\n", instance);
1899 return dtls_details_initialize(&rtp->rtcp->dtls, rtp->ssl_ctx, rtp->dtls.dtls_setup, instance);
1900}
1901
1902static const SSL_METHOD *get_dtls_method(void)
1903{
1904#if OPENSSL_VERSION_NUMBER < 0x10002000L
1905 return DTLSv1_method();
1906#else
1907 return DTLS_method();
1908#endif
1909}
1910
1911struct dtls_cert_info {
1912 EVP_PKEY *private_key;
1913 X509 *certificate;
1914};
1915
1916static int apply_dh_params(SSL_CTX *ctx, BIO *bio)
1917{
1918 int res = 0;
1919
1920#if OPENSSL_VERSION_NUMBER >= 0x30000000L
1921 EVP_PKEY *dhpkey = PEM_read_bio_Parameters(bio, NULL);
1922 if (dhpkey && EVP_PKEY_is_a(dhpkey, "DH")) {
1923 res = SSL_CTX_set0_tmp_dh_pkey(ctx, dhpkey);
1924 }
1925 if (!res) {
1926 /* A successful call to SSL_CTX_set0_tmp_dh_pkey() means
1927 that we lost ownership of dhpkey and should not free
1928 it ourselves */
1929 EVP_PKEY_free(dhpkey);
1930 }
1931#else
1932 DH *dh = PEM_read_bio_DHparams(bio, NULL, NULL, NULL);
1933 if (dh) {
1934 res = SSL_CTX_set_tmp_dh(ctx, dh);
1935 }
1936 DH_free(dh);
1937#endif
1938
1939 return res;
1940}
1941
1942static void configure_dhparams(const struct ast_rtp *rtp, const struct ast_rtp_dtls_cfg *dtls_cfg)
1943{
1944#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L) && (OPENSSL_VERSION_NUMBER < 0x10100000L)
1945 EC_KEY *ecdh;
1946#endif
1947
1948#ifndef OPENSSL_NO_DH
1949 if (!ast_strlen_zero(dtls_cfg->pvtfile)) {
1950 BIO *bio = BIO_new_file(dtls_cfg->pvtfile, "r");
1951 if (bio) {
1952 if (apply_dh_params(rtp->ssl_ctx, bio)) {
1953 long options = SSL_OP_CIPHER_SERVER_PREFERENCE |
1954 SSL_OP_SINGLE_DH_USE | SSL_OP_SINGLE_ECDH_USE;
1955 options = SSL_CTX_set_options(rtp->ssl_ctx, options);
1956 ast_verb(2, "DTLS DH initialized, PFS enabled\n");
1957 }
1958 BIO_free(bio);
1959 }
1960 }
1961#endif /* !OPENSSL_NO_DH */
1962
1963#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L) && (OPENSSL_VERSION_NUMBER < 0x10100000L)
1964 /* enables AES-128 ciphers, to get AES-256 use NID_secp384r1 */
1965 ecdh = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1);
1966 if (ecdh) {
1967 if (SSL_CTX_set_tmp_ecdh(rtp->ssl_ctx, ecdh)) {
1968 #ifndef SSL_CTRL_SET_ECDH_AUTO
1969 #define SSL_CTRL_SET_ECDH_AUTO 94
1970 #endif
1971 /* SSL_CTX_set_ecdh_auto(rtp->ssl_ctx, on); requires OpenSSL 1.0.2 which wraps: */
1972 if (SSL_CTX_ctrl(rtp->ssl_ctx, SSL_CTRL_SET_ECDH_AUTO, 1, NULL)) {
1973 ast_verb(2, "DTLS ECDH initialized (automatic), faster PFS enabled\n");
1974 } else {
1975 ast_verb(2, "DTLS ECDH initialized (secp256r1), faster PFS enabled\n");
1976 }
1977 }
1978 EC_KEY_free(ecdh);
1979 }
1980#endif /* !OPENSSL_NO_ECDH */
1981}
1982
1983#if !defined(OPENSSL_NO_ECDH) && (OPENSSL_VERSION_NUMBER >= 0x10000000L)
1984
1985static int create_ephemeral_ec_keypair(EVP_PKEY **keypair)
1986{
1987#if OPENSSL_VERSION_NUMBER >= 0x30000000L
1988 *keypair = EVP_EC_gen(SN_X9_62_prime256v1);
1989 return *keypair ? 0 : -1;
1990#else
1991 EC_KEY *eckey = NULL;
1992 EC_GROUP *group = NULL;
1993
1994 group = EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1);
1995 if (!group) {
1996 goto error;
1997 }
1998
1999 EC_GROUP_set_asn1_flag(group, OPENSSL_EC_NAMED_CURVE);
2000 EC_GROUP_set_point_conversion_form(group, POINT_CONVERSION_UNCOMPRESSED);
2001
2002 eckey = EC_KEY_new();
2003 if (!eckey) {
2004 goto error;
2005 }
2006
2007 if (!EC_KEY_set_group(eckey, group)) {
2008 goto error;
2009 }
2010
2011 if (!EC_KEY_generate_key(eckey)) {
2012 goto error;
2013 }
2014
2015 *keypair = EVP_PKEY_new();
2016 if (!*keypair) {
2017 goto error;
2018 }
2019
2020 EVP_PKEY_assign_EC_KEY(*keypair, eckey);
2021 EC_GROUP_free(group);
2022
2023 return 0;
2024
2025error:
2026 EC_KEY_free(eckey);
2027 EC_GROUP_free(group);
2028
2029 return -1;
2030#endif
2031}
2032
2033/* From OpenSSL's x509 command */
2034#define SERIAL_RAND_BITS 159
2035
2036static int create_ephemeral_certificate(EVP_PKEY *keypair, X509 **certificate)
2037{
2038 X509 *cert = NULL;
2039 BIGNUM *serial = NULL;
2040 X509_NAME *name = NULL;
2041
2042 cert = X509_new();
2043 if (!cert) {
2044 goto error;
2045 }
2046
2047 if (!X509_set_version(cert, 2)) {
2048 goto error;
2049 }
2050
2051 /* Set the public key */
2052 X509_set_pubkey(cert, keypair);
2053
2054 /* Generate a random serial number */
2055 if (!(serial = BN_new())
2056 || !BN_rand(serial, SERIAL_RAND_BITS, -1, 0)
2057 || !BN_to_ASN1_INTEGER(serial, X509_get_serialNumber(cert))) {
2058 BN_free(serial);
2059 goto error;
2060 }
2061
2062 BN_free(serial);
2063
2064 /*
2065 * Validity period - Current Chrome & Firefox make it 31 days starting
2066 * with yesterday at the current time, so we will do the same.
2067 */
2068#if OPENSSL_VERSION_NUMBER < 0x10100000L
2069 if (!X509_time_adj_ex(X509_get_notBefore(cert), -1, 0, NULL)
2070 || !X509_time_adj_ex(X509_get_notAfter(cert), 30, 0, NULL)) {
2071 goto error;
2072 }
2073#else
2074 if (!X509_time_adj_ex(X509_getm_notBefore(cert), -1, 0, NULL)
2075 || !X509_time_adj_ex(X509_getm_notAfter(cert), 30, 0, NULL)) {
2076 goto error;
2077 }
2078#endif
2079
2080 /* Set the name and issuer */
2081 if (!(name = X509_get_subject_name(cert))
2082 || !X509_NAME_add_entry_by_NID(name, NID_commonName, MBSTRING_ASC,
2083 (unsigned char *) "asterisk", -1, -1, 0)
2084 || !X509_set_issuer_name(cert, name)) {
2085 goto error;
2086 }
2087
2088 /* Sign it */
2089 if (!X509_sign(cert, keypair, EVP_sha256())) {
2090 goto error;
2091 }
2092
2093 *certificate = cert;
2094
2095 return 0;
2096
2097error:
2098 X509_free(cert);
2099
2100 return -1;
2101}
2102
2103static int create_certificate_ephemeral(struct ast_rtp_instance *instance,
2104 const struct ast_rtp_dtls_cfg *dtls_cfg,
2105 struct dtls_cert_info *cert_info)
2106{
2107 /* Make sure these are initialized */
2108 cert_info->private_key = NULL;
2109 cert_info->certificate = NULL;
2110
2111 if (create_ephemeral_ec_keypair(&cert_info->private_key)) {
2112 ast_log(LOG_ERROR, "Failed to create ephemeral ECDSA keypair\n");
2113 goto error;
2114 }
2115
2116 if (create_ephemeral_certificate(cert_info->private_key, &cert_info->certificate)) {
2117 ast_log(LOG_ERROR, "Failed to create ephemeral X509 certificate\n");
2118 goto error;
2119 }
2120
2121 return 0;
2122
2123 error:
2124 X509_free(cert_info->certificate);
2125 EVP_PKEY_free(cert_info->private_key);
2126
2127 return -1;
2128}
2129
2130#else
2131
2132static int create_certificate_ephemeral(struct ast_rtp_instance *instance,
2133 const struct ast_rtp_dtls_cfg *dtls_cfg,
2134 struct dtls_cert_info *cert_info)
2135{
2136 ast_log(LOG_ERROR, "Your version of OpenSSL does not support ECDSA keys\n");
2137 return -1;
2138}
2139
2140#endif /* !OPENSSL_NO_ECDH */
2141
2142static int create_certificate_from_file(struct ast_rtp_instance *instance,
2143 const struct ast_rtp_dtls_cfg *dtls_cfg,
2144 struct dtls_cert_info *cert_info)
2145{
2146 FILE *fp;
2147 BIO *certbio = NULL;
2148 EVP_PKEY *private_key = NULL;
2149 X509 *cert = NULL;
2150 char *private_key_file = ast_strlen_zero(dtls_cfg->pvtfile) ? dtls_cfg->certfile : dtls_cfg->pvtfile;
2151
2152 fp = fopen(private_key_file, "r");
2153 if (!fp) {
2154 ast_log(LOG_ERROR, "Failed to read private key from file '%s': %s\n", private_key_file, strerror(errno));
2155 goto error;
2156 }
2157
2158 if (!PEM_read_PrivateKey(fp, &private_key, NULL, NULL)) {
2159 ast_log(LOG_ERROR, "Failed to read private key from PEM file '%s'\n", private_key_file);
2160 fclose(fp);
2161 goto error;
2162 }
2163
2164 if (fclose(fp)) {
2165 ast_log(LOG_ERROR, "Failed to close private key file '%s': %s\n", private_key_file, strerror(errno));
2166 goto error;
2167 }
2168
2169 certbio = BIO_new(BIO_s_file());
2170 if (!certbio) {
2171 ast_log(LOG_ERROR, "Failed to allocate memory for certificate fingerprinting on RTP instance '%p'\n",
2172 instance);
2173 goto error;
2174 }
2175
2176 if (!BIO_read_filename(certbio, dtls_cfg->certfile)
2177 || !(cert = PEM_read_bio_X509(certbio, NULL, 0, NULL))) {
2178 ast_log(LOG_ERROR, "Failed to read certificate from file '%s'\n", dtls_cfg->certfile);
2179 goto error;
2180 }
2181
2182 cert_info->private_key = private_key;
2183 cert_info->certificate = cert;
2184
2185 BIO_free_all(certbio);
2186
2187 return 0;
2188
2189error:
2190 X509_free(cert);
2191 BIO_free_all(certbio);
2192 EVP_PKEY_free(private_key);
2193
2194 return -1;
2195}
2196
2197static int load_dtls_certificate(struct ast_rtp_instance *instance,
2198 const struct ast_rtp_dtls_cfg *dtls_cfg,
2199 struct dtls_cert_info *cert_info)
2200{
2201 if (dtls_cfg->ephemeral_cert) {
2202 return create_certificate_ephemeral(instance, dtls_cfg, cert_info);
2203 } else if (!ast_strlen_zero(dtls_cfg->certfile)) {
2204 return create_certificate_from_file(instance, dtls_cfg, cert_info);
2205 } else {
2206 return -1;
2207 }
2208}
2209
2210/*! \pre instance is locked */
2211static int ast_rtp_dtls_set_configuration(struct ast_rtp_instance *instance, const struct ast_rtp_dtls_cfg *dtls_cfg)
2212{
2213 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2214 struct dtls_cert_info cert_info = { 0 };
2215 int res;
2216
2217 if (!dtls_cfg->enabled) {
2218 return 0;
2219 }
2220
2221 ast_debug_dtls(3, "(%p) DTLS RTP setup\n", instance);
2222
2224 ast_log(LOG_ERROR, "SRTP support module is not loaded or available. Try loading res_srtp.so.\n");
2225 return -1;
2226 }
2227
2228 if (rtp->ssl_ctx) {
2229 return 0;
2230 }
2231
2232 rtp->ssl_ctx = SSL_CTX_new(get_dtls_method());
2233 if (!rtp->ssl_ctx) {
2234 return -1;
2235 }
2236
2237 SSL_CTX_set_read_ahead(rtp->ssl_ctx, 1);
2238
2239 configure_dhparams(rtp, dtls_cfg);
2240
2241 rtp->dtls_verify = dtls_cfg->verify;
2242
2243 SSL_CTX_set_verify(rtp->ssl_ctx, (rtp->dtls_verify & AST_RTP_DTLS_VERIFY_FINGERPRINT) || (rtp->dtls_verify & AST_RTP_DTLS_VERIFY_CERTIFICATE) ?
2244 SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT : SSL_VERIFY_NONE, !(rtp->dtls_verify & AST_RTP_DTLS_VERIFY_CERTIFICATE) ?
2245 dtls_verify_callback : NULL);
2246
2247 if (dtls_cfg->suite == AST_AES_CM_128_HMAC_SHA1_80) {
2248 SSL_CTX_set_tlsext_use_srtp(rtp->ssl_ctx, "SRTP_AES128_CM_SHA1_80");
2249 } else if (dtls_cfg->suite == AST_AES_CM_128_HMAC_SHA1_32) {
2250 SSL_CTX_set_tlsext_use_srtp(rtp->ssl_ctx, "SRTP_AES128_CM_SHA1_32");
2251 } else {
2252 ast_log(LOG_ERROR, "Unsupported suite specified for DTLS-SRTP on RTP instance '%p'\n", instance);
2253 return -1;
2254 }
2255
2256 rtp->local_hash = dtls_cfg->hash;
2257
2258 if (!load_dtls_certificate(instance, dtls_cfg, &cert_info)) {
2259 const EVP_MD *type;
2260 unsigned int size, i;
2261 unsigned char fingerprint[EVP_MAX_MD_SIZE];
2262 char *local_fingerprint = rtp->local_fingerprint;
2263
2264 if (!SSL_CTX_use_certificate(rtp->ssl_ctx, cert_info.certificate)) {
2265 ast_log(LOG_ERROR, "Specified certificate for RTP instance '%p' could not be used\n",
2266 instance);
2267 return -1;
2268 }
2269
2270 if (!SSL_CTX_use_PrivateKey(rtp->ssl_ctx, cert_info.private_key)
2271 || !SSL_CTX_check_private_key(rtp->ssl_ctx)) {
2272 ast_log(LOG_ERROR, "Specified private key for RTP instance '%p' could not be used\n",
2273 instance);
2274 return -1;
2275 }
2276
2277 if (rtp->local_hash == AST_RTP_DTLS_HASH_SHA1) {
2278 type = EVP_sha1();
2279 } else if (rtp->local_hash == AST_RTP_DTLS_HASH_SHA256) {
2280 type = EVP_sha256();
2281 } else {
2282 ast_log(LOG_ERROR, "Unsupported fingerprint hash type on RTP instance '%p'\n",
2283 instance);
2284 return -1;
2285 }
2286
2287 if (!X509_digest(cert_info.certificate, type, fingerprint, &size) || !size) {
2288 ast_log(LOG_ERROR, "Could not produce fingerprint from certificate for RTP instance '%p'\n",
2289 instance);
2290 return -1;
2291 }
2292
2293 for (i = 0; i < size; i++) {
2294 sprintf(local_fingerprint, "%02hhX:", fingerprint[i]);
2295 local_fingerprint += 3;
2296 }
2297
2298 *(local_fingerprint - 1) = 0;
2299
2300 EVP_PKEY_free(cert_info.private_key);
2301 X509_free(cert_info.certificate);
2302 }
2303
2304 if (!ast_strlen_zero(dtls_cfg->cipher)) {
2305 if (!SSL_CTX_set_cipher_list(rtp->ssl_ctx, dtls_cfg->cipher)) {
2306 ast_log(LOG_ERROR, "Invalid cipher specified in cipher list '%s' for RTP instance '%p'\n",
2307 dtls_cfg->cipher, instance);
2308 return -1;
2309 }
2310 }
2311
2312 if (!ast_strlen_zero(dtls_cfg->cafile) || !ast_strlen_zero(dtls_cfg->capath)) {
2313 if (!SSL_CTX_load_verify_locations(rtp->ssl_ctx, S_OR(dtls_cfg->cafile, NULL), S_OR(dtls_cfg->capath, NULL))) {
2314 ast_log(LOG_ERROR, "Invalid certificate authority file '%s' or path '%s' specified for RTP instance '%p'\n",
2315 S_OR(dtls_cfg->cafile, ""), S_OR(dtls_cfg->capath, ""), instance);
2316 return -1;
2317 }
2318 }
2319
2320 rtp->rekey = dtls_cfg->rekey;
2321 rtp->suite = dtls_cfg->suite;
2322
2323 res = dtls_details_initialize(&rtp->dtls, rtp->ssl_ctx, dtls_cfg->default_setup, instance);
2324 if (!res) {
2325 dtls_setup_rtcp(instance);
2326 }
2327
2328 return res;
2329}
2330
2331/*! \pre instance is locked */
2332static int ast_rtp_dtls_active(struct ast_rtp_instance *instance)
2333{
2334 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2335
2336 return !rtp->ssl_ctx ? 0 : 1;
2337}
2338
2339/*! \pre instance is locked */
2340static void ast_rtp_dtls_stop(struct ast_rtp_instance *instance)
2341{
2342 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2343 SSL *ssl = rtp->dtls.ssl;
2344
2345 ast_debug_dtls(3, "(%p) DTLS stop\n", instance);
2346 ao2_unlock(instance);
2347 dtls_srtp_stop_timeout_timer(instance, rtp, 0);
2348 ao2_lock(instance);
2349
2350 if (rtp->ssl_ctx) {
2351 SSL_CTX_free(rtp->ssl_ctx);
2352 rtp->ssl_ctx = NULL;
2353 }
2354
2355 if (rtp->dtls.ssl) {
2356 SSL_free(rtp->dtls.ssl);
2357 rtp->dtls.ssl = NULL;
2358 }
2359
2360 if (rtp->rtcp) {
2361 ao2_unlock(instance);
2362 dtls_srtp_stop_timeout_timer(instance, rtp, 1);
2363 ao2_lock(instance);
2364
2365 if (rtp->rtcp->dtls.ssl) {
2366 if (rtp->rtcp->dtls.ssl != ssl) {
2367 SSL_free(rtp->rtcp->dtls.ssl);
2368 }
2369 rtp->rtcp->dtls.ssl = NULL;
2370 }
2371 }
2372}
2373
2374/*! \pre instance is locked */
2375static void ast_rtp_dtls_reset(struct ast_rtp_instance *instance)
2376{
2377 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2378
2379 if (SSL_is_init_finished(rtp->dtls.ssl)) {
2380 SSL_shutdown(rtp->dtls.ssl);
2381 rtp->dtls.connection = AST_RTP_DTLS_CONNECTION_NEW;
2382 }
2383
2384 if (rtp->rtcp && SSL_is_init_finished(rtp->rtcp->dtls.ssl)) {
2385 SSL_shutdown(rtp->rtcp->dtls.ssl);
2386 rtp->rtcp->dtls.connection = AST_RTP_DTLS_CONNECTION_NEW;
2387 }
2388}
2389
2390/*! \pre instance is locked */
2391static enum ast_rtp_dtls_connection ast_rtp_dtls_get_connection(struct ast_rtp_instance *instance)
2392{
2393 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2394
2395 return rtp->dtls.connection;
2396}
2397
2398/*! \pre instance is locked */
2399static enum ast_rtp_dtls_setup ast_rtp_dtls_get_setup(struct ast_rtp_instance *instance)
2400{
2401 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2402
2403 return rtp->dtls.dtls_setup;
2404}
2405
2406static void dtls_set_setup(enum ast_rtp_dtls_setup *dtls_setup, enum ast_rtp_dtls_setup setup, SSL *ssl)
2407{
2408 enum ast_rtp_dtls_setup old = *dtls_setup;
2409
2410 switch (setup) {
2412 *dtls_setup = AST_RTP_DTLS_SETUP_PASSIVE;
2413 break;
2415 *dtls_setup = AST_RTP_DTLS_SETUP_ACTIVE;
2416 break;
2418 /* We can't respond to an actpass setup with actpass ourselves... so respond with active, as we can initiate connections */
2419 if (*dtls_setup == AST_RTP_DTLS_SETUP_ACTPASS) {
2420 *dtls_setup = AST_RTP_DTLS_SETUP_ACTIVE;
2421 }
2422 break;
2424 *dtls_setup = AST_RTP_DTLS_SETUP_HOLDCONN;
2425 break;
2426 default:
2427 /* This should never occur... if it does exit early as we don't know what state things are in */
2428 return;
2429 }
2430
2431 /* If the setup state did not change we go on as if nothing happened */
2432 if (old == *dtls_setup) {
2433 return;
2434 }
2435
2436 /* If they don't want us to establish a connection wait until later */
2437 if (*dtls_setup == AST_RTP_DTLS_SETUP_HOLDCONN) {
2438 return;
2439 }
2440
2441 if (*dtls_setup == AST_RTP_DTLS_SETUP_ACTIVE) {
2442 SSL_set_connect_state(ssl);
2443 } else if (*dtls_setup == AST_RTP_DTLS_SETUP_PASSIVE) {
2444 SSL_set_accept_state(ssl);
2445 } else {
2446 return;
2447 }
2448}
2449
2450/*! \pre instance is locked */
2451static void ast_rtp_dtls_set_setup(struct ast_rtp_instance *instance, enum ast_rtp_dtls_setup setup)
2452{
2453 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2454
2455 if (rtp->dtls.ssl) {
2456 dtls_set_setup(&rtp->dtls.dtls_setup, setup, rtp->dtls.ssl);
2457 }
2458
2459 if (rtp->rtcp && rtp->rtcp->dtls.ssl) {
2460 dtls_set_setup(&rtp->rtcp->dtls.dtls_setup, setup, rtp->rtcp->dtls.ssl);
2461 }
2462}
2463
2464/*! \pre instance is locked */
2465static void ast_rtp_dtls_set_fingerprint(struct ast_rtp_instance *instance, enum ast_rtp_dtls_hash hash, const char *fingerprint)
2466{
2467 char *tmp = ast_strdupa(fingerprint), *value;
2468 int pos = 0;
2469 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2470
2471 if (hash != AST_RTP_DTLS_HASH_SHA1 && hash != AST_RTP_DTLS_HASH_SHA256) {
2472 return;
2473 }
2474
2475 rtp->remote_hash = hash;
2476
2477 while ((value = strsep(&tmp, ":")) && (pos != (EVP_MAX_MD_SIZE - 1))) {
2478 sscanf(value, "%02hhx", &rtp->remote_fingerprint[pos++]);
2479 }
2480}
2481
2482/*! \pre instance is locked */
2483static enum ast_rtp_dtls_hash ast_rtp_dtls_get_fingerprint_hash(struct ast_rtp_instance *instance)
2484{
2485 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2486
2487 return rtp->local_hash;
2488}
2489
2490/*! \pre instance is locked */
2491static const char *ast_rtp_dtls_get_fingerprint(struct ast_rtp_instance *instance)
2492{
2493 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2494
2495 return rtp->local_fingerprint;
2496}
2497
2498/* DTLS RTP Engine interface declaration */
2499static struct ast_rtp_engine_dtls ast_rtp_dtls = {
2500 .set_configuration = ast_rtp_dtls_set_configuration,
2501 .active = ast_rtp_dtls_active,
2502 .stop = ast_rtp_dtls_stop,
2503 .reset = ast_rtp_dtls_reset,
2504 .get_connection = ast_rtp_dtls_get_connection,
2505 .get_setup = ast_rtp_dtls_get_setup,
2506 .set_setup = ast_rtp_dtls_set_setup,
2507 .set_fingerprint = ast_rtp_dtls_set_fingerprint,
2508 .get_fingerprint_hash = ast_rtp_dtls_get_fingerprint_hash,
2509 .get_fingerprint = ast_rtp_dtls_get_fingerprint,
2510};
2511
2512#endif
2513
2514#ifdef TEST_FRAMEWORK
2515static size_t get_recv_buffer_count(struct ast_rtp_instance *instance)
2516{
2517 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2518
2519 if (rtp && rtp->recv_buffer) {
2521 }
2522
2523 return 0;
2524}
2525
2526static size_t get_recv_buffer_max(struct ast_rtp_instance *instance)
2527{
2528 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2529
2530 if (rtp && rtp->recv_buffer) {
2531 return ast_data_buffer_max(rtp->recv_buffer);
2532 }
2533
2534 return 0;
2535}
2536
2537static size_t get_send_buffer_count(struct ast_rtp_instance *instance)
2538{
2539 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2540
2541 if (rtp && rtp->send_buffer) {
2543 }
2544
2545 return 0;
2546}
2547
2548static void set_rtp_rtcp_schedid(struct ast_rtp_instance *instance, int id)
2549{
2550 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2551
2552 if (rtp && rtp->rtcp) {
2553 rtp->rtcp->schedid = id;
2554 }
2555}
2556
2557static struct ast_rtp_engine_test ast_rtp_test = {
2558 .packets_to_drop = 0,
2559 .send_report = 0,
2560 .sdes_received = 0,
2561 .recv_buffer_count = get_recv_buffer_count,
2562 .recv_buffer_max = get_recv_buffer_max,
2563 .send_buffer_count = get_send_buffer_count,
2564 .set_schedid = set_rtp_rtcp_schedid,
2565};
2566#endif
2567
2568/* RTP Engine Declaration */
2570 .name = "asterisk",
2571 .new = ast_rtp_new,
2572 .destroy = ast_rtp_destroy,
2573 .dtmf_begin = ast_rtp_dtmf_begin,
2574 .dtmf_end = ast_rtp_dtmf_end,
2575 .dtmf_end_with_duration = ast_rtp_dtmf_end_with_duration,
2576 .dtmf_mode_set = ast_rtp_dtmf_mode_set,
2577 .dtmf_mode_get = ast_rtp_dtmf_mode_get,
2578 .update_source = ast_rtp_update_source,
2579 .change_source = ast_rtp_change_source,
2580 .write = ast_rtp_write,
2581 .read = ast_rtp_read,
2582 .prop_set = ast_rtp_prop_set,
2583 .fd = ast_rtp_fd,
2584 .remote_address_set = ast_rtp_remote_address_set,
2585 .red_init = rtp_red_init,
2586 .red_buffer = rtp_red_buffer,
2587 .local_bridge = ast_rtp_local_bridge,
2588 .get_stat = ast_rtp_get_stat,
2589 .dtmf_compatible = ast_rtp_dtmf_compatible,
2590 .stun_request = ast_rtp_stun_request,
2591 .stop = ast_rtp_stop,
2592 .qos = ast_rtp_qos_set,
2593 .sendcng = ast_rtp_sendcng,
2594#ifdef HAVE_PJPROJECT
2595 .ice = &ast_rtp_ice,
2596#endif
2597#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2598 .dtls = &ast_rtp_dtls,
2599 .activate = ast_rtp_activate,
2600#endif
2601 .ssrc_get = ast_rtp_get_ssrc,
2602 .cname_get = ast_rtp_get_cname,
2603 .set_remote_ssrc = ast_rtp_set_remote_ssrc,
2604 .set_stream_num = ast_rtp_set_stream_num,
2605 .extension_enable = ast_rtp_extension_enable,
2606 .bundle = ast_rtp_bundle,
2607#ifdef TEST_FRAMEWORK
2608 .test = &ast_rtp_test,
2609#endif
2610};
2611
2612#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2613/*! \pre instance is locked */
2614static void dtls_perform_handshake(struct ast_rtp_instance *instance, struct dtls_details *dtls, int rtcp)
2615{
2616 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2617
2618 ast_debug_dtls(3, "(%p) DTLS perform handshake - ssl = %p, setup = %d\n",
2619 rtp, dtls->ssl, dtls->dtls_setup);
2620
2621 /* If we are not acting as a client connecting to the remote side then
2622 * don't start the handshake as it will accomplish nothing and would conflict
2623 * with the handshake we receive from the remote side.
2624 */
2625 if (!dtls->ssl || (dtls->dtls_setup != AST_RTP_DTLS_SETUP_ACTIVE)) {
2626 return;
2627 }
2628
2629 SSL_do_handshake(dtls->ssl);
2630
2631 /*
2632 * A race condition is prevented between this function and __rtp_recvfrom()
2633 * because both functions have to get the instance lock before they can do
2634 * anything. Without holding the instance lock, this function could start
2635 * the SSL handshake above in one thread and the __rtp_recvfrom() function
2636 * called by the channel thread could read the response and stop the timeout
2637 * timer before we have a chance to even start it.
2638 */
2639 dtls_srtp_start_timeout_timer(instance, rtp, rtcp);
2640}
2641#endif
2642
2643#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2644static void dtls_perform_setup(struct dtls_details *dtls)
2645{
2646 if (!dtls->ssl || !SSL_is_init_finished(dtls->ssl)) {
2647 return;
2648 }
2649
2650 SSL_clear(dtls->ssl);
2651 if (dtls->dtls_setup == AST_RTP_DTLS_SETUP_PASSIVE) {
2652 SSL_set_accept_state(dtls->ssl);
2653 } else {
2654 SSL_set_connect_state(dtls->ssl);
2655 }
2656 dtls->connection = AST_RTP_DTLS_CONNECTION_NEW;
2657
2658 ast_debug_dtls(3, "DTLS perform setup - connection reset\n");
2659}
2660#endif
2661
2662#ifdef HAVE_PJPROJECT
2663static void rtp_learning_start(struct ast_rtp *rtp);
2664
2665/* Handles start of media during ICE negotiation or completion */
2666static void ast_rtp_ice_start_media(pj_ice_sess *ice, pj_status_t status)
2667{
2668 struct ast_rtp_instance *instance = ice->user_data;
2669 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2670
2671 ao2_lock(instance);
2672
2673 if (status == PJ_SUCCESS) {
2674 struct ast_sockaddr remote_address;
2675
2676 ast_sockaddr_setnull(&remote_address);
2677 update_address_with_ice_candidate(ice, AST_RTP_ICE_COMPONENT_RTP, &remote_address);
2678 if (!ast_sockaddr_isnull(&remote_address)) {
2679 /* Symmetric RTP must be disabled for the remote address to not get overwritten */
2681
2682 ast_rtp_instance_set_remote_address(instance, &remote_address);
2683 }
2684
2685 if (rtp->rtcp) {
2686 update_address_with_ice_candidate(ice, AST_RTP_ICE_COMPONENT_RTCP, &rtp->rtcp->them);
2687 }
2688 }
2689
2690#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2691 /* If we've already started media, no need to do all of this again */
2692 if (rtp->ice_media_started) {
2693 ao2_unlock(instance);
2694 return;
2695 }
2696
2698 "(%p) ICE starting media - perform DTLS - (%p)\n", instance, rtp);
2699
2700 /*
2701 * Seemingly no reason to call dtls_perform_setup here. Currently we'll do a full
2702 * protocol level renegotiation if things do change. And if bundled is being used
2703 * then ICE is reused when a stream is added.
2704 *
2705 * Note, if for some reason in the future dtls_perform_setup does need to done here
2706 * be aware that creates a race condition between the call here (on ice completion)
2707 * and potential DTLS handshaking when receiving RTP. What happens is the ssl object
2708 * can get cleared (SSL_clear) during that handshaking process (DTLS init). If that
2709 * happens then Asterisk won't complete DTLS initialization. RTP packets are still
2710 * sent/received but won't be encrypted/decrypted.
2711 */
2712 dtls_perform_handshake(instance, &rtp->dtls, 0);
2713
2714 if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
2715 dtls_perform_handshake(instance, &rtp->rtcp->dtls, 1);
2716 }
2717#endif
2718
2719 rtp->ice_media_started = 1;
2720
2721 if (!strictrtp) {
2722 ao2_unlock(instance);
2723 return;
2724 }
2725
2726 ast_verb(4, "%p -- Strict RTP learning after ICE completion\n", rtp);
2727 rtp_learning_start(rtp);
2728 ao2_unlock(instance);
2729}
2730
2731#ifdef HAVE_PJPROJECT_ON_VALID_ICE_PAIR_CALLBACK
2732/* PJPROJECT ICE optional callback */
2733static void ast_rtp_on_valid_pair(pj_ice_sess *ice)
2734{
2735 ast_debug_ice(2, "(%p) ICE valid pair, start media\n", ice->user_data);
2736 ast_rtp_ice_start_media(ice, PJ_SUCCESS);
2737}
2738#endif
2739
2740/* PJPROJECT ICE callback */
2741static void ast_rtp_on_ice_complete(pj_ice_sess *ice, pj_status_t status)
2742{
2743 ast_debug_ice(2, "(%p) ICE complete, start media\n", ice->user_data);
2744 ast_rtp_ice_start_media(ice, status);
2745}
2746
2747/* PJPROJECT ICE callback */
2748static void ast_rtp_on_ice_rx_data(pj_ice_sess *ice, unsigned comp_id, unsigned transport_id, void *pkt, pj_size_t size, const pj_sockaddr_t *src_addr, unsigned src_addr_len)
2749{
2750 struct ast_rtp_instance *instance = ice->user_data;
2751 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2752
2753 /* Instead of handling the packet here (which really doesn't work with our architecture) we set a bit to indicate that it should be handled after pj_ice_sess_on_rx_pkt
2754 * returns */
2755 if (transport_id == TRANSPORT_SOCKET_RTP || transport_id == TRANSPORT_SOCKET_RTCP) {
2756 rtp->passthrough = 1;
2757 } else if (transport_id == TRANSPORT_TURN_RTP) {
2758 rtp->rtp_passthrough = 1;
2759 } else if (transport_id == TRANSPORT_TURN_RTCP) {
2760 rtp->rtcp_passthrough = 1;
2761 }
2762}
2763
2764/* PJPROJECT ICE callback */
2765static pj_status_t ast_rtp_on_ice_tx_pkt(pj_ice_sess *ice, unsigned comp_id, unsigned transport_id, const void *pkt, pj_size_t size, const pj_sockaddr_t *dst_addr, unsigned dst_addr_len)
2766{
2767 struct ast_rtp_instance *instance = ice->user_data;
2768 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2769 pj_status_t status = PJ_EINVALIDOP;
2770 pj_ssize_t _size = (pj_ssize_t)size;
2771
2772 if (transport_id == TRANSPORT_SOCKET_RTP) {
2773 /* Traffic is destined to go right out the RTP socket we already have */
2774 status = pj_sock_sendto(rtp->s, pkt, &_size, 0, dst_addr, dst_addr_len);
2775 /* sendto on a connectionless socket should send all the data, or none at all */
2776 ast_assert(_size == size || status != PJ_SUCCESS);
2777 } else if (transport_id == TRANSPORT_SOCKET_RTCP) {
2778 /* Traffic is destined to go right out the RTCP socket we already have */
2779 if (rtp->rtcp) {
2780 status = pj_sock_sendto(rtp->rtcp->s, pkt, &_size, 0, dst_addr, dst_addr_len);
2781 /* sendto on a connectionless socket should send all the data, or none at all */
2782 ast_assert(_size == size || status != PJ_SUCCESS);
2783 } else {
2784 status = PJ_SUCCESS;
2785 }
2786 } else if (transport_id == TRANSPORT_TURN_RTP) {
2787 /* Traffic is going through the RTP TURN relay */
2788 if (rtp->turn_rtp) {
2789 status = pj_turn_sock_sendto(rtp->turn_rtp, pkt, size, dst_addr, dst_addr_len);
2790 }
2791 } else if (transport_id == TRANSPORT_TURN_RTCP) {
2792 /* Traffic is going through the RTCP TURN relay */
2793 if (rtp->turn_rtcp) {
2794 status = pj_turn_sock_sendto(rtp->turn_rtcp, pkt, size, dst_addr, dst_addr_len);
2795 }
2796 }
2797
2798 return status;
2799}
2800
2801/* ICE Session interface declaration */
2802static pj_ice_sess_cb ast_rtp_ice_sess_cb = {
2803#ifdef HAVE_PJPROJECT_ON_VALID_ICE_PAIR_CALLBACK
2804 .on_valid_pair = ast_rtp_on_valid_pair,
2805#endif
2806 .on_ice_complete = ast_rtp_on_ice_complete,
2807 .on_rx_data = ast_rtp_on_ice_rx_data,
2808 .on_tx_pkt = ast_rtp_on_ice_tx_pkt,
2809};
2810
2811/*! \brief Worker thread for timerheap */
2812static int timer_worker_thread(void *data)
2813{
2814 pj_ioqueue_t *ioqueue;
2815
2816 if (pj_ioqueue_create(pool, 1, &ioqueue) != PJ_SUCCESS) {
2817 return -1;
2818 }
2819
2820 while (!timer_terminate) {
2821 const pj_time_val delay = {0, 10};
2822
2823 pj_timer_heap_poll(timer_heap, NULL);
2824 pj_ioqueue_poll(ioqueue, &delay);
2825 }
2826
2827 return 0;
2828}
2829#endif
2830
2831static inline int rtp_debug_test_addr(struct ast_sockaddr *addr)
2832{
2834 return 0;
2835 }
2837 if (rtpdebugport) {
2838 return (ast_sockaddr_cmp(&rtpdebugaddr, addr) == 0); /* look for RTP packets from IP+Port */
2839 } else {
2840 return (ast_sockaddr_cmp_addr(&rtpdebugaddr, addr) == 0); /* only look for RTP packets from IP */
2841 }
2842 }
2843
2844 return 1;
2845}
2846
2847static inline int rtcp_debug_test_addr(struct ast_sockaddr *addr)
2848{
2850 return 0;
2851 }
2853 if (rtcpdebugport) {
2854 return (ast_sockaddr_cmp(&rtcpdebugaddr, addr) == 0); /* look for RTCP packets from IP+Port */
2855 } else {
2856 return (ast_sockaddr_cmp_addr(&rtcpdebugaddr, addr) == 0); /* only look for RTCP packets from IP */
2857 }
2858 }
2859
2860 return 1;
2861}
2862
2863#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
2864/*!
2865 * \brief Handles DTLS timer expiration
2866 *
2867 * \param instance
2868 * \param timeout
2869 * \param rtcp
2870 *
2871 * If DTLSv1_get_timeout() returns 0, it's an error or no timeout was set.
2872 * We need to unref instance and stop the timer in this case. Otherwise,
2873 * new timeout may be a number of milliseconds or 0. If it's 0, OpenSSL
2874 * is telling us to call DTLSv1_handle_timeout() immediately so we'll set
2875 * timeout to 1ms so we get rescheduled almost immediately.
2876 *
2877 * \retval 0 - success
2878 * \retval -1 - failure
2879 */
2880static int dtls_srtp_handle_timeout(struct ast_rtp_instance *instance, int *timeout, int rtcp)
2881{
2882 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
2883 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
2884 struct timeval dtls_timeout;
2885 int res = 0;
2886
2887 res = DTLSv1_handle_timeout(dtls->ssl);
2888 ast_debug_dtls(3, "(%p) DTLS srtp - handle timeout - rtcp=%d result: %d\n", instance, rtcp, res);
2889
2890 /* If a timeout can't be retrieved then this recurring scheduled item must stop */
2891 res = DTLSv1_get_timeout(dtls->ssl, &dtls_timeout);
2892 if (!res) {
2893 /* Make sure we don't try to stop the timer later if it's already been stopped */
2894 dtls->timeout_timer = -1;
2895 ao2_ref(instance, -1);
2896 *timeout = 0;
2897 ast_debug_dtls(3, "(%p) DTLS srtp - handle timeout - rtcp=%d get timeout failure\n", instance, rtcp);
2898 return -1;
2899 }
2900 *timeout = dtls_timeout.tv_sec * 1000 + dtls_timeout.tv_usec / 1000;
2901 if (*timeout == 0) {
2902 /*
2903 * If DTLSv1_get_timeout() succeeded with a timeout of 0, OpenSSL
2904 * is telling us to call DTLSv1_handle_timeout() again now HOWEVER...
2905 * Do NOT be tempted to call DTLSv1_handle_timeout() and
2906 * DTLSv1_get_timeout() in a loop while the timeout is 0. There is only
2907 * 1 thread running the scheduler for all PJSIP related RTP instances
2908 * so we don't want to delay here any more than necessary. It's also
2909 * possible that an OpenSSL bug or change in behavior could cause
2910 * DTLSv1_get_timeout() to return 0 forever. If that happens, we'll
2911 * be stuck here and no other RTP instances will get serviced.
2912 * This RTP instance is also locked while this callback runs so we
2913 * don't want to delay other threads that may need to lock this
2914 * RTP instance for their own purpose.
2915 *
2916 * Just set the timeout to 1ms and let the scheduler reschedule us
2917 * as quickly as possible.
2918 */
2919 *timeout = 1;
2920 }
2921 ast_debug_dtls(3, "(%p) DTLS srtp - handle timeout - rtcp=%d timeout=%d\n", instance, rtcp, *timeout);
2922
2923 return 0;
2924}
2925
2926/* Scheduler callback */
2927static int dtls_srtp_handle_rtp_timeout(const void *data)
2928{
2929 struct ast_rtp_instance *instance = (struct ast_rtp_instance *)data;
2930 int timeout = 0;
2931 int res = 0;
2932
2933 ao2_lock(instance);
2934 res = dtls_srtp_handle_timeout(instance, &timeout, 0);
2935 ao2_unlock(instance);
2936 if (res < 0) {
2937 /* Tells the scheduler to stop rescheduling */
2938 return 0;
2939 }
2940
2941 /* Reschedule based on the timeout value */
2942 return timeout;
2943}
2944
2945/* Scheduler callback */
2946static int dtls_srtp_handle_rtcp_timeout(const void *data)
2947{
2948 struct ast_rtp_instance *instance = (struct ast_rtp_instance *)data;
2949 int timeout = 0;
2950 int res = 0;
2951
2952 ao2_lock(instance);
2953 res = dtls_srtp_handle_timeout(instance, &timeout, 1);
2954 ao2_unlock(instance);
2955 if (res < 0) {
2956 /* Tells the scheduler to stop rescheduling */
2957 return 0;
2958 }
2959
2960 /* Reschedule based on the timeout value */
2961 return timeout;
2962}
2963
2964static void dtls_srtp_start_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp)
2965{
2966 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
2967 ast_sched_cb cb = !rtcp ? dtls_srtp_handle_rtp_timeout : dtls_srtp_handle_rtcp_timeout;
2968 struct timeval dtls_timeout;
2969 int res = 0;
2970 int timeout = 0;
2971
2972 ast_assert(dtls->timeout_timer == -1);
2973
2974 res = DTLSv1_get_timeout(dtls->ssl, &dtls_timeout);
2975 if (res == 0) {
2976 ast_debug_dtls(3, "(%p) DTLS srtp - DTLSv1_get_timeout return an error or there was no timeout set for %s\n",
2977 instance, rtcp ? "RTCP" : "RTP");
2978 return;
2979 }
2980
2981 timeout = dtls_timeout.tv_sec * 1000 + dtls_timeout.tv_usec / 1000;
2982
2983 ao2_ref(instance, +1);
2984 /*
2985 * We want the timer to fire again based on calling DTLSv1_get_timeout()
2986 * inside the callback, not at a fixed interval.
2987 */
2988 if ((dtls->timeout_timer = ast_sched_add_variable(rtp->sched, timeout, cb, instance, 1)) < 0) {
2989 ao2_ref(instance, -1);
2990 ast_log(LOG_WARNING, "Scheduling '%s' DTLS retransmission for RTP instance [%p] failed.\n",
2991 !rtcp ? "RTP" : "RTCP", instance);
2992 } else {
2993 ast_debug_dtls(3, "(%p) DTLS srtp - scheduled timeout timer for '%d' %s\n",
2994 instance, timeout, rtcp ? "RTCP" : "RTP");
2995 }
2996}
2997
2998/*! \pre Must not be called with the instance locked. */
2999static void dtls_srtp_stop_timeout_timer(struct ast_rtp_instance *instance, struct ast_rtp *rtp, int rtcp)
3000{
3001 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
3002
3003 AST_SCHED_DEL_UNREF(rtp->sched, dtls->timeout_timer, ao2_ref(instance, -1));
3004 ast_debug_dtls(3, "(%p) DTLS srtp - stopped timeout timer'\n", instance);
3005}
3006
3007/* Scheduler callback */
3008static int dtls_srtp_renegotiate(const void *data)
3009{
3010 struct ast_rtp_instance *instance = (struct ast_rtp_instance *)data;
3011 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3012
3013 ao2_lock(instance);
3014
3015 ast_debug_dtls(3, "(%p) DTLS srtp - renegotiate'\n", instance);
3016 SSL_renegotiate(rtp->dtls.ssl);
3017 SSL_do_handshake(rtp->dtls.ssl);
3018
3019 if (rtp->rtcp && rtp->rtcp->dtls.ssl && rtp->rtcp->dtls.ssl != rtp->dtls.ssl) {
3020 SSL_renegotiate(rtp->rtcp->dtls.ssl);
3021 SSL_do_handshake(rtp->rtcp->dtls.ssl);
3022 }
3023
3024 rtp->rekeyid = -1;
3025
3026 ao2_unlock(instance);
3027 ao2_ref(instance, -1);
3028
3029 return 0;
3030}
3031
3032static int dtls_srtp_add_local_ssrc(struct ast_rtp *rtp, struct ast_rtp_instance *instance, int rtcp, unsigned int ssrc, int set_remote_policy)
3033{
3034 unsigned char material[SRTP_MASTER_LEN * 2];
3035 unsigned char *local_key, *local_salt, *remote_key, *remote_salt;
3036 struct ast_srtp_policy *local_policy, *remote_policy = NULL;
3037 int res = -1;
3038 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
3039
3040 ast_debug_dtls(3, "(%p) DTLS srtp - add local ssrc - rtcp=%d, set_remote_policy=%d'\n",
3041 instance, rtcp, set_remote_policy);
3042
3043 /* Produce key information and set up SRTP */
3044 if (!SSL_export_keying_material(dtls->ssl, material, SRTP_MASTER_LEN * 2, "EXTRACTOR-dtls_srtp", 19, NULL, 0, 0)) {
3045 ast_log(LOG_WARNING, "Unable to extract SRTP keying material from DTLS-SRTP negotiation on RTP instance '%p'\n",
3046 instance);
3047 return -1;
3048 }
3049
3050 /* Whether we are acting as a server or client determines where the keys/salts are */
3051 if (rtp->dtls.dtls_setup == AST_RTP_DTLS_SETUP_ACTIVE) {
3052 local_key = material;
3053 remote_key = local_key + SRTP_MASTER_KEY_LEN;
3054 local_salt = remote_key + SRTP_MASTER_KEY_LEN;
3055 remote_salt = local_salt + SRTP_MASTER_SALT_LEN;
3056 } else {
3057 remote_key = material;
3058 local_key = remote_key + SRTP_MASTER_KEY_LEN;
3059 remote_salt = local_key + SRTP_MASTER_KEY_LEN;
3060 local_salt = remote_salt + SRTP_MASTER_SALT_LEN;
3061 }
3062
3063 if (!(local_policy = res_srtp_policy->alloc())) {
3064 return -1;
3065 }
3066
3067 if (res_srtp_policy->set_master_key(local_policy, local_key, SRTP_MASTER_KEY_LEN, local_salt, SRTP_MASTER_SALT_LEN) < 0) {
3068 ast_log(LOG_WARNING, "Could not set key/salt information on local policy of '%p' when setting up DTLS-SRTP\n", rtp);
3069 goto error;
3070 }
3071
3072 if (res_srtp_policy->set_suite(local_policy, rtp->suite)) {
3073 ast_log(LOG_WARNING, "Could not set suite to '%u' on local policy of '%p' when setting up DTLS-SRTP\n", rtp->suite, rtp);
3074 goto error;
3075 }
3076
3077 res_srtp_policy->set_ssrc(local_policy, ssrc, 0);
3078
3079 if (set_remote_policy) {
3080 if (!(remote_policy = res_srtp_policy->alloc())) {
3081 goto error;
3082 }
3083
3084 if (res_srtp_policy->set_master_key(remote_policy, remote_key, SRTP_MASTER_KEY_LEN, remote_salt, SRTP_MASTER_SALT_LEN) < 0) {
3085 ast_log(LOG_WARNING, "Could not set key/salt information on remote policy of '%p' when setting up DTLS-SRTP\n", rtp);
3086 goto error;
3087 }
3088
3089 if (res_srtp_policy->set_suite(remote_policy, rtp->suite)) {
3090 ast_log(LOG_WARNING, "Could not set suite to '%u' on remote policy of '%p' when setting up DTLS-SRTP\n", rtp->suite, rtp);
3091 goto error;
3092 }
3093
3094 res_srtp_policy->set_ssrc(remote_policy, 0, 1);
3095 }
3096
3097 if (ast_rtp_instance_add_srtp_policy(instance, remote_policy, local_policy, rtcp)) {
3098 ast_log(LOG_WARNING, "Could not set policies when setting up DTLS-SRTP on '%p'\n", rtp);
3099 goto error;
3100 }
3101
3102 res = 0;
3103
3104error:
3105 /* policy->destroy() called even on success to release local reference to these resources */
3106 res_srtp_policy->destroy(local_policy);
3107
3108 if (remote_policy) {
3109 res_srtp_policy->destroy(remote_policy);
3110 }
3111
3112 return res;
3113}
3114
3115static int dtls_srtp_setup(struct ast_rtp *rtp, struct ast_rtp_instance *instance, int rtcp)
3116{
3117 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
3118 int index;
3119
3120 ast_debug_dtls(3, "(%p) DTLS setup SRTP rtp=%p'\n", instance, rtp);
3121
3122 /* If a fingerprint is present in the SDP make sure that the peer certificate matches it */
3123 if (rtp->dtls_verify & AST_RTP_DTLS_VERIFY_FINGERPRINT) {
3124 X509 *certificate;
3125
3126 if (!(certificate = SSL_get_peer_certificate(dtls->ssl))) {
3127 ast_log(LOG_WARNING, "No certificate was provided by the peer on RTP instance '%p'\n", instance);
3128 return -1;
3129 }
3130
3131 /* If a fingerprint is present in the SDP make sure that the peer certificate matches it */
3132 if (rtp->remote_fingerprint[0]) {
3133 const EVP_MD *type;
3134 unsigned char fingerprint[EVP_MAX_MD_SIZE];
3135 unsigned int size;
3136
3137 if (rtp->remote_hash == AST_RTP_DTLS_HASH_SHA1) {
3138 type = EVP_sha1();
3139 } else if (rtp->remote_hash == AST_RTP_DTLS_HASH_SHA256) {
3140 type = EVP_sha256();
3141 } else {
3142 ast_log(LOG_WARNING, "Unsupported fingerprint hash type on RTP instance '%p'\n", instance);
3143 return -1;
3144 }
3145
3146 if (!X509_digest(certificate, type, fingerprint, &size) ||
3147 !size ||
3148 memcmp(fingerprint, rtp->remote_fingerprint, size)) {
3149 X509_free(certificate);
3150 ast_log(LOG_WARNING, "Fingerprint provided by remote party does not match that of peer certificate on RTP instance '%p'\n",
3151 instance);
3152 return -1;
3153 }
3154 }
3155
3156 X509_free(certificate);
3157 }
3158
3159 if (dtls_srtp_add_local_ssrc(rtp, instance, rtcp, ast_rtp_instance_get_ssrc(instance), 1)) {
3160 ast_log(LOG_ERROR, "Failed to add local source '%p'\n", rtp);
3161 return -1;
3162 }
3163
3164 for (index = 0; index < AST_VECTOR_SIZE(&rtp->ssrc_mapping); ++index) {
3165 struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&rtp->ssrc_mapping, index);
3166
3167 if (dtls_srtp_add_local_ssrc(rtp, instance, rtcp, ast_rtp_instance_get_ssrc(mapping->instance), 0)) {
3168 return -1;
3169 }
3170 }
3171
3172 if (rtp->rekey) {
3173 ao2_ref(instance, +1);
3174 if ((rtp->rekeyid = ast_sched_add(rtp->sched, rtp->rekey * 1000, dtls_srtp_renegotiate, instance)) < 0) {
3175 ao2_ref(instance, -1);
3176 return -1;
3177 }
3178 }
3179
3180 return 0;
3181}
3182#endif
3183
3184/*! \brief Helper function to compare an elem in a vector by value */
3185static int compare_by_value(int elem, int value)
3186{
3187 return elem - value;
3188}
3189
3190/*! \brief Helper function to find an elem in a vector by value */
3191static int find_by_value(int elem, int value)
3192{
3193 return elem == value;
3194}
3195
3196static int rtcp_mux(struct ast_rtp *rtp, const unsigned char *packet)
3197{
3198 uint8_t version;
3199 uint8_t pt;
3200 uint8_t m;
3201
3202 if (!rtp->rtcp || rtp->rtcp->type != AST_RTP_INSTANCE_RTCP_MUX) {
3203 return 0;
3204 }
3205
3206 version = (packet[0] & 0XC0) >> 6;
3207 if (version == 0) {
3208 /* version 0 indicates this is a STUN packet and shouldn't
3209 * be interpreted as a possible RTCP packet
3210 */
3211 return 0;
3212 }
3213
3214 /* The second octet of a packet will be one of the following:
3215 * For RTP: The marker bit (1 bit) and the RTP payload type (7 bits)
3216 * For RTCP: The payload type (8)
3217 *
3218 * RTP has a forbidden range of payload types (64-95) since these
3219 * will conflict with RTCP payload numbers if the marker bit is set.
3220 */
3221 m = packet[1] & 0x80;
3222 pt = packet[1] & 0x7F;
3223 if (m && pt >= 64 && pt <= 95) {
3224 return 1;
3225 }
3226 return 0;
3227}
3228
3229/*! \pre instance is locked */
3230static int __rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp)
3231{
3232 int len;
3233 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3234#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
3235 char *in = buf;
3236#endif
3237#ifdef HAVE_PJPROJECT
3238 struct ast_sockaddr *loop = rtcp ? &rtp->rtcp_loop : &rtp->rtp_loop;
3239#endif
3240#ifdef TEST_FRAMEWORK
3241 struct ast_rtp_engine_test *test = ast_rtp_instance_get_test(instance);
3242#endif
3243
3244 if ((len = ast_recvfrom(rtcp ? rtp->rtcp->s : rtp->s, buf, size, flags, sa)) < 0) {
3245 return len;
3246 }
3247
3248#ifdef TEST_FRAMEWORK
3249 if (test && test->packets_to_drop > 0) {
3250 test->packets_to_drop--;
3251 return 0;
3252 }
3253#endif
3254
3255#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
3256 /* If this is an SSL packet pass it to OpenSSL for processing. RFC section for first byte value:
3257 * https://tools.ietf.org/html/rfc5764#section-5.1.2 */
3258 if ((*in >= 20) && (*in <= 63)) {
3259 struct dtls_details *dtls = !rtcp ? &rtp->dtls : &rtp->rtcp->dtls;
3260 int res = 0;
3261
3262 /* If no SSL session actually exists terminate things */
3263 if (!dtls->ssl) {
3264 ast_log(LOG_ERROR, "Received SSL traffic on RTP instance '%p' without an SSL session\n",
3265 instance);
3266 return -1;
3267 }
3268
3269 ast_debug_dtls(3, "(%p) DTLS - __rtp_recvfrom rtp=%p - Got SSL packet '%d'\n", instance, rtp, *in);
3270
3271 /*
3272 * If ICE is in use, we can prevent a possible DOS attack
3273 * by allowing DTLS protocol messages (client hello, etc)
3274 * only from sources that are in the active remote
3275 * candidates list.
3276 */
3277
3278#ifdef HAVE_PJPROJECT
3279 if (rtp->ice) {
3280 int pass_src_check = 0;
3281 int ix = 0;
3282
3283 /*
3284 * You'd think that this check would cause a "deadlock"
3285 * because ast_rtp_ice_start_media calls dtls_perform_handshake
3286 * before it sets ice_media_started = 1 so how can we do a
3287 * handshake if we're dropping packets before we send them
3288 * to openssl. Fortunately, dtls_perform_handshake just sets
3289 * up openssl to do the handshake and doesn't actually perform it
3290 * itself and the locking prevents __rtp_recvfrom from
3291 * running before the ice_media_started flag is set. So only
3292 * unexpected DTLS packets can get dropped here.
3293 */
3294 if (!rtp->ice_media_started) {
3295 ast_log(LOG_WARNING, "%s: DTLS packet from %s dropped. ICE not completed yet.\n",
3298 return 0;
3299 }
3300
3301 /*
3302 * If we got this far, then there have to be candidates.
3303 * We have to use pjproject's rcands because they may have
3304 * peer reflexive candidates that our ice_active_remote_candidates
3305 * won't.
3306 */
3307 for (ix = 0; ix < rtp->ice->real_ice->rcand_cnt; ix++) {
3308 pj_ice_sess_cand *rcand = &rtp->ice->real_ice->rcand[ix];
3309 if (ast_sockaddr_pj_sockaddr_cmp(sa, &rcand->addr) == 0) {
3310 pass_src_check = 1;
3311 break;
3312 }
3313 }
3314
3315 if (!pass_src_check) {
3316 ast_log(LOG_WARNING, "%s: DTLS packet from %s dropped. Source not in ICE active candidate list.\n",
3319 return 0;
3320 }
3321 }
3322#endif
3323
3324 /*
3325 * A race condition is prevented between dtls_perform_handshake()
3326 * and this function because both functions have to get the
3327 * instance lock before they can do anything. The
3328 * dtls_perform_handshake() function needs to start the timer
3329 * before we stop it below.
3330 */
3331
3332 /* Before we feed data into OpenSSL ensure that the timeout timer is either stopped or completed */
3333 ao2_unlock(instance);
3334 dtls_srtp_stop_timeout_timer(instance, rtp, rtcp);
3335 ao2_lock(instance);
3336
3337 /* If we don't yet know if we are active or passive and we receive a packet... we are obviously passive */
3338 if (dtls->dtls_setup == AST_RTP_DTLS_SETUP_ACTPASS) {
3339 dtls->dtls_setup = AST_RTP_DTLS_SETUP_PASSIVE;
3340 SSL_set_accept_state(dtls->ssl);
3341 }
3342
3343 BIO_write(dtls->read_bio, buf, len);
3344
3345 len = SSL_read(dtls->ssl, buf, len);
3346
3347 if ((len < 0) && (SSL_get_error(dtls->ssl, len) == SSL_ERROR_SSL)) {
3348 unsigned long error = ERR_get_error();
3349 ast_log(LOG_ERROR, "DTLS failure occurred on RTP instance '%p' due to reason '%s', terminating\n",
3350 instance, ERR_reason_error_string(error));
3351 return -1;
3352 }
3353
3354 if (SSL_is_init_finished(dtls->ssl)) {
3355 /* Any further connections will be existing since this is now established */
3356 dtls->connection = AST_RTP_DTLS_CONNECTION_EXISTING;
3357 /* Use the keying material to set up key/salt information */
3358 if ((res = dtls_srtp_setup(rtp, instance, rtcp))) {
3359 return res;
3360 }
3361 /* Notify that dtls has been established */
3363
3364 ast_debug_dtls(3, "(%p) DTLS - __rtp_recvfrom rtp=%p - established'\n", instance, rtp);
3365 } else {
3366 /* Since we've sent additional traffic start the timeout timer for retransmission */
3367 dtls_srtp_start_timeout_timer(instance, rtp, rtcp);
3368 }
3369
3370 return res;
3371 }
3372#endif
3373
3374#ifdef HAVE_PJPROJECT
3375 if (!ast_sockaddr_isnull(loop) && !ast_sockaddr_cmp(loop, sa)) {
3376 /* ICE traffic will have been handled in the TURN callback, so skip it but update the address
3377 * so it reflects the actual source and not the loopback
3378 */
3379 if (rtcp) {
3380 ast_sockaddr_copy(sa, &rtp->rtcp->them);
3381 } else {
3383 }
3384 } else if (rtp->ice) {
3385 pj_str_t combined = pj_str(ast_sockaddr_stringify(sa));
3386 pj_sockaddr address;
3387 pj_status_t status;
3388 struct ice_wrap *ice;
3389
3390 pj_thread_register_check();
3391
3392 pj_sockaddr_parse(pj_AF_UNSPEC(), 0, &combined, &address);
3393
3394 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
3395 ice = rtp->ice;
3396 ao2_ref(ice, +1);
3397 ao2_unlock(instance);
3398 status = pj_ice_sess_on_rx_pkt(ice->real_ice,
3401 pj_sockaddr_get_len(&address));
3402 ao2_ref(ice, -1);
3403 ao2_lock(instance);
3404 if (status != PJ_SUCCESS) {
3405 char err_buf[100];
3406
3407 pj_strerror(status, err_buf, sizeof(err_buf));
3408 ast_log(LOG_WARNING, "PJ ICE Rx error status code: %d '%s'.\n",
3409 (int)status, err_buf);
3410 return -1;
3411 }
3412 if (!rtp->passthrough) {
3413 /* If a unidirectional ICE negotiation occurs then lock on to the source of the
3414 * ICE traffic and use it as the target. This will occur if the remote side only
3415 * wants to receive media but never send to us.
3416 */
3417 if (!rtp->ice_active_remote_candidates && !rtp->ice_proposed_remote_candidates) {
3418 if (rtcp) {
3419 ast_sockaddr_copy(&rtp->rtcp->them, sa);
3420 } else {
3422 }
3423 }
3424 return 0;
3425 }
3426 rtp->passthrough = 0;
3427 }
3428#endif
3429
3430 return len;
3431}
3432
3433/*! \pre instance is locked */
3434static int rtcp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
3435{
3436 return __rtp_recvfrom(instance, buf, size, flags, sa, 1);
3437}
3438
3439/*! \pre instance is locked */
3440static int rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
3441{
3442 return __rtp_recvfrom(instance, buf, size, flags, sa, 0);
3443}
3444
3445/*! \pre instance is locked */
3446static int __rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp, int *via_ice, int use_srtp)
3447{
3448 int len = size;
3449 void *temp = buf;
3450 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3451 struct ast_rtp_instance *transport = rtp->bundled ? rtp->bundled : instance;
3452 struct ast_rtp *transport_rtp = ast_rtp_instance_get_data(transport);
3453 struct ast_srtp *srtp = ast_rtp_instance_get_srtp(transport, rtcp);
3454 int res;
3455
3456 *via_ice = 0;
3457
3458 if (use_srtp && res_srtp && srtp && res_srtp->protect(srtp, &temp, &len, rtcp) < 0) {
3459 return -1;
3460 }
3461
3462#ifdef HAVE_PJPROJECT
3463 if (transport_rtp->ice) {
3465 pj_status_t status;
3466 struct ice_wrap *ice;
3467
3468 /* If RTCP is sharing the same socket then use the same component */
3469 if (rtcp && rtp->rtcp->s == rtp->s) {
3470 component = AST_RTP_ICE_COMPONENT_RTP;
3471 }
3472
3473 pj_thread_register_check();
3474
3475 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
3476 ice = transport_rtp->ice;
3477 ao2_ref(ice, +1);
3478 if (instance == transport) {
3479 ao2_unlock(instance);
3480 }
3481 status = pj_ice_sess_send_data(ice->real_ice, component, temp, len);
3482 ao2_ref(ice, -1);
3483 if (instance == transport) {
3484 ao2_lock(instance);
3485 }
3486 if (status == PJ_SUCCESS) {
3487 *via_ice = 1;
3488 return len;
3489 }
3490 }
3491#endif
3492
3493 res = ast_sendto(rtcp ? transport_rtp->rtcp->s : transport_rtp->s, temp, len, flags, sa);
3494 if (res > 0) {
3495 ast_rtp_instance_set_last_tx(instance, time(NULL));
3496 }
3497
3498 return res;
3499}
3500
3501/*! \pre instance is locked */
3502static int rtcp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
3503{
3504 return __rtp_sendto(instance, buf, size, flags, sa, 1, ice, 1);
3505}
3506
3507/*! \pre instance is locked */
3508static int rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
3509{
3510 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3511 int hdrlen = 12;
3512 int res;
3513
3514 if ((res = __rtp_sendto(instance, buf, size, flags, sa, 0, ice, 1)) > 0) {
3515 rtp->txcount++;
3516 rtp->txoctetcount += (res - hdrlen);
3517 }
3518
3519 return res;
3520}
3521
3522static unsigned int ast_rtcp_calc_interval(struct ast_rtp *rtp)
3523{
3524 unsigned int interval;
3525 /*! \todo XXX Do a more reasonable calculation on this one
3526 * Look in RFC 3550 Section A.7 for an example*/
3527 interval = rtcpinterval;
3528 return interval;
3529}
3530
3531static void calc_mean_and_standard_deviation(double new_sample, double *mean, double *std_dev, unsigned int *count)
3532{
3533 double delta1;
3534 double delta2;
3535
3536 /* First convert the standard deviation back into a sum of squares. */
3537 double last_sum_of_squares = (*std_dev) * (*std_dev) * (*count ?: 1);
3538
3539 if (++(*count) == 0) {
3540 /* Avoid potential divide by zero on an overflow */
3541 *count = 1;
3542 }
3543
3544 /*
3545 * Below is an implementation of Welford's online algorithm [1] for calculating
3546 * mean and variance in a single pass.
3547 *
3548 * [1] https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
3549 */
3550
3551 delta1 = new_sample - *mean;
3552 *mean += (delta1 / *count);
3553 delta2 = new_sample - *mean;
3554
3555 /* Now calculate the new variance, and subsequent standard deviation */
3556 *std_dev = sqrt((last_sum_of_squares + (delta1 * delta2)) / *count);
3557}
3558
3559static int create_new_socket(const char *type, int af)
3560{
3561 int sock = ast_socket_nonblock(af, SOCK_DGRAM, 0);
3562
3563 if (sock < 0) {
3564 ast_log(LOG_WARNING, "Unable to allocate %s socket: %s\n", type, strerror(errno));
3565 return sock;
3566 }
3567
3568#ifdef SO_NO_CHECK
3569 if (nochecksums) {
3570 setsockopt(sock, SOL_SOCKET, SO_NO_CHECK, &nochecksums, sizeof(nochecksums));
3571 }
3572#endif
3573
3574 return sock;
3575}
3576
3577/*!
3578 * \internal
3579 * \brief Initializes sequence values and probation for learning mode.
3580 * \note This is an adaptation of pjmedia's pjmedia_rtp_seq_init function.
3581 *
3582 * \param info The learning information to track
3583 * \param seq sequence number read from the rtp header to initialize the information with
3584 */
3585static void rtp_learning_seq_init(struct rtp_learning_info *info, uint16_t seq)
3586{
3587 info->max_seq = seq;
3588 info->packets = learning_min_sequential;
3589 memset(&info->received, 0, sizeof(info->received));
3590}
3591
3592/*!
3593 * \internal
3594 * \brief Updates sequence information for learning mode and determines if probation/learning mode should remain in effect.
3595 * \note This function was adapted from pjmedia's pjmedia_rtp_seq_update function.
3596 *
3597 * \param info Structure tracking the learning progress of some address
3598 * \param seq sequence number read from the rtp header
3599 * \retval 0 if probation mode should exit for this address
3600 * \retval non-zero if probation mode should continue
3601 */
3603{
3604 if (seq == (uint16_t) (info->max_seq + 1)) {
3605 /* packet is in sequence */
3606 info->packets--;
3607 } else {
3608 /* Sequence discontinuity; reset */
3609 info->packets = learning_min_sequential - 1;
3610 info->received = ast_tvnow();
3611 }
3612
3613 /* Only check time if strictrtp is set to yes. Otherwise, we only needed to check seqno */
3614 if (strictrtp == STRICT_RTP_YES) {
3615 switch (info->stream_type) {
3618 /*
3619 * Protect against packet floods by checking that we
3620 * received the packet sequence in at least the minimum
3621 * allowed time.
3622 */
3623 if (ast_tvzero(info->received)) {
3624 info->received = ast_tvnow();
3625 } else if (!info->packets
3627 /* Packet flood; reset */
3628 info->packets = learning_min_sequential - 1;
3629 info->received = ast_tvnow();
3630 }
3631 break;
3635 case AST_MEDIA_TYPE_END:
3636 break;
3637 }
3638 }
3639
3640 info->max_seq = seq;
3641
3642 return info->packets;
3643}
3644
3645/*!
3646 * \brief Start the strictrtp learning mode.
3647 *
3648 * \param rtp RTP session description
3649 */
3650static void rtp_learning_start(struct ast_rtp *rtp)
3651{
3653 memset(&rtp->rtp_source_learn.proposed_address, 0,
3654 sizeof(rtp->rtp_source_learn.proposed_address));
3656 rtp_learning_seq_init(&rtp->rtp_source_learn, (uint16_t) rtp->lastrxseqno);
3657}
3658
3659#ifdef HAVE_PJPROJECT
3660static void acl_change_stasis_cb(void *data, struct stasis_subscription *sub, struct stasis_message *message);
3661
3662/*!
3663 * \internal
3664 * \brief Resets and ACL to empty state.
3665 */
3666static void rtp_unload_acl(ast_rwlock_t *lock, struct ast_acl_list **acl)
3667{
3671}
3672
3673/*!
3674 * \internal
3675 * \brief Checks an address against the ICE blacklist
3676 * \note If there is no ice_blacklist list, always returns 0
3677 *
3678 * \param address The address to consider
3679 * \retval 0 if address is not ICE blacklisted
3680 * \retval 1 if address is ICE blacklisted
3681 */
3682static int rtp_address_is_ice_blacklisted(const struct ast_sockaddr *address)
3683{
3684 int result = 0;
3685
3686 ast_rwlock_rdlock(&ice_acl_lock);
3688 ast_rwlock_unlock(&ice_acl_lock);
3689
3690 return result;
3691}
3692
3693/*!
3694 * \internal
3695 * \brief Checks an address against the STUN blacklist
3696 * \since 13.16.0
3697 *
3698 * \note If there is no stun_blacklist list, always returns 0
3699 *
3700 * \param addr The address to consider
3701 *
3702 * \retval 0 if address is not STUN blacklisted
3703 * \retval 1 if address is STUN blacklisted
3704 */
3705static int stun_address_is_blacklisted(const struct ast_sockaddr *addr)
3706{
3707 int result = 0;
3708
3709 ast_rwlock_rdlock(&stun_acl_lock);
3710 result |= ast_apply_acl_nolog(stun_acl, addr) == AST_SENSE_DENY;
3711 ast_rwlock_unlock(&stun_acl_lock);
3712
3713 return result;
3714}
3715
3716/*! \pre instance is locked */
3717static void rtp_add_candidates_to_ice(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_sockaddr *addr, int port, int component,
3718 int transport)
3719{
3720 unsigned int count = 0;
3721 struct ifaddrs *ifa, *ia;
3722 struct ast_sockaddr tmp;
3723 pj_sockaddr pjtmp;
3724 struct ast_ice_host_candidate *candidate;
3725 int af_inet_ok = 0, af_inet6_ok = 0;
3726 struct sockaddr_in stunaddr_copy;
3727
3728 if (ast_sockaddr_is_ipv4(addr)) {
3729 af_inet_ok = 1;
3730 } else if (ast_sockaddr_is_any(addr)) {
3731 af_inet_ok = af_inet6_ok = 1;
3732 } else {
3733 af_inet6_ok = 1;
3734 }
3735
3736 if (getifaddrs(&ifa) < 0) {
3737 /* If we can't get addresses, we can't load ICE candidates */
3738 ast_log(LOG_ERROR, "(%p) ICE Error obtaining list of local addresses: %s\n",
3739 instance, strerror(errno));
3740 } else {
3741 ast_debug_ice(2, "(%p) ICE add system candidates\n", instance);
3742 /* Iterate through the list of addresses obtained from the system,
3743 * until we've iterated through all of them, or accepted
3744 * PJ_ICE_MAX_CAND candidates */
3745 for (ia = ifa; ia && count < PJ_ICE_MAX_CAND; ia = ia->ifa_next) {
3746 /* Interface is either not UP or doesn't have an address assigned,
3747 * eg, a ppp that just completed LCP but no IPCP yet */
3748 if (!ia->ifa_addr || (ia->ifa_flags & IFF_UP) == 0) {
3749 continue;
3750 }
3751
3752 /* Filter out non-IPvX addresses, eg, link-layer */
3753 if (ia->ifa_addr->sa_family != AF_INET && ia->ifa_addr->sa_family != AF_INET6) {
3754 continue;
3755 }
3756
3757 ast_sockaddr_from_sockaddr(&tmp, ia->ifa_addr);
3758
3759 if (ia->ifa_addr->sa_family == AF_INET) {
3760 const struct sockaddr_in *sa_in = (struct sockaddr_in*)ia->ifa_addr;
3761 if (!af_inet_ok) {
3762 continue;
3763 }
3764
3765 /* Skip 127.0.0.0/8 (loopback) */
3766 /* Don't use IFF_LOOPBACK check since one could assign usable
3767 * publics to the loopback */
3768 if ((sa_in->sin_addr.s_addr & htonl(0xFF000000)) == htonl(0x7F000000)) {
3769 continue;
3770 }
3771
3772 /* Skip 0.0.0.0/8 based on RFC1122, and from pjproject */
3773 if ((sa_in->sin_addr.s_addr & htonl(0xFF000000)) == 0) {
3774 continue;
3775 }
3776 } else { /* ia->ifa_addr->sa_family == AF_INET6 */
3777 if (!af_inet6_ok) {
3778 continue;
3779 }
3780
3781 /* Filter ::1 */
3782 if (!ast_sockaddr_cmp_addr(&lo6, &tmp)) {
3783 continue;
3784 }
3785 }
3786
3787 /* Pull in the host candidates from [ice_host_candidates] */
3788 AST_RWLIST_RDLOCK(&host_candidates);
3789 AST_LIST_TRAVERSE(&host_candidates, candidate, next) {
3790 if (!ast_sockaddr_cmp(&candidate->local, &tmp)) {
3791 /* candidate->local matches actual assigned, so check if
3792 * advertised is blacklisted, if not, add it to the
3793 * advertised list. Not that it would make sense to remap
3794 * a local address to a blacklisted address, but honour it
3795 * anyway. */
3796 if (!rtp_address_is_ice_blacklisted(&candidate->advertised)) {
3797 ast_sockaddr_to_pj_sockaddr(&candidate->advertised, &pjtmp);
3798 pj_sockaddr_set_port(&pjtmp, port);
3799 ast_rtp_ice_add_cand(instance, rtp, component, transport,
3800 PJ_ICE_CAND_TYPE_HOST, 65535, &pjtmp, &pjtmp, NULL,
3801 pj_sockaddr_get_len(&pjtmp));
3802 ++count;
3803 }
3804
3805 if (!candidate->include_local) {
3806 /* We don't want to advertise the actual address */
3808 }
3809
3810 break;
3811 }
3812 }
3813 AST_RWLIST_UNLOCK(&host_candidates);
3814
3815 /* we had an entry in [ice_host_candidates] that matched, and
3816 * didn't have include_local_address set. Alternatively, adding
3817 * that match resulted in us going to PJ_ICE_MAX_CAND */
3818 if (ast_sockaddr_isnull(&tmp) || count == PJ_ICE_MAX_CAND) {
3819 continue;
3820 }
3821
3822 if (rtp_address_is_ice_blacklisted(&tmp)) {
3823 continue;
3824 }
3825
3827 pj_sockaddr_set_port(&pjtmp, port);
3828 ast_rtp_ice_add_cand(instance, rtp, component, transport,
3829 PJ_ICE_CAND_TYPE_HOST, 65535, &pjtmp, &pjtmp, NULL,
3830 pj_sockaddr_get_len(&pjtmp));
3831 ++count;
3832 }
3833 freeifaddrs(ifa);
3834 }
3835
3836 ast_rwlock_rdlock(&stunaddr_lock);
3837 memcpy(&stunaddr_copy, &stunaddr, sizeof(stunaddr));
3838 ast_rwlock_unlock(&stunaddr_lock);
3839
3840 /* If configured to use a STUN server to get our external mapped address do so */
3841 if (stunaddr_copy.sin_addr.s_addr && !stun_address_is_blacklisted(addr) &&
3842 (ast_sockaddr_is_ipv4(addr) || ast_sockaddr_is_any(addr)) &&
3843 count < PJ_ICE_MAX_CAND) {
3844 struct sockaddr_in answer;
3845 int rsp;
3846
3848 "(%p) ICE request STUN %s %s candidate\n", instance,
3849 transport == AST_TRANSPORT_UDP ? "UDP" : "TCP",
3850 component == AST_RTP_ICE_COMPONENT_RTP ? "RTP" : "RTCP");
3851
3852 /*
3853 * The instance should not be locked because we can block
3854 * waiting for a STUN respone.
3855 */
3856 ao2_unlock(instance);
3858 ? rtp->rtcp->s : rtp->s, &stunaddr_copy, NULL, &answer);
3859 ao2_lock(instance);
3860 if (!rsp) {
3861 struct ast_rtp_engine_ice_candidate *candidate;
3862 pj_sockaddr ext, base;
3863 pj_str_t mapped = pj_str(ast_strdupa(ast_inet_ntoa(answer.sin_addr)));
3864 int srflx = 1, baseset = 0;
3865 struct ao2_iterator i;
3866
3867 pj_sockaddr_init(pj_AF_INET(), &ext, &mapped, ntohs(answer.sin_port));
3868
3869 /*
3870 * If the returned address is the same as one of our host
3871 * candidates, don't send the srflx. At the same time,
3872 * we need to set the base address (raddr).
3873 */
3874 i = ao2_iterator_init(rtp->ice_local_candidates, 0);
3875 while (srflx && (candidate = ao2_iterator_next(&i))) {
3876 if (!baseset && ast_sockaddr_is_ipv4(&candidate->address)) {
3877 baseset = 1;
3878 ast_sockaddr_to_pj_sockaddr(&candidate->address, &base);
3879 }
3880
3881 if (!pj_sockaddr_cmp(&candidate->address, &ext)) {
3882 srflx = 0;
3883 }
3884
3885 ao2_ref(candidate, -1);
3886 }
3888
3889 if (srflx && baseset) {
3890 pj_sockaddr_set_port(&base, port);
3891 ast_rtp_ice_add_cand(instance, rtp, component, transport,
3892 PJ_ICE_CAND_TYPE_SRFLX, 65535, &ext, &base, &base,
3893 pj_sockaddr_get_len(&ext));
3894 }
3895 }
3896 }
3897
3898 /* If configured to use a TURN relay create a session and allocate */
3899 if (pj_strlen(&turnaddr)) {
3900 ast_rtp_ice_turn_request(instance, component, AST_TRANSPORT_TCP, pj_strbuf(&turnaddr), turnport,
3901 pj_strbuf(&turnusername), pj_strbuf(&turnpassword));
3902 }
3903}
3904#endif
3905
3906/*!
3907 * \internal
3908 * \brief Calculates the elapsed time from issue of the first tx packet in an
3909 * rtp session and a specified time
3910 *
3911 * \param rtp pointer to the rtp struct with the transmitted rtp packet
3912 * \param delivery time of delivery - if NULL or zero value, will be ast_tvnow()
3913 *
3914 * \return time elapsed in milliseconds
3915 */
3916static unsigned int calc_txstamp(struct ast_rtp *rtp, struct timeval *delivery)
3917{
3918 struct timeval t;
3919 long ms;
3920
3921 if (ast_tvzero(rtp->txcore)) {
3922 rtp->txcore = ast_tvnow();
3923 rtp->txcore.tv_usec -= rtp->txcore.tv_usec % 20000;
3924 }
3925
3926 t = (delivery && !ast_tvzero(*delivery)) ? *delivery : ast_tvnow();
3927 if ((ms = ast_tvdiff_ms(t, rtp->txcore)) < 0) {
3928 ms = 0;
3929 }
3930 rtp->txcore = t;
3931
3932 return (unsigned int) ms;
3933}
3934
3935#ifdef HAVE_PJPROJECT
3936/*!
3937 * \internal
3938 * \brief Creates an ICE session. Can be used to replace a destroyed ICE session.
3939 *
3940 * \param instance RTP instance for which the ICE session is being replaced
3941 * \param addr ast_sockaddr to use for adding RTP candidates to the ICE session
3942 * \param port port to use for adding RTP candidates to the ICE session
3943 * \param replace 0 when creating a new session, 1 when replacing a destroyed session
3944 *
3945 * \pre instance is locked
3946 *
3947 * \retval 0 on success
3948 * \retval -1 on failure
3949 */
3950static int ice_create(struct ast_rtp_instance *instance, struct ast_sockaddr *addr,
3951 int port, int replace)
3952{
3953 pj_stun_config stun_config;
3954 pj_str_t ufrag, passwd;
3955 pj_status_t status;
3956 struct ice_wrap *ice_old;
3957 struct ice_wrap *ice;
3958 pj_ice_sess *real_ice = NULL;
3959 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
3960
3961 ao2_cleanup(rtp->ice_local_candidates);
3962 rtp->ice_local_candidates = NULL;
3963
3964 ast_debug_ice(2, "(%p) ICE create%s\n", instance, replace ? " and replace" : "");
3965
3966 ice = ao2_alloc_options(sizeof(*ice), ice_wrap_dtor, AO2_ALLOC_OPT_LOCK_NOLOCK);
3967 if (!ice) {
3968 ast_rtp_ice_stop(instance);
3969 return -1;
3970 }
3971
3972 pj_thread_register_check();
3973
3974 pj_stun_config_init(&stun_config, &cachingpool.factory, 0, NULL, timer_heap);
3975 if (!stun_software_attribute) {
3976 stun_config.software_name = pj_str(NULL);
3977 }
3978
3979 ufrag = pj_str(rtp->local_ufrag);
3980 passwd = pj_str(rtp->local_passwd);
3981
3982 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
3983 ao2_unlock(instance);
3984 /* Create an ICE session for ICE negotiation */
3985 status = pj_ice_sess_create(&stun_config, NULL, PJ_ICE_SESS_ROLE_UNKNOWN,
3986 rtp->ice_num_components, &ast_rtp_ice_sess_cb, &ufrag, &passwd, NULL, &real_ice);
3987 ao2_lock(instance);
3988 if (status == PJ_SUCCESS) {
3989 /* Safely complete linking the ICE session into the instance */
3990 real_ice->user_data = instance;
3991 ice->real_ice = real_ice;
3992 ice_old = rtp->ice;
3993 rtp->ice = ice;
3994 if (ice_old) {
3995 ao2_unlock(instance);
3996 ao2_ref(ice_old, -1);
3997 ao2_lock(instance);
3998 }
3999
4000 /* Add all of the available candidates to the ICE session */
4001 rtp_add_candidates_to_ice(instance, rtp, addr, port, AST_RTP_ICE_COMPONENT_RTP,
4003
4004 /* Only add the RTCP candidates to ICE when replacing the session and if
4005 * the ICE session contains more than just an RTP component. New sessions
4006 * handle this in a separate part of the setup phase */
4007 if (replace && rtp->rtcp && rtp->ice_num_components > 1) {
4008 rtp_add_candidates_to_ice(instance, rtp, &rtp->rtcp->us,
4011 }
4012
4013 return 0;
4014 }
4015
4016 /*
4017 * It is safe to unref this while instance is locked here.
4018 * It was not initialized with a real_ice pointer.
4019 */
4020 ao2_ref(ice, -1);
4021
4022 ast_rtp_ice_stop(instance);
4023 return -1;
4024
4025}
4026#endif
4027
4028static int rtp_allocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
4029{
4030 int x, startplace, i, maxloops;
4031
4033
4034 /* Create a new socket for us to listen on and use */
4035 if ((rtp->s =
4036 create_new_socket("RTP",
4037 ast_sockaddr_is_ipv4(&rtp->bind_address) ? AF_INET :
4038 ast_sockaddr_is_ipv6(&rtp->bind_address) ? AF_INET6 : -1)) < 0) {
4039 ast_log(LOG_WARNING, "Failed to create a new socket for RTP instance '%p'\n", instance);
4040 return -1;
4041 }
4042
4043 /* Now actually find a free RTP port to use */
4044 x = (ast_random() % (rtpend - rtpstart)) + rtpstart;
4045 x = x & ~1;
4046 startplace = x;
4047
4048 /* Protection against infinite loops in the case there is a potential case where the loop is not broken such as an odd
4049 start port sneaking in (even though this condition is checked at load.) */
4050 maxloops = rtpend - rtpstart;
4051 for (i = 0; i <= maxloops; i++) {
4053 /* Try to bind, this will tell us whether the port is available or not */
4054 if (!ast_bind(rtp->s, &rtp->bind_address)) {
4055 ast_debug_rtp(1, "(%p) RTP allocated port %d\n", instance, x);
4057 ast_test_suite_event_notify("RTP_PORT_ALLOCATED", "Port: %d", x);
4058 break;
4059 }
4060
4061 x += 2;
4062 if (x > rtpend) {
4063 x = (rtpstart + 1) & ~1;
4064 }
4065
4066 /* See if we ran out of ports or if the bind actually failed because of something other than the address being in use */
4067 if (x == startplace || (errno != EADDRINUSE && errno != EACCES)) {
4068 ast_log(LOG_ERROR, "Oh dear... we couldn't allocate a port for RTP instance '%p'\n", instance);
4069 close(rtp->s);
4070 rtp->s = -1;
4071 return -1;
4072 }
4073 }
4074
4075#ifdef HAVE_PJPROJECT
4076 /* Initialize synchronization aspects */
4077 ast_cond_init(&rtp->cond, NULL);
4078
4079 generate_random_string(rtp->local_ufrag, sizeof(rtp->local_ufrag));
4080 generate_random_string(rtp->local_passwd, sizeof(rtp->local_passwd));
4081
4082 /* Create an ICE session for ICE negotiation */
4083 if (icesupport) {
4084 rtp->ice_num_components = 2;
4085 ast_debug_ice(2, "(%p) ICE creating session %s (%d)\n", instance,
4087 if (ice_create(instance, &rtp->bind_address, x, 0)) {
4088 ast_log(LOG_NOTICE, "(%p) ICE failed to create session\n", instance);
4089 } else {
4090 rtp->ice_port = x;
4091 ast_sockaddr_copy(&rtp->ice_original_rtp_addr, &rtp->bind_address);
4092 }
4093 }
4094#endif
4095
4096#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
4097 rtp->rekeyid = -1;
4098 rtp->dtls.timeout_timer = -1;
4099#endif
4100
4101 return 0;
4102}
4103
4104static void rtp_deallocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
4105{
4106 int saved_rtp_s = rtp->s;
4107#ifdef HAVE_PJPROJECT
4108 struct timeval wait = ast_tvadd(ast_tvnow(), ast_samp2tv(TURN_STATE_WAIT_TIME, 1000));
4109 struct timespec ts = { .tv_sec = wait.tv_sec, .tv_nsec = wait.tv_usec * 1000, };
4110#endif
4111
4112#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
4113 ast_rtp_dtls_stop(instance);
4114#endif
4115
4116 /* Close our own socket so we no longer get packets */
4117 if (rtp->s > -1) {
4118 close(rtp->s);
4119 rtp->s = -1;
4120 }
4121
4122 /* Destroy RTCP if it was being used */
4123 if (rtp->rtcp && rtp->rtcp->s > -1) {
4124 if (saved_rtp_s != rtp->rtcp->s) {
4125 close(rtp->rtcp->s);
4126 }
4127 rtp->rtcp->s = -1;
4128 }
4129
4130#ifdef HAVE_PJPROJECT
4131 pj_thread_register_check();
4132
4133 /*
4134 * The instance lock is already held.
4135 *
4136 * Destroy the RTP TURN relay if being used
4137 */
4138 if (rtp->turn_rtp) {
4139 rtp->turn_state = PJ_TURN_STATE_NULL;
4140
4141 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
4142 ao2_unlock(instance);
4143 pj_turn_sock_destroy(rtp->turn_rtp);
4144 ao2_lock(instance);
4145 while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
4146 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
4147 }
4148 rtp->turn_rtp = NULL;
4149 }
4150
4151 /* Destroy the RTCP TURN relay if being used */
4152 if (rtp->turn_rtcp) {
4153 rtp->turn_state = PJ_TURN_STATE_NULL;
4154
4155 /* Release the instance lock to avoid deadlock with PJPROJECT group lock */
4156 ao2_unlock(instance);
4157 pj_turn_sock_destroy(rtp->turn_rtcp);
4158 ao2_lock(instance);
4159 while (rtp->turn_state != PJ_TURN_STATE_DESTROYING) {
4160 ast_cond_timedwait(&rtp->cond, ao2_object_get_lockaddr(instance), &ts);
4161 }
4162 rtp->turn_rtcp = NULL;
4163 }
4164
4165 ast_debug_ice(2, "(%p) ICE RTP transport deallocating\n", instance);
4166 /* Destroy any ICE session */
4167 ast_rtp_ice_stop(instance);
4168
4169 /* Destroy any candidates */
4170 if (rtp->ice_local_candidates) {
4171 ao2_ref(rtp->ice_local_candidates, -1);
4172 rtp->ice_local_candidates = NULL;
4173 }
4174
4175 if (rtp->ice_active_remote_candidates) {
4176 ao2_ref(rtp->ice_active_remote_candidates, -1);
4177 rtp->ice_active_remote_candidates = NULL;
4178 }
4179
4180 if (rtp->ice_proposed_remote_candidates) {
4181 ao2_ref(rtp->ice_proposed_remote_candidates, -1);
4182 rtp->ice_proposed_remote_candidates = NULL;
4183 }
4184
4185 if (rtp->ioqueue) {
4186 /*
4187 * We cannot hold the instance lock because we could wait
4188 * for the ioqueue thread to die and we might deadlock as
4189 * a result.
4190 */
4191 ao2_unlock(instance);
4192 rtp_ioqueue_thread_remove(rtp->ioqueue);
4193 ao2_lock(instance);
4194 rtp->ioqueue = NULL;
4195 }
4196#endif
4197}
4198
4199/*! \pre instance is locked */
4200static int ast_rtp_new(struct ast_rtp_instance *instance,
4201 struct ast_sched_context *sched, struct ast_sockaddr *addr,
4202 void *data)
4203{
4204 struct ast_rtp *rtp = NULL;
4205
4206 /* Create a new RTP structure to hold all of our data */
4207 if (!(rtp = ast_calloc(1, sizeof(*rtp)))) {
4208 return -1;
4209 }
4210 rtp->owner = instance;
4211 /* Set default parameters on the newly created RTP structure */
4212 rtp->ssrc = ast_random();
4213 ast_uuid_generate_str(rtp->cname, sizeof(rtp->cname));
4214 rtp->seqno = ast_random() & 0xffff;
4215 rtp->expectedrxseqno = -1;
4216 rtp->expectedseqno = -1;
4217 rtp->rxstart = -1;
4218 rtp->sched = sched;
4219 ast_sockaddr_copy(&rtp->bind_address, addr);
4220 /* Transport creation operations can grab the RTP data from the instance, so set it */
4221 ast_rtp_instance_set_data(instance, rtp);
4222
4223 if (rtp_allocate_transport(instance, rtp)) {
4224 return -1;
4225 }
4226
4227 if (AST_VECTOR_INIT(&rtp->ssrc_mapping, 1)) {
4228 return -1;
4229 }
4230
4232 return -1;
4233 }
4234 rtp->transport_wide_cc.schedid = -1;
4235
4239 rtp->stream_num = -1;
4240
4241 return 0;
4242}
4243
4244/*!
4245 * \brief SSRC mapping comparator for AST_VECTOR_REMOVE_CMP_UNORDERED()
4246 *
4247 * \param elem Element to compare against
4248 * \param value Value to compare with the vector element.
4249 *
4250 * \retval 0 if element does not match.
4251 * \retval Non-zero if element matches.
4252 */
4253#define SSRC_MAPPING_ELEM_CMP(elem, value) ((elem).instance == (value))
4254
4255/*! \pre instance is locked */
4256static int ast_rtp_destroy(struct ast_rtp_instance *instance)
4257{
4258 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4259
4260 if (rtp->bundled) {
4261 struct ast_rtp *bundled_rtp;
4262
4263 /* We can't hold our instance lock while removing ourselves from the parent */
4264 ao2_unlock(instance);
4265
4266 ao2_lock(rtp->bundled);
4267 bundled_rtp = ast_rtp_instance_get_data(rtp->bundled);
4269 ao2_unlock(rtp->bundled);
4270
4271 ao2_lock(instance);
4272 ao2_ref(rtp->bundled, -1);
4273 }
4274
4275 rtp_deallocate_transport(instance, rtp);
4276
4277 /* Destroy the smoother that was smoothing out audio if present */
4278 if (rtp->smoother) {
4280 }
4281
4282 /* Destroy RTCP if it was being used */
4283 if (rtp->rtcp) {
4284 /*
4285 * It is not possible for there to be an active RTCP scheduler
4286 * entry at this point since it holds a reference to the
4287 * RTP instance while it's active.
4288 */
4290 ast_free(rtp->rtcp);
4291 }
4292
4293 /* Destroy RED if it was being used */
4294 if (rtp->red) {
4295 ao2_unlock(instance);
4296 AST_SCHED_DEL(rtp->sched, rtp->red->schedid);
4297 ao2_lock(instance);
4298 ast_free(rtp->red);
4299 rtp->red = NULL;
4300 }
4301
4302 /* Destroy the send buffer if it was being used */
4303 if (rtp->send_buffer) {
4305 }
4306
4307 /* Destroy the recv buffer if it was being used */
4308 if (rtp->recv_buffer) {
4310 }
4311
4313
4319
4320 /* Finally destroy ourselves */
4321 rtp->owner = NULL;
4322 ast_free(rtp);
4323
4324 return 0;
4325}
4326
4327/*! \pre instance is locked */
4328static int ast_rtp_dtmf_mode_set(struct ast_rtp_instance *instance, enum ast_rtp_dtmf_mode dtmf_mode)
4329{
4330 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4331 rtp->dtmfmode = dtmf_mode;
4332 return 0;
4333}
4334
4335/*! \pre instance is locked */
4337{
4338 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4339 return rtp->dtmfmode;
4340}
4341
4342/*! \pre instance is locked */
4343static int ast_rtp_dtmf_begin(struct ast_rtp_instance *instance, char digit)
4344{
4345 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4346 struct ast_sockaddr remote_address = { {0,} };
4347 int hdrlen = 12, res = 0, i = 0, payload = -1, sample_rate = -1;
4348 char data[256];
4349 unsigned int *rtpheader = (unsigned int*)data;
4350 RAII_VAR(struct ast_format *, payload_format, NULL, ao2_cleanup);
4351
4352 ast_rtp_instance_get_remote_address(instance, &remote_address);
4353
4354 /* If we have no remote address information bail out now */
4355 if (ast_sockaddr_isnull(&remote_address)) {
4356 return -1;
4357 }
4358
4359 /* Convert given digit into what we want to transmit */
4360 if ((digit <= '9') && (digit >= '0')) {
4361 digit -= '0';
4362 } else if (digit == '*') {
4363 digit = 10;
4364 } else if (digit == '#') {
4365 digit = 11;
4366 } else if ((digit >= 'A') && (digit <= 'D')) {
4367 digit = digit - 'A' + 12;
4368 } else if ((digit >= 'a') && (digit <= 'd')) {
4369 digit = digit - 'a' + 12;
4370 } else {
4371 ast_log(LOG_WARNING, "Don't know how to represent '%c'\n", digit);
4372 return -1;
4373 }
4374
4375 if (rtp->lasttxformat == ast_format_none) {
4376 /* No audio frames have been written yet so we have to lookup both the preferred payload type and bitrate. */
4378 if (payload_format) {
4379 /* If we have a preferred type, use that. Otherwise default to 8K. */
4380 sample_rate = ast_format_get_sample_rate(payload_format);
4381 }
4382 } else {
4383 sample_rate = ast_format_get_sample_rate(rtp->lasttxformat);
4384 }
4385
4386 if (sample_rate != -1) {
4388 }
4389
4390 if (payload == -1 ||
4393 /* Fall back to the preferred DTMF payload type and sample rate as either we couldn't find an audio codec to try and match
4394 sample rates with or we could, but a telephone-event matching that audio codec's sample rate was not included in the
4395 sdp negotiated by the far end. */
4398 }
4399
4400 /* The sdp negotiation has not yeilded a usable RFC 2833/4733 format. Try a default-rate one as a last resort. */
4401 if (payload == -1 || sample_rate == -1) {
4402 sample_rate = DEFAULT_DTMF_SAMPLE_RATE_MS;
4404 }
4405 /* Even trying a default payload has failed. We are trying to send a digit outside of what was negotiated for. */
4406 if (payload == -1) {
4407 return -1;
4408 }
4409
4410 ast_test_suite_event_notify("DTMF_BEGIN", "Digit: %d\r\nPayload: %d\r\nRate: %d\r\n", digit, payload, sample_rate);
4411 ast_debug(1, "Sending digit '%d' at rate %d with payload %d\n", digit, sample_rate, payload);
4412
4413 rtp->dtmfmute = ast_tvadd(ast_tvnow(), ast_tv(0, 500000));
4414 rtp->send_duration = 160;
4415 rtp->dtmf_samplerate_ms = (sample_rate / 1000);
4416 rtp->lastts += calc_txstamp(rtp, NULL) * rtp->dtmf_samplerate_ms;
4417 rtp->lastdigitts = rtp->lastts + rtp->send_duration;
4418
4419 /* Create the actual packet that we will be sending */
4420 rtpheader[0] = htonl((2 << 30) | (1 << 23) | (payload << 16) | (rtp->seqno));
4421 rtpheader[1] = htonl(rtp->lastdigitts);
4422 rtpheader[2] = htonl(rtp->ssrc);
4423
4424 /* Actually send the packet */
4425 for (i = 0; i < 2; i++) {
4426 int ice;
4427
4428 rtpheader[3] = htonl((digit << 24) | (0xa << 16) | (rtp->send_duration));
4429 res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 4, 0, &remote_address, &ice);
4430 if (res < 0) {
4431 ast_log(LOG_ERROR, "RTP Transmission error to %s: %s\n",
4432 ast_sockaddr_stringify(&remote_address),
4433 strerror(errno));
4434 }
4435 if (rtp_debug_test_addr(&remote_address)) {
4436 ast_verbose("Sent RTP DTMF packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
4437 ast_sockaddr_stringify(&remote_address),
4438 ice ? " (via ICE)" : "",
4439 payload, rtp->seqno, rtp->lastdigitts, res - hdrlen);
4440 }
4441 rtp->seqno++;
4442 rtp->send_duration += 160;
4443 rtpheader[0] = htonl((2 << 30) | (payload << 16) | (rtp->seqno));
4444 }
4445
4446 /* Record that we are in the process of sending a digit and information needed to continue doing so */
4447 rtp->sending_digit = 1;
4448 rtp->send_digit = digit;
4449 rtp->send_payload = payload;
4450
4451 return 0;
4452}
4453
4454/*! \pre instance is locked */
4456{
4457 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4458 struct ast_sockaddr remote_address = { {0,} };
4459 int hdrlen = 12, res = 0;
4460 char data[256];
4461 unsigned int *rtpheader = (unsigned int*)data;
4462 int ice;
4463
4464 ast_rtp_instance_get_remote_address(instance, &remote_address);
4465
4466 /* Make sure we know where the other side is so we can send them the packet */
4467 if (ast_sockaddr_isnull(&remote_address)) {
4468 return -1;
4469 }
4470
4471 /* Actually create the packet we will be sending */
4472 rtpheader[0] = htonl((2 << 30) | (rtp->send_payload << 16) | (rtp->seqno));
4473 rtpheader[1] = htonl(rtp->lastdigitts);
4474 rtpheader[2] = htonl(rtp->ssrc);
4475 rtpheader[3] = htonl((rtp->send_digit << 24) | (0xa << 16) | (rtp->send_duration));
4476
4477 /* Boom, send it on out */
4478 res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 4, 0, &remote_address, &ice);
4479 if (res < 0) {
4480 ast_log(LOG_ERROR, "RTP Transmission error to %s: %s\n",
4481 ast_sockaddr_stringify(&remote_address),
4482 strerror(errno));
4483 }
4484
4485 if (rtp_debug_test_addr(&remote_address)) {
4486 ast_verbose("Sent RTP DTMF packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
4487 ast_sockaddr_stringify(&remote_address),
4488 ice ? " (via ICE)" : "",
4489 rtp->send_payload, rtp->seqno, rtp->lastdigitts, res - hdrlen);
4490 }
4491
4492 /* And now we increment some values for the next time we swing by */
4493 rtp->seqno++;
4494 rtp->send_duration += 160;
4495 rtp->lastts += calc_txstamp(rtp, NULL) * rtp->dtmf_samplerate_ms;
4496
4497 return 0;
4498}
4499
4500/*! \pre instance is locked */
4501static int ast_rtp_dtmf_end_with_duration(struct ast_rtp_instance *instance, char digit, unsigned int duration)
4502{
4503 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4504 struct ast_sockaddr remote_address = { {0,} };
4505 int hdrlen = 12, res = -1, i = 0;
4506 char data[256];
4507 unsigned int *rtpheader = (unsigned int*)data;
4508 unsigned int measured_samples;
4509
4510 ast_rtp_instance_get_remote_address(instance, &remote_address);
4511
4512 /* Make sure we know where the remote side is so we can send them the packet we construct */
4513 if (ast_sockaddr_isnull(&remote_address)) {
4514 goto cleanup;
4515 }
4516
4517 /* Convert the given digit to the one we are going to send */
4518 if ((digit <= '9') && (digit >= '0')) {
4519 digit -= '0';
4520 } else if (digit == '*') {
4521 digit = 10;
4522 } else if (digit == '#') {
4523 digit = 11;
4524 } else if ((digit >= 'A') && (digit <= 'D')) {
4525 digit = digit - 'A' + 12;
4526 } else if ((digit >= 'a') && (digit <= 'd')) {
4527 digit = digit - 'a' + 12;
4528 } else {
4529 ast_log(LOG_WARNING, "Don't know how to represent '%c'\n", digit);
4530 goto cleanup;
4531 }
4532
4533 rtp->dtmfmute = ast_tvadd(ast_tvnow(), ast_tv(0, 500000));
4534
4535 if (duration > 0 && (measured_samples = duration * ast_rtp_get_rate(rtp->f.subclass.format) / 1000) > rtp->send_duration) {
4536 ast_debug_rtp(2, "(%p) RTP adjusting final end duration from %d to %u\n",
4537 instance, rtp->send_duration, measured_samples);
4538 rtp->send_duration = measured_samples;
4539 }
4540
4541 /* Construct the packet we are going to send */
4542 rtpheader[1] = htonl(rtp->lastdigitts);
4543 rtpheader[2] = htonl(rtp->ssrc);
4544 rtpheader[3] = htonl((digit << 24) | (0xa << 16) | (rtp->send_duration));
4545 rtpheader[3] |= htonl((1 << 23));
4546
4547 /* Send it 3 times, that's the magical number */
4548 for (i = 0; i < 3; i++) {
4549 int ice;
4550
4551 rtpheader[0] = htonl((2 << 30) | (rtp->send_payload << 16) | (rtp->seqno));
4552
4553 res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 4, 0, &remote_address, &ice);
4554
4555 if (res < 0) {
4556 ast_log(LOG_ERROR, "RTP Transmission error to %s: %s\n",
4557 ast_sockaddr_stringify(&remote_address),
4558 strerror(errno));
4559 }
4560
4561 if (rtp_debug_test_addr(&remote_address)) {
4562 ast_verbose("Sent RTP DTMF packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
4563 ast_sockaddr_stringify(&remote_address),
4564 ice ? " (via ICE)" : "",
4565 rtp->send_payload, rtp->seqno, rtp->lastdigitts, res - hdrlen);
4566 }
4567
4568 rtp->seqno++;
4569 }
4570 res = 0;
4571
4572 /* Oh and we can't forget to turn off the stuff that says we are sending DTMF */
4573 rtp->lastts += calc_txstamp(rtp, NULL) * rtp->dtmf_samplerate_ms;
4574
4575 /* Reset the smoother as the delivery time stored in it is now out of date */
4576 if (rtp->smoother) {
4578 rtp->smoother = NULL;
4579 }
4580cleanup:
4581 rtp->sending_digit = 0;
4582 rtp->send_digit = 0;
4583
4584 /* Re-Learn expected seqno */
4585 rtp->expectedseqno = -1;
4586
4587 return res;
4588}
4589
4590/*! \pre instance is locked */
4591static int ast_rtp_dtmf_end(struct ast_rtp_instance *instance, char digit)
4592{
4593 return ast_rtp_dtmf_end_with_duration(instance, digit, 0);
4594}
4595
4596/*! \pre instance is locked */
4597static void ast_rtp_update_source(struct ast_rtp_instance *instance)
4598{
4599 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4600
4601 /* We simply set this bit so that the next packet sent will have the marker bit turned on */
4603 ast_debug_rtp(3, "(%p) RTP setting the marker bit due to a source update\n", instance);
4604
4605 return;
4606}
4607
4608/*! \pre instance is locked */
4609static void ast_rtp_change_source(struct ast_rtp_instance *instance)
4610{
4611 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4612 struct ast_srtp *srtp = ast_rtp_instance_get_srtp(instance, 0);
4613 struct ast_srtp *rtcp_srtp = ast_rtp_instance_get_srtp(instance, 1);
4614 unsigned int ssrc = ast_random();
4615
4616 if (rtp->lastts) {
4617 /* We simply set this bit so that the next packet sent will have the marker bit turned on */
4619 }
4620
4621 ast_debug_rtp(3, "(%p) RTP changing ssrc from %u to %u due to a source change\n",
4622 instance, rtp->ssrc, ssrc);
4623
4624 if (srtp) {
4625 ast_debug_rtp(3, "(%p) RTP changing ssrc for SRTP from %u to %u\n",
4626 instance, rtp->ssrc, ssrc);
4627 res_srtp->change_source(srtp, rtp->ssrc, ssrc);
4628 if (rtcp_srtp != srtp) {
4629 res_srtp->change_source(rtcp_srtp, rtp->ssrc, ssrc);
4630 }
4631 }
4632
4633 rtp->ssrc = ssrc;
4634
4635 /* Since the source is changing, we don't know what sequence number to expect next */
4636 rtp->expectedrxseqno = -1;
4637
4638 return;
4639}
4640
4641static void timeval2ntp(struct timeval tv, unsigned int *msw, unsigned int *lsw)
4642{
4643 unsigned int sec, usec, frac;
4644 sec = tv.tv_sec + 2208988800u; /* Sec between 1900 and 1970 */
4645 usec = tv.tv_usec;
4646 /*
4647 * Convert usec to 0.32 bit fixed point without overflow.
4648 *
4649 * = usec * 2^32 / 10^6
4650 * = usec * 2^32 / (2^6 * 5^6)
4651 * = usec * 2^26 / 5^6
4652 *
4653 * The usec value needs 20 bits to represent 999999 usec. So
4654 * splitting the 2^26 to get the most precision using 32 bit
4655 * values gives:
4656 *
4657 * = ((usec * 2^12) / 5^6) * 2^14
4658 *
4659 * Splitting the division into two stages preserves all the
4660 * available significant bits of usec over doing the division
4661 * all at once.
4662 *
4663 * = ((((usec * 2^12) / 5^3) * 2^7) / 5^3) * 2^7
4664 */
4665 frac = ((((usec << 12) / 125) << 7) / 125) << 7;
4666 *msw = sec;
4667 *lsw = frac;
4668}
4669
4670static void ntp2timeval(unsigned int msw, unsigned int lsw, struct timeval *tv)
4671{
4672 tv->tv_sec = msw - 2208988800u;
4673 /* Reverse the sequence in timeval2ntp() */
4674 tv->tv_usec = ((((lsw >> 7) * 125) >> 7) * 125) >> 12;
4675}
4676
4678 unsigned int *lost_packets,
4679 int *fraction_lost)
4680{
4681 unsigned int extended_seq_no;
4682 unsigned int expected_packets;
4683 unsigned int expected_interval;
4684 unsigned int received_interval;
4685 int lost_interval;
4686
4687 /* Compute statistics */
4688 extended_seq_no = rtp->cycles + rtp->lastrxseqno;
4689 expected_packets = extended_seq_no - rtp->seedrxseqno + 1;
4690 if (rtp->rxcount > expected_packets) {
4691 expected_packets += rtp->rxcount - expected_packets;
4692 }
4693 *lost_packets = expected_packets - rtp->rxcount;
4694 expected_interval = expected_packets - rtp->rtcp->expected_prior;
4695 received_interval = rtp->rxcount - rtp->rtcp->received_prior;
4696 if (received_interval > expected_interval) {
4697 /* If we receive some late packets it is possible for the packets
4698 * we received in this interval to exceed the number we expected.
4699 * We update the expected so that the packet loss calculations
4700 * show that no packets are lost.
4701 */
4702 expected_interval = received_interval;
4703 }
4704 lost_interval = expected_interval - received_interval;
4705 if (expected_interval == 0 || lost_interval <= 0) {
4706 *fraction_lost = 0;
4707 } else {
4708 *fraction_lost = (lost_interval << 8) / expected_interval;
4709 }
4710
4711 /* Update RTCP statistics */
4712 rtp->rtcp->received_prior = rtp->rxcount;
4713 rtp->rtcp->expected_prior = expected_packets;
4714
4715 /*
4716 * While rxlost represents the number of packets lost since the last report was sent, for
4717 * the calculations below it should be thought of as a single sample. Thus min/max are the
4718 * lowest/highest sample value seen, and the mean is the average number of packets lost
4719 * between each report. As such rxlost_count only needs to be incremented per report.
4720 */
4721 if (lost_interval <= 0) {
4722 rtp->rtcp->rxlost = 0;
4723 } else {
4724 rtp->rtcp->rxlost = lost_interval;
4725 }
4726 if (rtp->rtcp->rxlost_count == 0) {
4727 rtp->rtcp->minrxlost = rtp->rtcp->rxlost;
4728 }
4729 if (lost_interval && lost_interval < rtp->rtcp->minrxlost) {
4730 rtp->rtcp->minrxlost = rtp->rtcp->rxlost;
4731 }
4732 if (lost_interval > rtp->rtcp->maxrxlost) {
4733 rtp->rtcp->maxrxlost = rtp->rtcp->rxlost;
4734 }
4735
4736 calc_mean_and_standard_deviation(rtp->rtcp->rxlost, &rtp->rtcp->normdev_rxlost,
4737 &rtp->rtcp->stdev_rxlost, &rtp->rtcp->rxlost_count);
4738}
4739
4740static int ast_rtcp_generate_report(struct ast_rtp_instance *instance, unsigned char *rtcpheader,
4741 struct ast_rtp_rtcp_report *rtcp_report, int *sr)
4742{
4743 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4744 int len = 0;
4745 struct timeval now;
4746 unsigned int now_lsw;
4747 unsigned int now_msw;
4748 unsigned int lost_packets;
4749 int fraction_lost;
4750 struct timeval dlsr = { 0, };
4751 struct ast_rtp_rtcp_report_block *report_block = NULL;
4752
4753 if (!rtp || !rtp->rtcp) {
4754 return 0;
4755 }
4756
4757 if (ast_sockaddr_isnull(&rtp->rtcp->them)) { /* This'll stop rtcp for this rtp session */
4758 /* RTCP was stopped. */
4759 return 0;
4760 }
4761
4762 if (!rtcp_report) {
4763 return 1;
4764 }
4765
4766 *sr = rtp->txcount > rtp->rtcp->lastsrtxcount ? 1 : 0;
4767
4768 /* Compute statistics */
4769 calculate_lost_packet_statistics(rtp, &lost_packets, &fraction_lost);
4770 /*
4771 * update_local_mes_stats must be called AFTER
4772 * calculate_lost_packet_statistics
4773 */
4775
4776 gettimeofday(&now, NULL);
4777 rtcp_report->reception_report_count = rtp->themssrc_valid ? 1 : 0;
4778 rtcp_report->ssrc = rtp->ssrc;
4779 rtcp_report->type = *sr ? RTCP_PT_SR : RTCP_PT_RR;
4780 if (*sr) {
4781 rtcp_report->sender_information.ntp_timestamp = now;
4782 rtcp_report->sender_information.rtp_timestamp = rtp->lastts;
4783 rtcp_report->sender_information.packet_count = rtp->txcount;
4784 rtcp_report->sender_information.octet_count = rtp->txoctetcount;
4785 }
4786
4787 if (rtp->themssrc_valid) {
4788 report_block = ast_calloc(1, sizeof(*report_block));
4789 if (!report_block) {
4790 return 1;
4791 }
4792
4793 rtcp_report->report_block[0] = report_block;
4794 report_block->source_ssrc = rtp->themssrc;
4795 report_block->lost_count.fraction = (fraction_lost & 0xff);
4796 report_block->lost_count.packets = (lost_packets & 0xffffff);
4797 report_block->highest_seq_no = (rtp->cycles | (rtp->lastrxseqno & 0xffff));
4798 report_block->ia_jitter = (unsigned int)rtp->rxjitter_samples;
4799 report_block->lsr = rtp->rtcp->themrxlsr;
4800 /* If we haven't received an SR report, DLSR should be 0 */
4801 if (!ast_tvzero(rtp->rtcp->rxlsr)) {
4802 timersub(&now, &rtp->rtcp->rxlsr, &dlsr);
4803 report_block->dlsr = (((dlsr.tv_sec * 1000) + (dlsr.tv_usec / 1000)) * 65536) / 1000;
4804 }
4805 }
4806 timeval2ntp(rtcp_report->sender_information.ntp_timestamp, &now_msw, &now_lsw);
4807 put_unaligned_uint32(rtcpheader + 4, htonl(rtcp_report->ssrc)); /* Our SSRC */
4808 len += 8;
4809 if (*sr) {
4810 put_unaligned_uint32(rtcpheader + len, htonl(now_msw)); /* now, MSW. gettimeofday() + SEC_BETWEEN_1900_AND_1970 */
4811 put_unaligned_uint32(rtcpheader + len + 4, htonl(now_lsw)); /* now, LSW */
4812 put_unaligned_uint32(rtcpheader + len + 8, htonl(rtcp_report->sender_information.rtp_timestamp));
4813 put_unaligned_uint32(rtcpheader + len + 12, htonl(rtcp_report->sender_information.packet_count));
4814 put_unaligned_uint32(rtcpheader + len + 16, htonl(rtcp_report->sender_information.octet_count));
4815 len += 20;
4816 }
4817 if (report_block) {
4818 put_unaligned_uint32(rtcpheader + len, htonl(report_block->source_ssrc)); /* Their SSRC */
4819 put_unaligned_uint32(rtcpheader + len + 4, htonl((report_block->lost_count.fraction << 24) | report_block->lost_count.packets));
4820 put_unaligned_uint32(rtcpheader + len + 8, htonl(report_block->highest_seq_no));
4821 put_unaligned_uint32(rtcpheader + len + 12, htonl(report_block->ia_jitter));
4822 put_unaligned_uint32(rtcpheader + len + 16, htonl(report_block->lsr));
4823 put_unaligned_uint32(rtcpheader + len + 20, htonl(report_block->dlsr));
4824 len += 24;
4825 }
4826
4827 put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (rtcp_report->reception_report_count << 24)
4828 | ((*sr ? RTCP_PT_SR : RTCP_PT_RR) << 16) | ((len/4)-1)));
4829
4830 return len;
4831}
4832
4834 struct ast_rtp_rtcp_report *rtcp_report, struct ast_sockaddr remote_address, int ice, int sr)
4835{
4836 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4837 struct ast_rtp_rtcp_report_block *report_block = NULL;
4838 RAII_VAR(struct ast_json *, message_blob, NULL, ast_json_unref);
4839
4840 if (!rtp || !rtp->rtcp) {
4841 return 0;
4842 }
4843
4844 if (ast_sockaddr_isnull(&rtp->rtcp->them)) {
4845 return 0;
4846 }
4847
4848 if (!rtcp_report) {
4849 return -1;
4850 }
4851
4852 report_block = rtcp_report->report_block[0];
4853
4854 if (sr) {
4855 rtp->rtcp->txlsr = rtcp_report->sender_information.ntp_timestamp;
4856 rtp->rtcp->sr_count++;
4857 rtp->rtcp->lastsrtxcount = rtp->txcount;
4858 } else {
4859 rtp->rtcp->rr_count++;
4860 }
4861
4862 if (rtcp_debug_test_addr(&rtp->rtcp->them)) {
4863 ast_verbose("* Sent RTCP %s to %s%s\n", sr ? "SR" : "RR",
4864 ast_sockaddr_stringify(&remote_address), ice ? " (via ICE)" : "");
4865 ast_verbose(" Our SSRC: %u\n", rtcp_report->ssrc);
4866 if (sr) {
4867 ast_verbose(" Sent(NTP): %u.%06u\n",
4868 (unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_sec,
4869 (unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_usec);
4870 ast_verbose(" Sent(RTP): %u\n", rtcp_report->sender_information.rtp_timestamp);
4871 ast_verbose(" Sent packets: %u\n", rtcp_report->sender_information.packet_count);
4872 ast_verbose(" Sent octets: %u\n", rtcp_report->sender_information.octet_count);
4873 }
4874 if (report_block) {
4875 int rate = ast_rtp_get_rate(rtp->f.subclass.format);
4876 ast_verbose(" Report block:\n");
4877 ast_verbose(" Their SSRC: %u\n", report_block->source_ssrc);
4878 ast_verbose(" Fraction lost: %d\n", report_block->lost_count.fraction);
4879 ast_verbose(" Cumulative loss: %u\n", report_block->lost_count.packets);
4880 ast_verbose(" Highest seq no: %u\n", report_block->highest_seq_no);
4881 ast_verbose(" IA jitter (samp): %u\n", report_block->ia_jitter);
4882 ast_verbose(" IA jitter (secs): %.6f\n", ast_samp2sec(report_block->ia_jitter, rate));
4883 ast_verbose(" Their last SR: %u\n", report_block->lsr);
4884 ast_verbose(" DLSR: %4.4f (sec)\n\n", (double)(report_block->dlsr / 65536.0));
4885 }
4886 }
4887
4888 message_blob = ast_json_pack("{s: s, s: s, s: f}",
4889 "to", ast_sockaddr_stringify(&remote_address),
4890 "from", rtp->rtcp->local_addr_str,
4891 "mes", rtp->rxmes);
4892
4894 rtcp_report, message_blob);
4895
4896 return 1;
4897}
4898
4899static int ast_rtcp_generate_sdes(struct ast_rtp_instance *instance, unsigned char *rtcpheader,
4900 struct ast_rtp_rtcp_report *rtcp_report)
4901{
4902 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4903 int len = 0;
4904 uint16_t sdes_packet_len_bytes;
4905 uint16_t sdes_packet_len_rounded;
4906
4907 if (!rtp || !rtp->rtcp) {
4908 return 0;
4909 }
4910
4911 if (ast_sockaddr_isnull(&rtp->rtcp->them)) {
4912 return 0;
4913 }
4914
4915 if (!rtcp_report) {
4916 return -1;
4917 }
4918
4919 sdes_packet_len_bytes =
4920 4 + /* RTCP Header */
4921 4 + /* SSRC */
4922 1 + /* Type (CNAME) */
4923 1 + /* Text Length */
4924 AST_UUID_STR_LEN /* Text and NULL terminator */
4925 ;
4926
4927 /* Round to 32 bit boundary */
4928 sdes_packet_len_rounded = (sdes_packet_len_bytes + 3) & ~0x3;
4929
4930 put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (1 << 24) | (RTCP_PT_SDES << 16) | ((sdes_packet_len_rounded / 4) - 1)));
4931 put_unaligned_uint32(rtcpheader + 4, htonl(rtcp_report->ssrc));
4932 rtcpheader[8] = 0x01; /* CNAME */
4933 rtcpheader[9] = AST_UUID_STR_LEN - 1; /* Number of bytes of text */
4934 memcpy(rtcpheader + 10, rtp->cname, AST_UUID_STR_LEN);
4935 len += 10 + AST_UUID_STR_LEN;
4936
4937 /* Padding - Note that we don't set the padded bit on the packet. From
4938 * RFC 3550 Section 6.5:
4939 *
4940 * No length octet follows the null item type octet, but additional null
4941 * octets MUST be included if needd to pad until the next 32-bit
4942 * boundary. Note that this padding is separate from that indicated by
4943 * the P bit in the RTCP header.
4944 *
4945 * These bytes will already be zeroed out during array initialization.
4946 */
4947 len += (sdes_packet_len_rounded - sdes_packet_len_bytes);
4948
4949 return len;
4950}
4951
4952/* Lock instance before calling this if it isn't already
4953 *
4954 * If successful, the overall packet length is returned
4955 * If not, then 0 is returned
4956 */
4957static int ast_rtcp_generate_compound_prefix(struct ast_rtp_instance *instance, unsigned char *rtcpheader,
4958 struct ast_rtp_rtcp_report *report, int *sr)
4959{
4960 int packet_len = 0;
4961 int res;
4962
4963 /* Every RTCP packet needs to be sent out with a SR/RR and SDES prefixing it.
4964 * At the end of this function, rtcpheader should contain both of those packets,
4965 * and will return the length of the overall packet. This can be used to determine
4966 * where further packets can be inserted in the compound packet.
4967 */
4968 res = ast_rtcp_generate_report(instance, rtcpheader, report, sr);
4969
4970 if (res == 0 || res == 1) {
4971 ast_debug_rtcp(1, "(%p) RTCP failed to generate %s report!\n", instance, sr ? "SR" : "RR");
4972 return 0;
4973 }
4974
4975 packet_len += res;
4976
4977 res = ast_rtcp_generate_sdes(instance, rtcpheader + packet_len, report);
4978
4979 if (res == 0 || res == 1) {
4980 ast_debug_rtcp(1, "(%p) RTCP failed to generate SDES!\n", instance);
4981 return 0;
4982 }
4983
4984 return packet_len + res;
4985}
4986
4987static int ast_rtcp_generate_nack(struct ast_rtp_instance *instance, unsigned char *rtcpheader)
4988{
4989 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
4990 int packet_len;
4991 int blp_index = -1;
4992 int current_seqno;
4993 unsigned int fci = 0;
4994 size_t remaining_missing_seqno;
4995
4996 if (!rtp || !rtp->rtcp) {
4997 return 0;
4998 }
4999
5000 if (ast_sockaddr_isnull(&rtp->rtcp->them)) {
5001 return 0;
5002 }
5003
5004 current_seqno = rtp->expectedrxseqno;
5005 remaining_missing_seqno = AST_VECTOR_SIZE(&rtp->missing_seqno);
5006 packet_len = 12; /* The header length is 12 (version line, packet source SSRC, media source SSRC) */
5007
5008 /* If there are no missing sequence numbers then don't bother sending a NACK needlessly */
5009 if (!remaining_missing_seqno) {
5010 return 0;
5011 }
5012
5013 /* This iterates through the possible forward sequence numbers seeing which ones we
5014 * have no packet for, adding it to the NACK until we are out of missing packets.
5015 */
5016 while (remaining_missing_seqno) {
5017 int *missing_seqno;
5018
5019 /* On the first entry to this loop blp_index will be -1, so this will become 0
5020 * and the sequence number will be placed into the packet as the PID.
5021 */
5022 blp_index++;
5023
5024 missing_seqno = AST_VECTOR_GET_CMP(&rtp->missing_seqno, current_seqno,
5026 if (missing_seqno) {
5027 /* We hit the max blp size, reset */
5028 if (blp_index >= 17) {
5029 put_unaligned_uint32(rtcpheader + packet_len, htonl(fci));
5030 fci = 0;
5031 blp_index = 0;
5032 packet_len += 4;
5033 }
5034
5035 if (blp_index == 0) {
5036 fci |= (current_seqno << 16);
5037 } else {
5038 fci |= (1 << (blp_index - 1));
5039 }
5040
5041 /* Since we've used a missing sequence number, we're down one */
5042 remaining_missing_seqno--;
5043 }
5044
5045 /* Handle cycling of the sequence number */
5046 current_seqno++;
5047 if (current_seqno == SEQNO_CYCLE_OVER) {
5048 current_seqno = 0;
5049 }
5050 }
5051
5052 put_unaligned_uint32(rtcpheader + packet_len, htonl(fci));
5053 packet_len += 4;
5054
5055 /* Length MUST be 2+n, where n is the number of NACKs. Same as length in words minus 1 */
5056 put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (AST_RTP_RTCP_FMT_NACK << 24)
5057 | (AST_RTP_RTCP_RTPFB << 16) | ((packet_len / 4) - 1)));
5058 put_unaligned_uint32(rtcpheader + 4, htonl(rtp->ssrc));
5059 put_unaligned_uint32(rtcpheader + 8, htonl(rtp->themssrc));
5060
5061 return packet_len;
5062}
5063
5064/*!
5065 * \brief Write a RTCP packet to the far end
5066 *
5067 * \note Decide if we are going to send an SR (with Reception Block) or RR
5068 * RR is sent if we have not sent any rtp packets in the previous interval
5069 *
5070 * Scheduler callback
5071 */
5072static int ast_rtcp_write(const void *data)
5073{
5074 struct ast_rtp_instance *instance = (struct ast_rtp_instance *) data;
5075 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5076 int res;
5077 int sr = 0;
5078 int packet_len = 0;
5079 int ice;
5080 struct ast_sockaddr remote_address = { { 0, } };
5081 unsigned char *rtcpheader;
5082 unsigned char bdata[AST_UUID_STR_LEN + 128] = ""; /* More than enough */
5083 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report, NULL, ao2_cleanup);
5084
5085 if (!rtp || !rtp->rtcp || rtp->rtcp->schedid == -1) {
5086 ao2_ref(instance, -1);
5087 return 0;
5088 }
5089
5090 ao2_lock(instance);
5091 rtcpheader = bdata;
5092 rtcp_report = ast_rtp_rtcp_report_alloc(rtp->themssrc_valid ? 1 : 0);
5093 res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
5094
5095 if (res == 0 || res == 1) {
5096 goto cleanup;
5097 }
5098
5099 packet_len += res;
5100
5101 if (rtp->bundled) {
5102 ast_rtp_instance_get_remote_address(instance, &remote_address);
5103 } else {
5104 ast_sockaddr_copy(&remote_address, &rtp->rtcp->them);
5105 }
5106
5107 res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len, 0, &remote_address, &ice);
5108 if (res < 0) {
5109 ast_log(LOG_ERROR, "RTCP %s transmission error to %s, rtcp halted %s\n",
5110 sr ? "SR" : "RR",
5112 strerror(errno));
5113 res = 0;
5114 } else {
5115 ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, remote_address, ice, sr);
5116 }
5117
5118cleanup:
5119 ao2_unlock(instance);
5120
5121 if (!res) {
5122 /*
5123 * Not being rescheduled.
5124 */
5125 rtp->rtcp->schedid = -1;
5126 ao2_ref(instance, -1);
5127 }
5128
5129 return res;
5130}
5131
5132static void put_unaligned_time24(void *p, uint32_t time_msw, uint32_t time_lsw)
5133{
5134 unsigned char *cp = p;
5135 uint32_t datum;
5136
5137 /* Convert the time to 6.18 format */
5138 datum = (time_msw << 18) & 0x00fc0000;
5139 datum |= (time_lsw >> 14) & 0x0003ffff;
5140
5141 cp[0] = datum >> 16;
5142 cp[1] = datum >> 8;
5143 cp[2] = datum;
5144}
5145
5146/*! \pre instance is locked */
5147static int rtp_raw_write(struct ast_rtp_instance *instance, struct ast_frame *frame, int codec)
5148{
5149 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5150 int pred, mark = 0;
5151 unsigned int ms = calc_txstamp(rtp, &frame->delivery);
5152 struct ast_sockaddr remote_address = { {0,} };
5153 int rate = ast_rtp_get_rate(frame->subclass.format) / 1000;
5154 unsigned int seqno;
5155#ifdef TEST_FRAMEWORK
5156 struct ast_rtp_engine_test *test = ast_rtp_instance_get_test(instance);
5157#endif
5158
5160 frame->samples /= 2;
5161 }
5162
5163 if (rtp->sending_digit) {
5164 return 0;
5165 }
5166
5167#ifdef TEST_FRAMEWORK
5168 if (test && test->send_report) {
5169 test->send_report = 0;
5170 ast_rtcp_write(instance);
5171 return 0;
5172 }
5173#endif
5174
5175 if (frame->frametype == AST_FRAME_VOICE) {
5176 pred = rtp->lastts + frame->samples;
5177
5178 /* Re-calculate last TS */
5179 rtp->lastts = rtp->lastts + ms * rate;
5180 if (ast_tvzero(frame->delivery)) {
5181 /* If this isn't an absolute delivery time, Check if it is close to our prediction,
5182 and if so, go with our prediction */
5183 if (abs((int)rtp->lastts - pred) < MAX_TIMESTAMP_SKEW) {
5184 rtp->lastts = pred;
5185 } else {
5186 ast_debug_rtp(3, "(%p) RTP audio difference is %d, ms is %u\n",
5187 instance, abs((int)rtp->lastts - pred), ms);
5188 mark = 1;
5189 }
5190 }
5191 } else if (frame->frametype == AST_FRAME_VIDEO) {
5192 mark = frame->subclass.frame_ending;
5193 pred = rtp->lastovidtimestamp + frame->samples;
5194 /* Re-calculate last TS */
5195 rtp->lastts = rtp->lastts + ms * 90;
5196 /* If it's close to our prediction, go for it */
5197 if (ast_tvzero(frame->delivery)) {
5198 if (abs((int)rtp->lastts - pred) < 7200) {
5199 rtp->lastts = pred;
5200 rtp->lastovidtimestamp += frame->samples;
5201 } else {
5202 ast_debug_rtp(3, "(%p) RTP video difference is %d, ms is %u (%u), pred/ts/samples %u/%d/%d\n",
5203 instance, abs((int)rtp->lastts - pred), ms, ms * 90, rtp->lastts, pred, frame->samples);
5204 rtp->lastovidtimestamp = rtp->lastts;
5205 }
5206 }
5207 } else {
5208 pred = rtp->lastotexttimestamp + frame->samples;
5209 /* Re-calculate last TS */
5210 rtp->lastts = rtp->lastts + ms;
5211 /* If it's close to our prediction, go for it */
5212 if (ast_tvzero(frame->delivery)) {
5213 if (abs((int)rtp->lastts - pred) < 7200) {
5214 rtp->lastts = pred;
5215 rtp->lastotexttimestamp += frame->samples;
5216 } else {
5217 ast_debug_rtp(3, "(%p) RTP other difference is %d, ms is %u, pred/ts/samples %u/%d/%d\n",
5218 instance, abs((int)rtp->lastts - pred), ms, rtp->lastts, pred, frame->samples);
5219 rtp->lastotexttimestamp = rtp->lastts;
5220 }
5221 }
5222 }
5223
5224 /* If we have been explicitly told to set the marker bit then do so */
5226 mark = 1;
5228 }
5229
5230 /* If the timestamp for non-digt packets has moved beyond the timestamp for digits, update the digit timestamp */
5231 if (rtp->lastts > rtp->lastdigitts) {
5232 rtp->lastdigitts = rtp->lastts;
5233 }
5234
5235 /* Assume that the sequence number we expect to use is what will be used until proven otherwise */
5236 seqno = rtp->seqno;
5237
5238 /* If the frame contains sequence number information use it to influence our sequence number */
5240 if (rtp->expectedseqno != -1) {
5241 /* Determine where the frame from the core is in relation to where we expected */
5242 int difference = frame->seqno - rtp->expectedseqno;
5243
5244 /* If there is a substantial difference then we've either got packets really out
5245 * of order, or the source is RTP and it has cycled. If this happens we resync
5246 * the sequence number adjustments to this frame. If we also have packet loss
5247 * things won't be reflected correctly but it will sort itself out after a bit.
5248 */
5249 if (abs(difference) > 100) {
5250 difference = 0;
5251 }
5252
5253 /* Adjust the sequence number being used for this packet accordingly */
5254 seqno += difference;
5255
5256 if (difference >= 0) {
5257 /* This frame is on time or in the future */
5258 rtp->expectedseqno = frame->seqno + 1;
5259 rtp->seqno += difference;
5260 }
5261 } else {
5262 /* This is the first frame with sequence number we've seen, so start keeping track */
5263 rtp->expectedseqno = frame->seqno + 1;
5264 }
5265 } else {
5266 rtp->expectedseqno = -1;
5267 }
5268
5270 if (abs(frame->ts * rate - (int)rtp->lastts) > MAX_TIMESTAMP_SKEW) {
5271 ast_verbose("(%p) RTP audio difference is %d set mark\n",
5272 instance, abs(frame->ts * rate - (int)rtp->lastts));
5273 mark = 1;
5274 }
5275 rtp->lastts = frame->ts * rate;
5276 }
5277
5278 ast_rtp_instance_get_remote_address(instance, &remote_address);
5279
5280 /* If we know the remote address construct a packet and send it out */
5281 if (!ast_sockaddr_isnull(&remote_address)) {
5282 int hdrlen = 12;
5283 int res;
5284 int ice;
5285 int ext = 0;
5286 int abs_send_time_id;
5287 int packet_len;
5288 unsigned char *rtpheader;
5289
5290 /* If the abs-send-time extension has been negotiated determine how much space we need */
5292 if (abs_send_time_id != -1) {
5293 /* 4 bytes for the shared information, 1 byte for identifier, 3 bytes for abs-send-time */
5294 hdrlen += 8;
5295 ext = 1;
5296 }
5297
5298 packet_len = frame->datalen + hdrlen;
5299 rtpheader = (unsigned char *)(frame->data.ptr - hdrlen);
5300
5301 put_unaligned_uint32(rtpheader, htonl((2 << 30) | (ext << 28) | (codec << 16) | (seqno) | (mark << 23)));
5302 put_unaligned_uint32(rtpheader + 4, htonl(rtp->lastts));
5303 put_unaligned_uint32(rtpheader + 8, htonl(rtp->ssrc));
5304
5305 /* We assume right now that we will only ever have the abs-send-time extension in the packet
5306 * which simplifies things a bit.
5307 */
5308 if (abs_send_time_id != -1) {
5309 unsigned int now_msw;
5310 unsigned int now_lsw;
5311
5312 /* This happens before being placed into the retransmission buffer so that when we
5313 * retransmit we only have to update the timestamp, not everything else.
5314 */
5315 put_unaligned_uint32(rtpheader + 12, htonl((0xBEDE << 16) | 1));
5316 rtpheader[16] = (abs_send_time_id << 4) | 2;
5317
5318 timeval2ntp(ast_tvnow(), &now_msw, &now_lsw);
5319 put_unaligned_time24(rtpheader + 17, now_msw, now_lsw);
5320 }
5321
5322 /* If retransmissions are enabled, we need to store this packet for future use */
5323 if (rtp->send_buffer) {
5324 struct ast_rtp_rtcp_nack_payload *payload;
5325
5326 payload = ast_malloc(sizeof(*payload) + packet_len);
5327 if (payload) {
5328 payload->size = packet_len;
5329 memcpy(payload->buf, rtpheader, packet_len);
5330 if (ast_data_buffer_put(rtp->send_buffer, rtp->seqno, payload) == -1) {
5331 ast_free(payload);
5332 }
5333 }
5334 }
5335
5336 res = rtp_sendto(instance, (void *)rtpheader, packet_len, 0, &remote_address, &ice);
5337 if (res < 0) {
5339 ast_debug_rtp(1, "(%p) RTP transmission error of packet %d to %s: %s\n",
5340 instance, rtp->seqno,
5341 ast_sockaddr_stringify(&remote_address),
5342 strerror(errno));
5344 /* Only give this error message once if we are not RTP debugging */
5346 ast_debug(0, "(%p) RTP NAT: Can't write RTP to private address %s, waiting for other end to send audio...\n",
5347 instance, ast_sockaddr_stringify(&remote_address));
5349 }
5350 } else {
5351 if (rtp->rtcp && rtp->rtcp->schedid < 0) {
5352 ast_debug_rtcp(2, "(%s) RTCP starting transmission in %u ms\n",
5354 ao2_ref(instance, +1);
5356 if (rtp->rtcp->schedid < 0) {
5357 ao2_ref(instance, -1);
5358 ast_log(LOG_WARNING, "scheduling RTCP transmission failed.\n");
5359 }
5360 }
5361 }
5362
5363 if (rtp_debug_test_addr(&remote_address)) {
5364 ast_verbose("Sent RTP packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
5365 ast_sockaddr_stringify(&remote_address),
5366 ice ? " (via ICE)" : "",
5367 codec, rtp->seqno, rtp->lastts, res - hdrlen);
5368 }
5369 }
5370
5371 /* If the sequence number that has been used doesn't match what we expected then this is an out of
5372 * order late packet, so we don't need to increment as we haven't yet gotten the expected frame from
5373 * the core.
5374 */
5375 if (seqno == rtp->seqno) {
5376 rtp->seqno++;
5377 }
5378
5379 return 0;
5380}
5381
5382static struct ast_frame *red_t140_to_red(struct rtp_red *red)
5383{
5384 unsigned char *data = red->t140red.data.ptr;
5385 int len = 0;
5386 int i;
5387
5388 /* replace most aged generation */
5389 if (red->len[0]) {
5390 for (i = 1; i < red->num_gen+1; i++)
5391 len += red->len[i];
5392
5393 memmove(&data[red->hdrlen], &data[red->hdrlen+red->len[0]], len);
5394 }
5395
5396 /* Store length of each generation and primary data length*/
5397 for (i = 0; i < red->num_gen; i++)
5398 red->len[i] = red->len[i+1];
5399 red->len[i] = red->t140.datalen;
5400
5401 /* write each generation length in red header */
5402 len = red->hdrlen;
5403 for (i = 0; i < red->num_gen; i++) {
5404 len += data[i*4+3] = red->len[i];
5405 }
5406
5407 /* add primary data to buffer */
5408 memcpy(&data[len], red->t140.data.ptr, red->t140.datalen);
5409 red->t140red.datalen = len + red->t140.datalen;
5410
5411 /* no primary data and no generations to send */
5412 if (len == red->hdrlen && !red->t140.datalen) {
5413 return NULL;
5414 }
5415
5416 /* reset t.140 buffer */
5417 red->t140.datalen = 0;
5418
5419 return &red->t140red;
5420}
5421
5422static void rtp_write_rtcp_fir(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_sockaddr *remote_address)
5423{
5424 unsigned char *rtcpheader;
5425 unsigned char bdata[1024];
5426 int packet_len = 0;
5427 int fir_len = 20;
5428 int ice;
5429 int res;
5430 int sr;
5431 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report, NULL, ao2_cleanup);
5432
5433 if (!rtp || !rtp->rtcp) {
5434 return;
5435 }
5436
5437 if (ast_sockaddr_isnull(&rtp->rtcp->them) || rtp->rtcp->schedid < 0) {
5438 /*
5439 * RTCP was stopped.
5440 */
5441 return;
5442 }
5443
5444 if (!rtp->themssrc_valid) {
5445 /* We don't know their SSRC value so we don't know who to update. */
5446 return;
5447 }
5448
5449 /* Prepare RTCP FIR (PT=206, FMT=4) */
5450 rtp->rtcp->firseq++;
5451 if(rtp->rtcp->firseq == 256) {
5452 rtp->rtcp->firseq = 0;
5453 }
5454
5455 rtcpheader = bdata;
5456
5457 ao2_lock(instance);
5458 rtcp_report = ast_rtp_rtcp_report_alloc(rtp->themssrc_valid ? 1 : 0);
5459 res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
5460
5461 if (res == 0 || res == 1) {
5462 ao2_unlock(instance);
5463 return;
5464 }
5465
5466 packet_len += res;
5467
5468 put_unaligned_uint32(rtcpheader + packet_len + 0, htonl((2 << 30) | (4 << 24) | (RTCP_PT_PSFB << 16) | ((fir_len/4)-1)));
5469 put_unaligned_uint32(rtcpheader + packet_len + 4, htonl(rtp->ssrc));
5470 put_unaligned_uint32(rtcpheader + packet_len + 8, htonl(rtp->themssrc));
5471 put_unaligned_uint32(rtcpheader + packet_len + 12, htonl(rtp->themssrc)); /* FCI: SSRC */
5472 put_unaligned_uint32(rtcpheader + packet_len + 16, htonl(rtp->rtcp->firseq << 24)); /* FCI: Sequence number */
5473 res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len + fir_len, 0, rtp->bundled ? remote_address : &rtp->rtcp->them, &ice);
5474 if (res < 0) {
5475 ast_log(LOG_ERROR, "RTCP FIR transmission error: %s\n", strerror(errno));
5476 } else {
5477 ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, rtp->bundled ? *remote_address : rtp->rtcp->them, ice, sr);
5478 }
5479
5480 ao2_unlock(instance);
5481}
5482
5483static void rtp_write_rtcp_psfb(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_frame *frame, struct ast_sockaddr *remote_address)
5484{
5485 struct ast_rtp_rtcp_feedback *feedback = frame->data.ptr;
5486 unsigned char *rtcpheader;
5487 unsigned char bdata[1024];
5488 int remb_len = 24;
5489 int ice;
5490 int res;
5491 int sr = 0;
5492 int packet_len = 0;
5493 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report, NULL, ao2_cleanup);
5494
5495 if (feedback->fmt != AST_RTP_RTCP_FMT_REMB) {
5496 ast_debug_rtcp(1, "(%p) RTCP provided feedback frame of format %d to write, but only REMB is supported\n",
5497 instance, feedback->fmt);
5498 return;
5499 }
5500
5501 if (!rtp || !rtp->rtcp) {
5502 return;
5503 }
5504
5505 /* If REMB support is not enabled don't send this RTCP packet */
5507 ast_debug_rtcp(1, "(%p) RTCP provided feedback REMB report to write, but REMB support not enabled\n",
5508 instance);
5509 return;
5510 }
5511
5512 if (ast_sockaddr_isnull(&rtp->rtcp->them) || rtp->rtcp->schedid < 0) {
5513 /*
5514 * RTCP was stopped.
5515 */
5516 return;
5517 }
5518
5519 rtcpheader = bdata;
5520
5521 ao2_lock(instance);
5522 rtcp_report = ast_rtp_rtcp_report_alloc(rtp->themssrc_valid ? 1 : 0);
5523 res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
5524
5525 if (res == 0 || res == 1) {
5526 ao2_unlock(instance);
5527 return;
5528 }
5529
5530 packet_len += res;
5531
5532 put_unaligned_uint32(rtcpheader + packet_len + 0, htonl((2 << 30) | (AST_RTP_RTCP_FMT_REMB << 24) | (RTCP_PT_PSFB << 16) | ((remb_len/4)-1)));
5533 put_unaligned_uint32(rtcpheader + packet_len + 4, htonl(rtp->ssrc));
5534 put_unaligned_uint32(rtcpheader + packet_len + 8, htonl(0)); /* Per the draft, this should always be 0 */
5535 put_unaligned_uint32(rtcpheader + packet_len + 12, htonl(('R' << 24) | ('E' << 16) | ('M' << 8) | ('B'))); /* Unique identifier 'R' 'E' 'M' 'B' */
5536 put_unaligned_uint32(rtcpheader + packet_len + 16, htonl((1 << 24) | (feedback->remb.br_exp << 18) | (feedback->remb.br_mantissa))); /* Number of SSRCs / BR Exp / BR Mantissa */
5537 put_unaligned_uint32(rtcpheader + packet_len + 20, htonl(rtp->ssrc)); /* The SSRC this feedback message applies to */
5538 res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len + remb_len, 0, rtp->bundled ? remote_address : &rtp->rtcp->them, &ice);
5539 if (res < 0) {
5540 ast_log(LOG_ERROR, "RTCP PSFB transmission error: %s\n", strerror(errno));
5541 } else {
5542 ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, rtp->bundled ? *remote_address : rtp->rtcp->them, ice, sr);
5543 }
5544
5545 ao2_unlock(instance);
5546}
5547
5548/*! \pre instance is locked */
5549static int ast_rtp_write(struct ast_rtp_instance *instance, struct ast_frame *frame)
5550{
5551 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5552 struct ast_sockaddr remote_address = { {0,} };
5553 struct ast_format *format;
5554 int codec;
5555
5556 ast_rtp_instance_get_remote_address(instance, &remote_address);
5557
5558 /* If we don't actually know the remote address don't even bother doing anything */
5559 if (ast_sockaddr_isnull(&remote_address)) {
5560 ast_debug_rtp(1, "(%p) RTP no remote address on instance, so dropping frame\n", instance);
5561 return 0;
5562 }
5563
5564 /* VP8: is this a request to send a RTCP FIR? */
5566 rtp_write_rtcp_fir(instance, rtp, &remote_address);
5567 return 0;
5568 } else if (frame->frametype == AST_FRAME_RTCP) {
5569 if (frame->subclass.integer == AST_RTP_RTCP_PSFB) {
5570 rtp_write_rtcp_psfb(instance, rtp, frame, &remote_address);
5571 }
5572 return 0;
5573 }
5574
5575 /* If there is no data length we can't very well send the packet */
5576 if (!frame->datalen) {
5577 ast_debug_rtp(1, "(%p) RTP received frame with no data for instance, so dropping frame\n", instance);
5578 return 0;
5579 }
5580
5581 /* If the packet is not one our RTP stack supports bail out */
5582 if (frame->frametype != AST_FRAME_VOICE && frame->frametype != AST_FRAME_VIDEO && frame->frametype != AST_FRAME_TEXT) {
5583 ast_log(LOG_WARNING, "RTP can only send voice, video, and text\n");
5584 return -1;
5585 }
5586
5587 if (rtp->red) {
5588 /* return 0; */
5589 /* no primary data or generations to send */
5590 if ((frame = red_t140_to_red(rtp->red)) == NULL)
5591 return 0;
5592 }
5593
5594 /* Grab the subclass and look up the payload we are going to use */
5596 1, frame->subclass.format, 0);
5597 if (codec < 0) {
5598 ast_log(LOG_WARNING, "Don't know how to send format %s packets with RTP\n",
5600 return -1;
5601 }
5602
5603 /* Note that we do not increase the ref count here as this pointer
5604 * will not be held by any thing explicitly. The format variable is
5605 * merely a convenience reference to frame->subclass.format */
5606 format = frame->subclass.format;
5608 /* Oh dear, if the format changed we will have to set up a new smoother */
5609 ast_debug_rtp(1, "(%s) RTP ooh, format changed from %s to %s\n",
5613 ao2_replace(rtp->lasttxformat, format);
5614 if (rtp->smoother) {
5616 rtp->smoother = NULL;
5617 }
5618 }
5619
5620 /* If no smoother is present see if we have to set one up */
5621 if (!rtp->smoother && ast_format_can_be_smoothed(format)) {
5622 unsigned int smoother_flags = ast_format_get_smoother_flags(format);
5623 unsigned int framing_ms = ast_rtp_codecs_get_framing(ast_rtp_instance_get_codecs(instance));
5624
5625 if (!framing_ms && (smoother_flags & AST_SMOOTHER_FLAG_FORCED)) {
5626 framing_ms = ast_format_get_default_ms(format);
5627 }
5628
5629 if (framing_ms) {
5631 if (!rtp->smoother) {
5632 ast_log(LOG_WARNING, "Unable to create smoother: format %s ms: %u len: %u\n",
5633 ast_format_get_name(format), framing_ms, ast_format_get_minimum_bytes(format));
5634 return -1;
5635 }
5636 ast_smoother_set_flags(rtp->smoother, smoother_flags);
5637 }
5638 }
5639
5640 /* Feed audio frames into the actual function that will create a frame and send it */
5641 if (rtp->smoother) {
5642 struct ast_frame *f;
5643
5645 ast_smoother_feed_be(rtp->smoother, frame);
5646 } else {
5647 ast_smoother_feed(rtp->smoother, frame);
5648 }
5649
5650 while ((f = ast_smoother_read(rtp->smoother)) && (f->data.ptr)) {
5651 rtp_raw_write(instance, f, codec);
5652 }
5653 } else {
5654 int hdrlen = 12;
5655 struct ast_frame *f = NULL;
5656
5657 if (frame->offset < hdrlen) {
5658 f = ast_frdup(frame);
5659 } else {
5660 f = frame;
5661 }
5662 if (f->data.ptr) {
5663 rtp_raw_write(instance, f, codec);
5664 }
5665 if (f != frame) {
5666 ast_frfree(f);
5667 }
5668
5669 }
5670
5671 return 0;
5672}
5673
5674static void calc_rxstamp_and_jitter(struct timeval *tv,
5675 struct ast_rtp *rtp, unsigned int rx_rtp_ts,
5676 int mark)
5677{
5678 int rate = ast_rtp_get_rate(rtp->f.subclass.format);
5679
5680 double jitter = 0.0;
5681 double prev_jitter = 0.0;
5682 struct timeval now;
5683 struct timeval tmp;
5684 double rxnow;
5685 double arrival_sec;
5686 unsigned int arrival;
5687 int transit;
5688 int d;
5689
5690 gettimeofday(&now,NULL);
5691
5692 if (rtp->rxcount == 1 || mark) {
5693 rtp->rxstart = ast_tv2double(&now);
5694 rtp->remote_seed_rx_rtp_ts = rx_rtp_ts;
5695
5696 /*
5697 * "tv" is placed in the received frame's
5698 * "delivered" field and when this frame is
5699 * sent out again on the other side, it's
5700 * used to calculate the timestamp on the
5701 * outgoing RTP packets.
5702 *
5703 * NOTE: We need to do integer math here
5704 * because double math rounding issues can
5705 * generate incorrect timestamps.
5706 */
5707 rtp->rxcore = now;
5708 tmp = ast_samp2tv(rx_rtp_ts, rate);
5709 rtp->rxcore = ast_tvsub(rtp->rxcore, tmp);
5710 rtp->rxcore.tv_usec -= rtp->rxcore.tv_usec % 100;
5711 *tv = ast_tvadd(rtp->rxcore, tmp);
5712
5713 ast_debug_rtcp(3, "%s: "
5714 "Seed ts: %u current time: %f\n",
5716 , rx_rtp_ts
5717 , rtp->rxstart
5718 );
5719
5720 return;
5721 }
5722
5723 tmp = ast_samp2tv(rx_rtp_ts, rate);
5724 /* See the comment about "tv" above. Even if
5725 * we don't use this received packet for jitter
5726 * calculations, we still need to set tv so the
5727 * timestamp will be correct when this packet is
5728 * sent out again.
5729 */
5730 *tv = ast_tvadd(rtp->rxcore, tmp);
5731
5732 /*
5733 * The first few packets are generally unstable so let's
5734 * not use them in the calculations.
5735 */
5737 ast_debug_rtcp(3, "%s: Packet %d < %d. Ignoring\n",
5739 , rtp->rxcount
5741 );
5742
5743 return;
5744 }
5745
5746 /*
5747 * First good packet. Capture the start time and timestamp
5748 * but don't actually use this packet for calculation.
5749 */
5751 rtp->rxstart_stable = ast_tv2double(&now);
5752 rtp->remote_seed_rx_rtp_ts_stable = rx_rtp_ts;
5753 rtp->last_transit_time_samples = -rx_rtp_ts;
5754
5755 ast_debug_rtcp(3, "%s: "
5756 "pkt: %5u Stable Seed ts: %u current time: %f\n",
5758 , rtp->rxcount
5759 , rx_rtp_ts
5760 , rtp->rxstart_stable
5761 );
5762
5763 return;
5764 }
5765
5766 /*
5767 * If the current packet isn't in sequence, don't
5768 * use it in any calculations as remote_current_rx_rtp_ts
5769 * is not going to be correct.
5770 */
5771 if (rtp->lastrxseqno != rtp->prevrxseqno + 1) {
5772 ast_debug_rtcp(3, "%s: Current packet seq %d != last packet seq %d + 1. Ignoring\n",
5774 , rtp->lastrxseqno
5775 , rtp->prevrxseqno
5776 );
5777
5778 return;
5779 }
5780
5781 /*
5782 * The following calculations are taken from
5783 * https://www.rfc-editor.org/rfc/rfc3550#appendix-A.8
5784 *
5785 * The received rtp timestamp is the random "seed"
5786 * timestamp chosen by the sender when they sent the
5787 * first packet, plus the number of samples since then.
5788 *
5789 * To get our arrival time in the same units, we
5790 * calculate the time difference in seconds between
5791 * when we received the first packet and when we
5792 * received this packet and convert that to samples.
5793 */
5794 rxnow = ast_tv2double(&now);
5795 arrival_sec = rxnow - rtp->rxstart_stable;
5796 arrival = ast_sec2samp(arrival_sec, rate);
5797
5798 /*
5799 * Now we can use the exact formula in
5800 * https://www.rfc-editor.org/rfc/rfc3550#appendix-A.8 :
5801 *
5802 * int transit = arrival - r->ts;
5803 * int d = transit - s->transit;
5804 * s->transit = transit;
5805 * if (d < 0) d = -d;
5806 * s->jitter += (1./16.) * ((double)d - s->jitter);
5807 *
5808 * Our rx_rtp_ts is their r->ts.
5809 * Our rtp->last_transit_time_samples is their s->transit.
5810 * Our rtp->rxjitter is their s->jitter.
5811 */
5812 transit = arrival - rx_rtp_ts;
5813 d = transit - rtp->last_transit_time_samples;
5814
5815 if (d < 0) {
5816 d = -d;
5817 }
5818
5819 prev_jitter = rtp->rxjitter_samples;
5820 jitter = (1.0/16.0) * (((double)d) - prev_jitter);
5821 rtp->rxjitter_samples = prev_jitter + jitter;
5822
5823 /*
5824 * We need to hang on to jitter in both samples and seconds.
5825 */
5826 rtp->rxjitter = ast_samp2sec(rtp->rxjitter_samples, rate);
5827
5828 ast_debug_rtcp(3, "%s: pkt: %5u "
5829 "Arrival sec: %7.3f Arrival ts: %10u RX ts: %10u "
5830 "Transit samp: %6d Last transit samp: %6d d: %4d "
5831 "Curr jitter: %7.0f(%7.3f) Prev Jitter: %7.0f(%7.3f) New Jitter: %7.0f(%7.3f)\n",
5833 , rtp->rxcount
5834 , arrival_sec
5835 , arrival
5836 , rx_rtp_ts
5837 , transit
5839 , d
5840 , jitter
5841 , ast_samp2sec(jitter, rate)
5842 , prev_jitter
5843 , ast_samp2sec(prev_jitter, rate)
5844 , rtp->rxjitter_samples
5845 , rtp->rxjitter
5846 );
5847
5848 rtp->last_transit_time_samples = transit;
5849
5850 /*
5851 * Update all the stats.
5852 */
5853 if (rtp->rtcp) {
5854 if (rtp->rxjitter > rtp->rtcp->maxrxjitter)
5855 rtp->rtcp->maxrxjitter = rtp->rxjitter;
5856 if (rtp->rtcp->rxjitter_count == 1)
5857 rtp->rtcp->minrxjitter = rtp->rxjitter;
5858 if (rtp->rtcp && rtp->rxjitter < rtp->rtcp->minrxjitter)
5859 rtp->rtcp->minrxjitter = rtp->rxjitter;
5860
5863 &rtp->rtcp->rxjitter_count);
5864 }
5865
5866 return;
5867}
5868
5869static struct ast_frame *create_dtmf_frame(struct ast_rtp_instance *instance, enum ast_frame_type type, int compensate)
5870{
5871 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5872 struct ast_sockaddr remote_address = { {0,} };
5873
5874 ast_rtp_instance_get_remote_address(instance, &remote_address);
5875
5876 if (((compensate && type == AST_FRAME_DTMF_END) || (type == AST_FRAME_DTMF_BEGIN)) && ast_tvcmp(ast_tvnow(), rtp->dtmfmute) < 0) {
5877 ast_debug_rtp(1, "(%p) RTP ignore potential DTMF echo from '%s'\n",
5878 instance, ast_sockaddr_stringify(&remote_address));
5879 rtp->resp = 0;
5880 rtp->dtmfsamples = 0;
5881 return &ast_null_frame;
5882 } else if (type == AST_FRAME_DTMF_BEGIN && rtp->resp == 'X') {
5883 ast_debug_rtp(1, "(%p) RTP ignore flash begin from '%s'\n",
5884 instance, ast_sockaddr_stringify(&remote_address));
5885 rtp->resp = 0;
5886 rtp->dtmfsamples = 0;
5887 return &ast_null_frame;
5888 }
5889
5890 if (rtp->resp == 'X') {
5891 ast_debug_rtp(1, "(%p) RTP creating flash Frame at %s\n",
5892 instance, ast_sockaddr_stringify(&remote_address));
5895 } else {
5896 ast_debug_rtp(1, "(%p) RTP creating %s DTMF Frame: %d (%c), at %s\n",
5897 instance, type == AST_FRAME_DTMF_END ? "END" : "BEGIN",
5898 rtp->resp, rtp->resp,
5899 ast_sockaddr_stringify(&remote_address));
5900 rtp->f.frametype = type;
5901 rtp->f.subclass.integer = rtp->resp;
5902 }
5903 rtp->f.datalen = 0;
5904 rtp->f.samples = 0;
5905 rtp->f.mallocd = 0;
5906 rtp->f.src = "RTP";
5907 AST_LIST_NEXT(&rtp->f, frame_list) = NULL;
5908
5909 return &rtp->f;
5910}
5911
5912static void process_dtmf_rfc2833(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark, struct frame_list *frames)
5913{
5914 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
5915 struct ast_sockaddr remote_address = { {0,} };
5916 unsigned int event, event_end, samples;
5917 char resp = 0;
5918 struct ast_frame *f = NULL;
5919
5920 ast_rtp_instance_get_remote_address(instance, &remote_address);
5921
5922 /* Figure out event, event end, and samples */
5923 event = ntohl(*((unsigned int *)(data)));
5924 event >>= 24;
5925 event_end = ntohl(*((unsigned int *)(data)));
5926 event_end <<= 8;
5927 event_end >>= 24;
5928 samples = ntohl(*((unsigned int *)(data)));
5929 samples &= 0xFFFF;
5930
5931 if (rtp_debug_test_addr(&remote_address)) {
5932 ast_verbose("Got RTP RFC2833 from %s (type %-2.2d, seq %-6.6u, ts %-6.6u, len %-6.6d, mark %d, event %08x, end %d, duration %-5.5u) \n",
5933 ast_sockaddr_stringify(&remote_address),
5934 payloadtype, seqno, timestamp, len, (mark?1:0), event, ((event_end & 0x80)?1:0), samples);
5935 }
5936
5937 /* Print out debug if turned on */
5939 ast_debug(0, "- RTP 2833 Event: %08x (len = %d)\n", event, len);
5940
5941 /* Figure out what digit was pressed */
5942 if (event < 10) {
5943 resp = '0' + event;
5944 } else if (event < 11) {
5945 resp = '*';
5946 } else if (event < 12) {
5947 resp = '#';
5948 } else if (event < 16) {
5949 resp = 'A' + (event - 12);
5950 } else if (event < 17) { /* Event 16: Hook flash */
5951 resp = 'X';
5952 } else {
5953 /* Not a supported event */
5954 ast_debug_rtp(1, "(%p) RTP ignoring RTP 2833 Event: %08x. Not a DTMF Digit.\n", instance, event);
5955 return;
5956 }
5957
5959 if (!rtp->last_end_timestamp.is_set || rtp->last_end_timestamp.ts != timestamp || (rtp->resp && rtp->resp != resp)) {
5960 rtp->resp = resp;
5961 rtp->dtmf_timeout = 0;
5963 f->len = 0;
5964 rtp->last_end_timestamp.ts = timestamp;
5965 rtp->last_end_timestamp.is_set = 1;
5967 }
5968 } else {
5969 /* The duration parameter measures the complete
5970 duration of the event (from the beginning) - RFC2833.
5971 Account for the fact that duration is only 16 bits long
5972 (about 8 seconds at 8000 Hz) and can wrap is digit
5973 is hold for too long. */
5974 unsigned int new_duration = rtp->dtmf_duration;
5975 unsigned int last_duration = new_duration & 0xFFFF;
5976
5977 if (last_duration > 64000 && samples < last_duration) {
5978 new_duration += 0xFFFF + 1;
5979 }
5980 new_duration = (new_duration & ~0xFFFF) | samples;
5981
5982 if (event_end & 0x80) {
5983 /* End event */
5984 if (rtp->last_seqno != seqno && (!rtp->last_end_timestamp.is_set || timestamp > rtp->last_end_timestamp.ts)) {
5985 rtp->last_end_timestamp.ts = timestamp;
5986 rtp->last_end_timestamp.is_set = 1;
5987 rtp->dtmf_duration = new_duration;
5988 rtp->resp = resp;
5991 rtp->resp = 0;
5992 rtp->dtmf_duration = rtp->dtmf_timeout = 0;
5995 ast_debug_rtp(1, "(%p) RTP dropping duplicate or out of order DTMF END frame (seqno: %u, ts %u, digit %c)\n",
5996 instance, seqno, timestamp, resp);
5997 }
5998 } else {
5999 /* Begin/continuation */
6000
6001 /* The second portion of the seqno check is to not mistakenly
6002 * stop accepting DTMF if the seqno rolls over beyond
6003 * 65535.
6004 */
6005 if ((rtp->last_seqno > seqno && rtp->last_seqno - seqno < 50)
6006 || (rtp->last_end_timestamp.is_set
6007 && timestamp <= rtp->last_end_timestamp.ts)) {
6008 /* Out of order frame. Processing this can cause us to
6009 * improperly duplicate incoming DTMF, so just drop
6010 * this.
6011 */
6013 ast_debug(0, "Dropping out of order DTMF frame (seqno %u, ts %u, digit %c)\n",
6014 seqno, timestamp, resp);
6015 }
6016 return;
6017 }
6018
6019 if (rtp->resp && rtp->resp != resp) {
6020 /* Another digit already began. End it */
6023 rtp->resp = 0;
6024 rtp->dtmf_duration = rtp->dtmf_timeout = 0;
6026 }
6027
6028 if (rtp->resp) {
6029 /* Digit continues */
6030 rtp->dtmf_duration = new_duration;
6031 } else {
6032 /* New digit began */
6033 rtp->resp = resp;
6035 rtp->dtmf_duration = samples;
6037 }
6038
6039 rtp->dtmf_timeout = timestamp + rtp->dtmf_duration + dtmftimeout;
6040 }
6041
6042 rtp->last_seqno = seqno;
6043 }
6044
6045 rtp->dtmfsamples = samples;
6046
6047 return;
6048}
6049
6050static struct ast_frame *process_dtmf_cisco(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
6051{
6052 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
6053 unsigned int event, flags, power;
6054 char resp = 0;
6055 unsigned char seq;
6056 struct ast_frame *f = NULL;
6057
6058 if (len < 4) {
6059 return NULL;
6060 }
6061
6062 /* The format of Cisco RTP DTMF packet looks like next:
6063 +0 - sequence number of DTMF RTP packet (begins from 1,
6064 wrapped to 0)
6065 +1 - set of flags
6066 +1 (bit 0) - flaps by different DTMF digits delimited by audio
6067 or repeated digit without audio???
6068 +2 (+4,+6,...) - power level? (rises from 0 to 32 at begin of tone
6069 then falls to 0 at its end)
6070 +3 (+5,+7,...) - detected DTMF digit (0..9,*,#,A-D,...)
6071 Repeated DTMF information (bytes 4/5, 6/7) is history shifted right
6072 by each new packet and thus provides some redundancy.
6073
6074 Sample of Cisco RTP DTMF packet is (all data in hex):
6075 19 07 00 02 12 02 20 02
6076 showing end of DTMF digit '2'.
6077
6078 The packets
6079 27 07 00 02 0A 02 20 02
6080 28 06 20 02 00 02 0A 02
6081 shows begin of new digit '2' with very short pause (20 ms) after
6082 previous digit '2'. Bit +1.0 flips at begin of new digit.
6083
6084 Cisco RTP DTMF packets comes as replacement of audio RTP packets
6085 so its uses the same sequencing and timestamping rules as replaced
6086 audio packets. Repeat interval of DTMF packets is 20 ms and not rely
6087 on audio framing parameters. Marker bit isn't used within stream of
6088 DTMFs nor audio stream coming immediately after DTMF stream. Timestamps
6089 are not sequential at borders between DTMF and audio streams,
6090 */
6091
6092 seq = data[0];
6093 flags = data[1];
6094 power = data[2];
6095 event = data[3] & 0x1f;
6096
6098 ast_debug(0, "Cisco DTMF Digit: %02x (len=%d, seq=%d, flags=%02x, power=%u, history count=%d)\n", event, len, seq, flags, power, (len - 4) / 2);
6099 if (event < 10) {
6100 resp = '0' + event;
6101 } else if (event < 11) {
6102 resp = '*';
6103 } else if (event < 12) {
6104 resp = '#';
6105 } else if (event < 16) {
6106 resp = 'A' + (event - 12);
6107 } else if (event < 17) {
6108 resp = 'X';
6109 }
6110 if ((!rtp->resp && power) || (rtp->resp && (rtp->resp != resp))) {
6111 rtp->resp = resp;
6112 /* Why we should care on DTMF compensation at reception? */
6114 f = create_dtmf_frame(instance, AST_FRAME_DTMF_BEGIN, 0);
6115 rtp->dtmfsamples = 0;
6116 }
6117 } else if ((rtp->resp == resp) && !power) {
6119 f->samples = rtp->dtmfsamples * (ast_rtp_get_rate(rtp->lastrxformat) / 1000);
6120 rtp->resp = 0;
6121 } else if (rtp->resp == resp) {
6122 rtp->dtmfsamples += 20 * (ast_rtp_get_rate(rtp->lastrxformat) / 1000);
6123 }
6124
6125 rtp->dtmf_timeout = 0;
6126
6127 return f;
6128}
6129
6130static struct ast_frame *process_cn_rfc3389(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
6131{
6132 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
6133
6134 /* Convert comfort noise into audio with various codecs. Unfortunately this doesn't
6135 totally help us out because we don't have an engine to keep it going and we are not
6136 guaranteed to have it every 20ms or anything */
6138 ast_debug(0, "- RTP 3389 Comfort noise event: Format %s (len = %d)\n",
6140 }
6141
6142 if (!ast_test_flag(rtp, FLAG_3389_WARNING)) {
6143 struct ast_sockaddr remote_address = { {0,} };
6144
6145 ast_rtp_instance_get_remote_address(instance, &remote_address);
6146
6147 ast_log(LOG_NOTICE, "Comfort noise support incomplete in Asterisk (RFC 3389). Please turn off on client if possible. Client address: %s\n",
6148 ast_sockaddr_stringify(&remote_address));
6150 }
6151
6152 /* Must have at least one byte */
6153 if (!len) {
6154 return NULL;
6155 }
6156 if (len < 24) {
6157 rtp->f.data.ptr = rtp->rawdata + AST_FRIENDLY_OFFSET;
6158 rtp->f.datalen = len - 1;
6160 memcpy(rtp->f.data.ptr, data + 1, len - 1);
6161 } else {
6162 rtp->f.data.ptr = NULL;
6163 rtp->f.offset = 0;
6164 rtp->f.datalen = 0;
6165 }
6166 rtp->f.frametype = AST_FRAME_CNG;
6167 rtp->f.subclass.integer = data[0] & 0x7f;
6168 rtp->f.samples = 0;
6169 rtp->f.delivery.tv_usec = rtp->f.delivery.tv_sec = 0;
6170
6171 return &rtp->f;
6172}
6173
6174static int update_rtt_stats(struct ast_rtp *rtp, unsigned int lsr, unsigned int dlsr)
6175{
6176 struct timeval now;
6177 struct timeval rtt_tv;
6178 unsigned int msw;
6179 unsigned int lsw;
6180 unsigned int rtt_msw;
6181 unsigned int rtt_lsw;
6182 unsigned int lsr_a;
6183 unsigned int rtt;
6184
6185 gettimeofday(&now, NULL);
6186 timeval2ntp(now, &msw, &lsw);
6187
6188 lsr_a = ((msw & 0x0000ffff) << 16) | ((lsw & 0xffff0000) >> 16);
6189 rtt = lsr_a - lsr - dlsr;
6190 rtt_msw = (rtt & 0xffff0000) >> 16;
6191 rtt_lsw = (rtt & 0x0000ffff);
6192 rtt_tv.tv_sec = rtt_msw;
6193 /*
6194 * Convert 16.16 fixed point rtt_lsw to usec without
6195 * overflow.
6196 *
6197 * = rtt_lsw * 10^6 / 2^16
6198 * = rtt_lsw * (2^6 * 5^6) / 2^16
6199 * = rtt_lsw * 5^6 / 2^10
6200 *
6201 * The rtt_lsw value is in 16.16 fixed point format and 5^6
6202 * requires 14 bits to represent. We have enough space to
6203 * directly do the conversion because there is no integer
6204 * component in rtt_lsw.
6205 */
6206 rtt_tv.tv_usec = (rtt_lsw * 15625) >> 10;
6207 rtp->rtcp->rtt = (double)rtt_tv.tv_sec + ((double)rtt_tv.tv_usec / 1000000);
6208 if (lsr_a - dlsr < lsr) {
6209 return 1;
6210 }
6211
6212 rtp->rtcp->accumulated_transit += rtp->rtcp->rtt;
6213 if (rtp->rtcp->rtt_count == 0 || rtp->rtcp->minrtt > rtp->rtcp->rtt) {
6214 rtp->rtcp->minrtt = rtp->rtcp->rtt;
6215 }
6216 if (rtp->rtcp->maxrtt < rtp->rtcp->rtt) {
6217 rtp->rtcp->maxrtt = rtp->rtcp->rtt;
6218 }
6219
6221 &rtp->rtcp->stdevrtt, &rtp->rtcp->rtt_count);
6222
6223 return 0;
6224}
6225
6226/*!
6227 * \internal
6228 * \brief Update RTCP interarrival jitter stats
6229 */
6230static void update_jitter_stats(struct ast_rtp *rtp, unsigned int ia_jitter)
6231{
6232 int rate = ast_rtp_get_rate(rtp->f.subclass.format);
6233
6234 rtp->rtcp->reported_jitter = ast_samp2sec(ia_jitter, rate);
6235
6236 if (rtp->rtcp->reported_jitter_count == 0) {
6238 }
6239 if (rtp->rtcp->reported_jitter < rtp->rtcp->reported_minjitter) {
6241 }
6242 if (rtp->rtcp->reported_jitter > rtp->rtcp->reported_maxjitter) {
6244 }
6245
6249}
6250
6251/*!
6252 * \internal
6253 * \brief Update RTCP lost packet stats
6254 */
6255static void update_lost_stats(struct ast_rtp *rtp, unsigned int lost_packets)
6256{
6257 double reported_lost;
6258
6259 rtp->rtcp->reported_lost = lost_packets;
6260 reported_lost = (double)rtp->rtcp->reported_lost;
6261 if (rtp->rtcp->reported_lost_count == 0) {
6262 rtp->rtcp->reported_minlost = reported_lost;
6263 }
6264 if (reported_lost < rtp->rtcp->reported_minlost) {
6265 rtp->rtcp->reported_minlost = reported_lost;
6266 }
6267 if (reported_lost > rtp->rtcp->reported_maxlost) {
6268 rtp->rtcp->reported_maxlost = reported_lost;
6269 }
6270
6273}
6274
6275#define RESCALE(in, inmin, inmax, outmin, outmax) ((((in - inmin)/(inmax-inmin))*(outmax-outmin))+outmin)
6276/*!
6277 * \brief Calculate a "media experience score" based on given data
6278 *
6279 * Technically, a mean opinion score (MOS) cannot be calculated without the involvement
6280 * of human eyes (video) and ears (audio). Thus instead we'll approximate an opinion
6281 * using the given parameters, and call it a media experience score.
6282 *
6283 * The tallied score is based upon recommendations and formulas from ITU-T G.107,
6284 * ITU-T G.109, ITU-T G.113, and other various internet sources.
6285 *
6286 * \param instance RTP instance
6287 * \param normdevrtt The average round trip time
6288 * \param normdev_rxjitter The smoothed jitter
6289 * \param stdev_rxjitter The jitter standard deviation value
6290 * \param normdev_rxlost The average number of packets lost since last check
6291 *
6292 * \return A media experience score.
6293 *
6294 * \note The calculations in this function could probably be simplified
6295 * but calculating a MOS using the information available publicly,
6296 * then re-scaling it to 0.0 -> 100.0 makes the process clearer and
6297 * easier to troubleshoot or change.
6298 */
6299static double calc_media_experience_score(struct ast_rtp_instance *instance,
6300 double normdevrtt, double normdev_rxjitter, double stdev_rxjitter,
6301 double normdev_rxlost)
6302{
6303 double r_value;
6304 double pseudo_mos;
6305 double mes = 0;
6306
6307 /*
6308 * While the media itself might be okay, a significant enough delay could make
6309 * for an unpleasant user experience.
6310 *
6311 * Calculate the effective latency by using the given round trip time, and adding
6312 * jitter scaled according to its standard deviation. The scaling is done in order
6313 * to increase jitter's weight since a higher deviation can result in poorer overall
6314 * quality.
6315 */
6316 double effective_latency = (normdevrtt * 1000)
6317 + ((normdev_rxjitter * 2) * (stdev_rxjitter / 3))
6318 + 10;
6319
6320 /*
6321 * Using the defaults for the standard transmission rating factor ("R" value)
6322 * one arrives at 93.2 (see ITU-T G.107 for more details), so we'll use that
6323 * as the starting value and subtract deficiencies that could affect quality.
6324 *
6325 * Calculate the impact of the effective latency. Influence increases with
6326 * values over 160 as the significant "lag" can degrade user experience.
6327 */
6328 if (effective_latency < 160) {
6329 r_value = 93.2 - (effective_latency / 40);
6330 } else {
6331 r_value = 93.2 - (effective_latency - 120) / 10;
6332 }
6333
6334 /* Next evaluate the impact of lost packets */
6335 r_value = r_value - (normdev_rxlost * 2.0);
6336
6337 /*
6338 * Finally convert the "R" value into a opinion/quality score between 1 (really anything
6339 * below 3 should be considered poor) and 4.5 (the highest achievable for VOIP).
6340 */
6341 if (r_value < 0) {
6342 pseudo_mos = 1.0;
6343 } else if (r_value > 100) {
6344 pseudo_mos = 4.5;
6345 } else {
6346 pseudo_mos = 1 + (0.035 * r_value) + (r_value * (r_value - 60) * (100 - r_value) * 0.000007);
6347 }
6348
6349 /*
6350 * We're going to rescale the 0.0->5.0 pseudo_mos to the 0.0->100.0 MES.
6351 * For those ranges, we could actually just multiply the pseudo_mos
6352 * by 20 but we may want to change the scale later.
6353 */
6354 mes = RESCALE(pseudo_mos, 0.0, 5.0, 0.0, 100.0);
6355
6356 return mes;
6357}
6358
6359/*!
6360 * \internal
6361 * \brief Update MES stats based on info received in an SR or RR.
6362 * This is RTP we sent and they received.
6363 */
6364static void update_reported_mes_stats(struct ast_rtp *rtp)
6365{
6366 double mes = calc_media_experience_score(rtp->owner,
6367 rtp->rtcp->normdevrtt,
6368 rtp->rtcp->reported_jitter,
6371
6372 rtp->rtcp->reported_mes = mes;
6373 if (rtp->rtcp->reported_mes_count == 0) {
6374 rtp->rtcp->reported_minmes = mes;
6375 }
6376 if (mes < rtp->rtcp->reported_minmes) {
6377 rtp->rtcp->reported_minmes = mes;
6378 }
6379 if (mes > rtp->rtcp->reported_maxmes) {
6380 rtp->rtcp->reported_maxmes = mes;
6381 }
6382
6385
6386 ast_debug_rtcp(2, "%s: rtt: %.9f j: %.9f sjh: %.9f lost: %.9f mes: %4.1f\n",
6388 rtp->rtcp->normdevrtt,
6389 rtp->rtcp->reported_jitter,
6391 rtp->rtcp->reported_normdev_lost, mes);
6392}
6393
6394/*!
6395 * \internal
6396 * \brief Update MES stats based on info we will send in an SR or RR.
6397 * This is RTP they sent and we received.
6398 */
6399static void update_local_mes_stats(struct ast_rtp *rtp)
6400{
6402 rtp->rtcp->normdevrtt,
6403 rtp->rxjitter,
6404 rtp->rtcp->stdev_rxjitter,
6405 rtp->rtcp->normdev_rxlost);
6406
6407 if (rtp->rtcp->rxmes_count == 0) {
6408 rtp->rtcp->minrxmes = rtp->rxmes;
6409 }
6410 if (rtp->rxmes < rtp->rtcp->minrxmes) {
6411 rtp->rtcp->minrxmes = rtp->rxmes;
6412 }
6413 if (rtp->rxmes > rtp->rtcp->maxrxmes) {
6414 rtp->rtcp->maxrxmes = rtp->rxmes;
6415 }
6416
6418 &rtp->rtcp->stdev_rxmes, &rtp->rtcp->rxmes_count);
6419
6420 ast_debug_rtcp(2, " %s: rtt: %.9f j: %.9f sjh: %.9f lost: %.9f mes: %4.1f\n",
6422 rtp->rtcp->normdevrtt,
6423 rtp->rxjitter,
6424 rtp->rtcp->stdev_rxjitter,
6425 rtp->rtcp->normdev_rxlost, rtp->rxmes);
6426}
6427
6428/*! \pre instance is locked */
6430 struct ast_rtp *rtp, unsigned int ssrc, int source)
6431{
6432 int index;
6433
6434 if (!AST_VECTOR_SIZE(&rtp->ssrc_mapping)) {
6435 /* This instance is not bundled */
6436 return instance;
6437 }
6438
6439 /* Find the bundled child instance */
6440 for (index = 0; index < AST_VECTOR_SIZE(&rtp->ssrc_mapping); ++index) {
6441 struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&rtp->ssrc_mapping, index);
6442 unsigned int mapping_ssrc = source ? ast_rtp_get_ssrc(mapping->instance) : mapping->ssrc;
6443
6444 if (mapping->ssrc_valid && mapping_ssrc == ssrc) {
6445 return mapping->instance;
6446 }
6447 }
6448
6449 /* Does the SSRC match the bundled parent? */
6450 if (rtp->themssrc_valid && rtp->themssrc == ssrc) {
6451 return instance;
6452 }
6453 return NULL;
6454}
6455
6456/*! \pre instance is locked */
6458 struct ast_rtp *rtp, unsigned int ssrc)
6459{
6460 return __rtp_find_instance_by_ssrc(instance, rtp, ssrc, 0);
6461}
6462
6463/*! \pre instance is locked */
6465 struct ast_rtp *rtp, unsigned int ssrc)
6466{
6467 return __rtp_find_instance_by_ssrc(instance, rtp, ssrc, 1);
6468}
6469
6470static const char *rtcp_payload_type2str(unsigned int pt)
6471{
6472 const char *str;
6473
6474 switch (pt) {
6475 case RTCP_PT_SR:
6476 str = "Sender Report";
6477 break;
6478 case RTCP_PT_RR:
6479 str = "Receiver Report";
6480 break;
6481 case RTCP_PT_FUR:
6482 /* Full INTRA-frame Request / Fast Update Request */
6483 str = "H.261 FUR";
6484 break;
6485 case RTCP_PT_PSFB:
6486 /* Payload Specific Feed Back */
6487 str = "PSFB";
6488 break;
6489 case RTCP_PT_SDES:
6490 str = "Source Description";
6491 break;
6492 case RTCP_PT_BYE:
6493 str = "BYE";
6494 break;
6495 default:
6496 str = "Unknown";
6497 break;
6498 }
6499 return str;
6500}
6501
6502static const char *rtcp_payload_subtype2str(unsigned int pt, unsigned int subtype)
6503{
6504 switch (pt) {
6505 case AST_RTP_RTCP_RTPFB:
6506 if (subtype == AST_RTP_RTCP_FMT_NACK) {
6507 return "NACK";
6508 }
6509 break;
6510 case RTCP_PT_PSFB:
6511 if (subtype == AST_RTP_RTCP_FMT_REMB) {
6512 return "REMB";
6513 }
6514 break;
6515 default:
6516 break;
6517 }
6518
6519 return NULL;
6520}
6521
6522/*! \pre instance is locked */
6523static int ast_rtp_rtcp_handle_nack(struct ast_rtp_instance *instance, unsigned int *nackdata, unsigned int position,
6524 unsigned int length)
6525{
6526 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
6527 int res = 0;
6528 int blp_index;
6529 int packet_index;
6530 int ice;
6531 struct ast_rtp_rtcp_nack_payload *payload;
6532 unsigned int current_word;
6533 unsigned int pid; /* Packet ID which refers to seqno of lost packet */
6534 unsigned int blp; /* Bitmask of following lost packets */
6535 struct ast_sockaddr remote_address = { {0,} };
6536 int abs_send_time_id;
6537 unsigned int now_msw = 0;
6538 unsigned int now_lsw = 0;
6539 unsigned int packets_not_found = 0;
6540
6541 if (!rtp->send_buffer) {
6542 ast_debug_rtcp(1, "(%p) RTCP tried to handle NACK request, "
6543 "but we don't have a RTP packet storage!\n", instance);
6544 return res;
6545 }
6546
6548 if (abs_send_time_id != -1) {
6549 timeval2ntp(ast_tvnow(), &now_msw, &now_lsw);
6550 }
6551
6552 ast_rtp_instance_get_remote_address(instance, &remote_address);
6553
6554 /*
6555 * We use index 3 because with feedback messages, the FCI (Feedback Control Information)
6556 * does not begin until after the version, packet SSRC, and media SSRC words.
6557 */
6558 for (packet_index = 3; packet_index < length; packet_index++) {
6559 current_word = ntohl(nackdata[position + packet_index]);
6560 pid = current_word >> 16;
6561 /* We know the remote end is missing this packet. Go ahead and send it if we still have it. */
6562 payload = (struct ast_rtp_rtcp_nack_payload *)ast_data_buffer_get(rtp->send_buffer, pid);
6563 if (payload) {
6564 if (abs_send_time_id != -1) {
6565 /* On retransmission we need to update the timestamp within the packet, as it
6566 * is supposed to contain when the packet was actually sent.
6567 */
6568 put_unaligned_time24(payload->buf + 17, now_msw, now_lsw);
6569 }
6570 res += rtp_sendto(instance, payload->buf, payload->size, 0, &remote_address, &ice);
6571 } else {
6572 ast_debug_rtcp(1, "(%p) RTCP received NACK request for RTP packet with seqno %d, "
6573 "but we don't have it\n", instance, pid);
6574 packets_not_found++;
6575 }
6576 /*
6577 * The bitmask. Denoting the least significant bit as 1 and its most significant bit
6578 * as 16, then bit i of the bitmask is set to 1 if the receiver has not received RTP
6579 * packet (pid+i)(modulo 2^16). Otherwise, it is set to 0. We cannot assume bits set
6580 * to 0 after a bit set to 1 have actually been received.
6581 */
6582 blp = current_word & 0xffff;
6583 blp_index = 1;
6584 while (blp) {
6585 if (blp & 1) {
6586 /* Packet (pid + i)(modulo 2^16) is missing too. */
6587 unsigned int seqno = (pid + blp_index) % 65536;
6588 payload = (struct ast_rtp_rtcp_nack_payload *)ast_data_buffer_get(rtp->send_buffer, seqno);
6589 if (payload) {
6590 if (abs_send_time_id != -1) {
6591 put_unaligned_time24(payload->buf + 17, now_msw, now_lsw);
6592 }
6593 res += rtp_sendto(instance, payload->buf, payload->size, 0, &remote_address, &ice);
6594 } else {
6595 ast_debug_rtcp(1, "(%p) RTCP remote end also requested RTP packet with seqno %d, "
6596 "but we don't have it\n", instance, seqno);
6597 packets_not_found++;
6598 }
6599 }
6600 blp >>= 1;
6601 blp_index++;
6602 }
6603 }
6604
6605 if (packets_not_found) {
6606 /* Grow the send buffer based on how many packets were not found in the buffer, but
6607 * enforce a maximum.
6608 */
6610 ast_data_buffer_max(rtp->send_buffer) + packets_not_found));
6611 ast_debug_rtcp(2, "(%p) RTCP send buffer on RTP instance is now at maximum of %zu\n",
6612 instance, ast_data_buffer_max(rtp->send_buffer));
6613 }
6614
6615 return res;
6616}
6617
6618/*
6619 * Unshifted RTCP header bit field masks
6620 */
6621#define RTCP_LENGTH_MASK 0xFFFF
6622#define RTCP_PAYLOAD_TYPE_MASK 0xFF
6623#define RTCP_REPORT_COUNT_MASK 0x1F
6624#define RTCP_PADDING_MASK 0x01
6625#define RTCP_VERSION_MASK 0x03
6626
6627/*
6628 * RTCP header bit field shift offsets
6629 */
6630#define RTCP_LENGTH_SHIFT 0
6631#define RTCP_PAYLOAD_TYPE_SHIFT 16
6632#define RTCP_REPORT_COUNT_SHIFT 24
6633#define RTCP_PADDING_SHIFT 29
6634#define RTCP_VERSION_SHIFT 30
6635
6636#define RTCP_VERSION 2U
6637#define RTCP_VERSION_SHIFTED (RTCP_VERSION << RTCP_VERSION_SHIFT)
6638#define RTCP_VERSION_MASK_SHIFTED (RTCP_VERSION_MASK << RTCP_VERSION_SHIFT)
6639
6640/*
6641 * RTCP first packet record validity header mask and value.
6642 *
6643 * RFC3550 intentionally defines the encoding of RTCP_PT_SR and RTCP_PT_RR
6644 * such that they differ in the least significant bit. Either of these two
6645 * payload types MUST be the first RTCP packet record in a compound packet.
6646 *
6647 * RFC3550 checks the padding bit in the algorithm they use to check the
6648 * RTCP packet for validity. However, we aren't masking the padding bit
6649 * to check since we don't know if it is a compound RTCP packet or not.
6650 */
6651#define RTCP_VALID_MASK (RTCP_VERSION_MASK_SHIFTED | (((RTCP_PAYLOAD_TYPE_MASK & ~0x1)) << RTCP_PAYLOAD_TYPE_SHIFT))
6652#define RTCP_VALID_VALUE (RTCP_VERSION_SHIFTED | (RTCP_PT_SR << RTCP_PAYLOAD_TYPE_SHIFT))
6653
6654#define RTCP_SR_BLOCK_WORD_LENGTH 5
6655#define RTCP_RR_BLOCK_WORD_LENGTH 6
6656#define RTCP_HEADER_SSRC_LENGTH 2
6657#define RTCP_FB_REMB_BLOCK_WORD_LENGTH 4
6658#define RTCP_FB_NACK_BLOCK_WORD_LENGTH 2
6659
6660static struct ast_frame *ast_rtcp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp,
6661 const unsigned char *rtcpdata, size_t size, struct ast_sockaddr *addr)
6662{
6663 struct ast_rtp_instance *transport = instance;
6664 struct ast_rtp *transport_rtp = ast_rtp_instance_get_data(instance);
6665 int len = size;
6666 unsigned int *rtcpheader = (unsigned int *)(rtcpdata);
6667 unsigned int packetwords;
6668 unsigned int position;
6669 unsigned int first_word;
6670 /*! True if we have seen an acceptable SSRC to learn the remote RTCP address */
6671 unsigned int ssrc_seen;
6672 struct ast_rtp_rtcp_report_block *report_block;
6673 struct ast_frame *f = &ast_null_frame;
6674#ifdef TEST_FRAMEWORK
6675 struct ast_rtp_engine_test *test_engine;
6676#endif
6677
6678 /* If this is encrypted then decrypt the payload */
6679 if ((*rtcpheader & 0xC0) && res_srtp && srtp && res_srtp->unprotect(
6680 srtp, rtcpheader, &len, 1 | (srtp_replay_protection << 1)) < 0) {
6681 return &ast_null_frame;
6682 }
6683
6684 packetwords = len / 4;
6685
6686 ast_debug_rtcp(2, "(%s) RTCP got report of %d bytes from %s\n",
6689
6690 /*
6691 * Validate the RTCP packet according to an adapted and slightly
6692 * modified RFC3550 validation algorithm.
6693 */
6694 if (packetwords < RTCP_HEADER_SSRC_LENGTH) {
6695 ast_debug_rtcp(2, "(%s) RTCP %p -- from %s: Frame size (%u words) is too short\n",
6697 transport_rtp, ast_sockaddr_stringify(addr), packetwords);
6698 return &ast_null_frame;
6699 }
6700 position = 0;
6701 first_word = ntohl(rtcpheader[position]);
6702 if ((first_word & RTCP_VALID_MASK) != RTCP_VALID_VALUE) {
6703 ast_debug_rtcp(2, "(%s) RTCP %p -- from %s: Failed first packet validity check\n",
6705 transport_rtp, ast_sockaddr_stringify(addr));
6706 return &ast_null_frame;
6707 }
6708 do {
6709 position += ((first_word >> RTCP_LENGTH_SHIFT) & RTCP_LENGTH_MASK) + 1;
6710 if (packetwords <= position) {
6711 break;
6712 }
6713 first_word = ntohl(rtcpheader[position]);
6714 } while ((first_word & RTCP_VERSION_MASK_SHIFTED) == RTCP_VERSION_SHIFTED);
6715 if (position != packetwords) {
6716 ast_debug_rtcp(2, "(%s) RTCP %p -- from %s: Failed packet version or length check\n",
6718 transport_rtp, ast_sockaddr_stringify(addr));
6719 return &ast_null_frame;
6720 }
6721
6722 /*
6723 * Note: RFC3605 points out that true NAT (vs NAPT) can cause RTCP
6724 * to have a different IP address and port than RTP. Otherwise, when
6725 * strictrtp is enabled we could reject RTCP packets not coming from
6726 * the learned RTP IP address if it is available.
6727 */
6728
6729 /*
6730 * strictrtp safety needs SSRC to match before we use the
6731 * sender's address for symmetrical RTP to send our RTCP
6732 * reports.
6733 *
6734 * If strictrtp is not enabled then claim to have already seen
6735 * a matching SSRC so we'll accept this packet's address for
6736 * symmetrical RTP.
6737 */
6738 ssrc_seen = transport_rtp->strict_rtp_state == STRICT_RTP_OPEN;
6739
6740 position = 0;
6741 while (position < packetwords) {
6742 unsigned int i;
6743 unsigned int pt;
6744 unsigned int rc;
6745 unsigned int ssrc;
6746 /*! True if the ssrc value we have is valid and not garbage because it doesn't exist. */
6747 unsigned int ssrc_valid;
6748 unsigned int length;
6749 unsigned int min_length;
6750 /*! Always use packet source SSRC to find the rtp instance unless explicitly told not to. */
6751 unsigned int use_packet_source = 1;
6752
6753 struct ast_json *message_blob;
6754 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report, NULL, ao2_cleanup);
6755 struct ast_rtp_instance *child;
6756 struct ast_rtp *rtp;
6757 struct ast_rtp_rtcp_feedback *feedback;
6758
6759 i = position;
6760 first_word = ntohl(rtcpheader[i]);
6761 pt = (first_word >> RTCP_PAYLOAD_TYPE_SHIFT) & RTCP_PAYLOAD_TYPE_MASK;
6762 rc = (first_word >> RTCP_REPORT_COUNT_SHIFT) & RTCP_REPORT_COUNT_MASK;
6763 /* RFC3550 says 'length' is the number of words in the packet - 1 */
6764 length = ((first_word >> RTCP_LENGTH_SHIFT) & RTCP_LENGTH_MASK) + 1;
6765
6766 /* Check expected RTCP packet record length */
6767 min_length = RTCP_HEADER_SSRC_LENGTH;
6768 switch (pt) {
6769 case RTCP_PT_SR:
6770 min_length += RTCP_SR_BLOCK_WORD_LENGTH;
6771 /* fall through */
6772 case RTCP_PT_RR:
6773 min_length += (rc * RTCP_RR_BLOCK_WORD_LENGTH);
6774 use_packet_source = 0;
6775 break;
6776 case RTCP_PT_FUR:
6777 break;
6778 case AST_RTP_RTCP_RTPFB:
6779 switch (rc) {
6781 min_length += RTCP_FB_NACK_BLOCK_WORD_LENGTH;
6782 break;
6783 default:
6784 break;
6785 }
6786 use_packet_source = 0;
6787 break;
6788 case RTCP_PT_PSFB:
6789 switch (rc) {
6791 min_length += RTCP_FB_REMB_BLOCK_WORD_LENGTH;
6792 break;
6793 default:
6794 break;
6795 }
6796 break;
6797 case RTCP_PT_SDES:
6798 case RTCP_PT_BYE:
6799 /*
6800 * There may not be a SSRC/CSRC present. The packet is
6801 * useless but still valid if it isn't present.
6802 *
6803 * We don't know what min_length should be so disable the check
6804 */
6805 min_length = length;
6806 break;
6807 default:
6808 ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: %u(%s) skipping record\n",
6809 instance, transport_rtp, ast_sockaddr_stringify(addr), pt, rtcp_payload_type2str(pt));
6810 if (rtcp_debug_test_addr(addr)) {
6811 ast_verbose("\n");
6812 ast_verbose("RTCP from %s: %u(%s) skipping record\n",
6814 }
6815 position += length;
6816 continue;
6817 }
6818 if (length < min_length) {
6819 ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: %u(%s) length field less than expected minimum. Min:%u Got:%u\n",
6820 instance, transport_rtp, ast_sockaddr_stringify(addr), pt, rtcp_payload_type2str(pt),
6821 min_length - 1, length - 1);
6822 return &ast_null_frame;
6823 }
6824
6825 /* Get the RTCP record SSRC if defined for the record */
6826 ssrc_valid = 1;
6827 switch (pt) {
6828 case RTCP_PT_SR:
6829 case RTCP_PT_RR:
6830 rtcp_report = ast_rtp_rtcp_report_alloc(rc);
6831 if (!rtcp_report) {
6832 return &ast_null_frame;
6833 }
6834 rtcp_report->reception_report_count = rc;
6835
6836 ssrc = ntohl(rtcpheader[i + 2]);
6837 rtcp_report->ssrc = ssrc;
6838 break;
6839 case RTCP_PT_FUR:
6840 case RTCP_PT_PSFB:
6841 ssrc = ntohl(rtcpheader[i + 1]);
6842 break;
6843 case AST_RTP_RTCP_RTPFB:
6844 ssrc = ntohl(rtcpheader[i + 2]);
6845 break;
6846 case RTCP_PT_SDES:
6847 case RTCP_PT_BYE:
6848 default:
6849 ssrc = 0;
6850 ssrc_valid = 0;
6851 break;
6852 }
6853
6854 if (rtcp_debug_test_addr(addr)) {
6855 const char *subtype = rtcp_payload_subtype2str(pt, rc);
6856
6857 ast_verbose("\n");
6858 ast_verbose("RTCP from %s\n", ast_sockaddr_stringify(addr));
6859 ast_verbose("PT: %u (%s)\n", pt, rtcp_payload_type2str(pt));
6860 if (subtype) {
6861 ast_verbose("Packet Subtype: %u (%s)\n", rc, subtype);
6862 } else {
6863 ast_verbose("Reception reports: %u\n", rc);
6864 }
6865 ast_verbose("SSRC of sender: %u\n", ssrc);
6866 }
6867
6868 /* Determine the appropriate instance for this */
6869 if (ssrc_valid) {
6870 /*
6871 * Depending on the payload type, either the packet source or media source
6872 * SSRC is used.
6873 */
6874 if (use_packet_source) {
6875 child = rtp_find_instance_by_packet_source_ssrc(transport, transport_rtp, ssrc);
6876 } else {
6877 child = rtp_find_instance_by_media_source_ssrc(transport, transport_rtp, ssrc);
6878 }
6879 if (child && child != transport) {
6880 /*
6881 * It is safe to hold the child lock while holding the parent lock.
6882 * We guarantee that the locking order is always parent->child or
6883 * that the child lock is not held when acquiring the parent lock.
6884 */
6885 ao2_lock(child);
6886 instance = child;
6887 rtp = ast_rtp_instance_get_data(instance);
6888 } else {
6889 /* The child is the parent! We don't need to unlock it. */
6890 child = NULL;
6891 rtp = transport_rtp;
6892 }
6893 } else {
6894 child = NULL;
6895 rtp = transport_rtp;
6896 }
6897
6898 if (ssrc_valid && rtp->themssrc_valid) {
6899 /*
6900 * If the SSRC is 1, we still need to handle RTCP since this could be a
6901 * special case. For example, if we have a unidirectional video stream, the
6902 * SSRC may be set to 1 by the browser (in the case of chromium), and requests
6903 * will still need to be processed so that video can flow as expected. This
6904 * should only be done for PLI and FUR, since there is not a way to get the
6905 * appropriate rtp instance when the SSRC is 1.
6906 */
6907 int exception = (ssrc == 1 && !((pt == RTCP_PT_PSFB && rc == AST_RTP_RTCP_FMT_PLI) || pt == RTCP_PT_FUR));
6908 if ((ssrc != rtp->themssrc && use_packet_source && ssrc != 1)
6909 || exception) {
6910 /*
6911 * Skip over this RTCP record as it does not contain the
6912 * correct SSRC. We should not act upon RTCP records
6913 * for a different stream.
6914 */
6915 position += length;
6916 ast_debug_rtcp(1, "(%p) RTCP %p -- from %s: Skipping record, received SSRC '%u' != expected '%u'\n",
6917 instance, rtp, ast_sockaddr_stringify(addr), ssrc, rtp->themssrc);
6918 if (child) {
6919 ao2_unlock(child);
6920 }
6921 continue;
6922 }
6923 ssrc_seen = 1;
6924 }
6925
6926 if (ssrc_seen && ast_rtp_instance_get_prop(instance, AST_RTP_PROPERTY_NAT)) {
6927 /* Send to whoever sent to us */
6928 if (ast_sockaddr_cmp(&rtp->rtcp->them, addr)) {
6929 ast_sockaddr_copy(&rtp->rtcp->them, addr);
6931 ast_debug(0, "(%p) RTCP NAT: Got RTCP from other end. Now sending to address %s\n",
6932 instance, ast_sockaddr_stringify(addr));
6933 }
6934 }
6935 }
6936
6937 i += RTCP_HEADER_SSRC_LENGTH; /* Advance past header and ssrc */
6938 switch (pt) {
6939 case RTCP_PT_SR:
6940 gettimeofday(&rtp->rtcp->rxlsr, NULL);
6941 rtp->rtcp->themrxlsr = ((ntohl(rtcpheader[i]) & 0x0000ffff) << 16) | ((ntohl(rtcpheader[i + 1]) & 0xffff0000) >> 16);
6942 rtp->rtcp->spc = ntohl(rtcpheader[i + 3]);
6943 rtp->rtcp->soc = ntohl(rtcpheader[i + 4]);
6944
6945 rtcp_report->type = RTCP_PT_SR;
6946 rtcp_report->sender_information.packet_count = rtp->rtcp->spc;
6947 rtcp_report->sender_information.octet_count = rtp->rtcp->soc;
6948 ntp2timeval((unsigned int)ntohl(rtcpheader[i]),
6949 (unsigned int)ntohl(rtcpheader[i + 1]),
6950 &rtcp_report->sender_information.ntp_timestamp);
6951 rtcp_report->sender_information.rtp_timestamp = ntohl(rtcpheader[i + 2]);
6952 if (rtcp_debug_test_addr(addr)) {
6953 ast_verbose("NTP timestamp: %u.%06u\n",
6954 (unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_sec,
6955 (unsigned int)rtcp_report->sender_information.ntp_timestamp.tv_usec);
6956 ast_verbose("RTP timestamp: %u\n", rtcp_report->sender_information.rtp_timestamp);
6957 ast_verbose("SPC: %u\tSOC: %u\n",
6958 rtcp_report->sender_information.packet_count,
6959 rtcp_report->sender_information.octet_count);
6960 }
6962 /* Intentional fall through */
6963 case RTCP_PT_RR:
6964 if (rtcp_report->type != RTCP_PT_SR) {
6965 rtcp_report->type = RTCP_PT_RR;
6966 }
6967
6968 if (rc > 0) {
6969 /* Don't handle multiple reception reports (rc > 1) yet */
6970 report_block = ast_calloc(1, sizeof(*report_block));
6971 if (!report_block) {
6972 if (child) {
6973 ao2_unlock(child);
6974 }
6975 return &ast_null_frame;
6976 }
6977 rtcp_report->report_block[0] = report_block;
6978 report_block->source_ssrc = ntohl(rtcpheader[i]);
6979 report_block->lost_count.packets = ntohl(rtcpheader[i + 1]) & 0x00ffffff;
6980 report_block->lost_count.fraction = ((ntohl(rtcpheader[i + 1]) & 0xff000000) >> 24);
6981 report_block->highest_seq_no = ntohl(rtcpheader[i + 2]);
6982 report_block->ia_jitter = ntohl(rtcpheader[i + 3]);
6983 report_block->lsr = ntohl(rtcpheader[i + 4]);
6984 report_block->dlsr = ntohl(rtcpheader[i + 5]);
6985 if (report_block->lsr) {
6986 int skewed = update_rtt_stats(rtp, report_block->lsr, report_block->dlsr);
6987 if (skewed && rtcp_debug_test_addr(addr)) {
6988 struct timeval now;
6989 unsigned int lsr_now, lsw, msw;
6990 gettimeofday(&now, NULL);
6991 timeval2ntp(now, &msw, &lsw);
6992 lsr_now = (((msw & 0xffff) << 16) | ((lsw & 0xffff0000) >> 16));
6993 ast_verbose("Internal RTCP NTP clock skew detected: "
6994 "lsr=%u, now=%u, dlsr=%u (%u:%03ums), "
6995 "diff=%u\n",
6996 report_block->lsr, lsr_now, report_block->dlsr, report_block->dlsr / 65536,
6997 (report_block->dlsr % 65536) * 1000 / 65536,
6998 report_block->dlsr - (lsr_now - report_block->lsr));
6999 }
7000 }
7001 update_jitter_stats(rtp, report_block->ia_jitter);
7002 update_lost_stats(rtp, report_block->lost_count.packets);
7003 /*
7004 * update_reported_mes_stats must be called AFTER
7005 * update_rtt_stats, update_jitter_stats and
7006 * update_lost_stats.
7007 */
7009
7010 if (rtcp_debug_test_addr(addr)) {
7011 int rate = ast_rtp_get_rate(rtp->f.subclass.format);
7012
7013 ast_verbose(" Fraction lost: %d\n", report_block->lost_count.fraction);
7014 ast_verbose(" Packets lost so far: %u\n", report_block->lost_count.packets);
7015 ast_verbose(" Highest sequence number: %u\n", report_block->highest_seq_no & 0x0000ffff);
7016 ast_verbose(" Sequence number cycles: %u\n", report_block->highest_seq_no >> 16);
7017 ast_verbose(" Interarrival jitter (samp): %u\n", report_block->ia_jitter);
7018 ast_verbose(" Interarrival jitter (secs): %.6f\n", ast_samp2sec(report_block->ia_jitter, rate));
7019 ast_verbose(" Last SR(our NTP): %lu.%010lu\n",(unsigned long)(report_block->lsr) >> 16,((unsigned long)(report_block->lsr) << 16) * 4096);
7020 ast_verbose(" DLSR: %4.4f (sec)\n",(double)report_block->dlsr / 65536.0);
7021 ast_verbose(" RTT: %4.4f(sec)\n", rtp->rtcp->rtt);
7022 ast_verbose(" MES: %4.1f\n", rtp->rtcp->reported_mes);
7023 }
7024 }
7025 /* If and when we handle more than one report block, this should occur outside
7026 * this loop.
7027 */
7028
7029 message_blob = ast_json_pack("{s: s, s: s, s: f, s: f}",
7030 "from", ast_sockaddr_stringify(addr),
7031 "to", transport_rtp->rtcp->local_addr_str,
7032 "rtt", rtp->rtcp->rtt,
7033 "mes", rtp->rtcp->reported_mes);
7035 rtcp_report,
7036 message_blob);
7037 ast_json_unref(message_blob);
7038
7039 /* Return an AST_FRAME_RTCP frame with the ast_rtp_rtcp_report
7040 * object as a its data */
7041 transport_rtp->f.frametype = AST_FRAME_RTCP;
7042 transport_rtp->f.subclass.integer = pt;
7043 transport_rtp->f.data.ptr = rtp->rtcp->frame_buf + AST_FRIENDLY_OFFSET;
7044 memcpy(transport_rtp->f.data.ptr, rtcp_report, sizeof(struct ast_rtp_rtcp_report));
7045 transport_rtp->f.datalen = sizeof(struct ast_rtp_rtcp_report);
7046 if (rc > 0) {
7047 /* There's always a single report block stored, here */
7048 struct ast_rtp_rtcp_report *rtcp_report2;
7049 report_block = transport_rtp->f.data.ptr + transport_rtp->f.datalen + sizeof(struct ast_rtp_rtcp_report_block *);
7050 memcpy(report_block, rtcp_report->report_block[0], sizeof(struct ast_rtp_rtcp_report_block));
7051 rtcp_report2 = (struct ast_rtp_rtcp_report *)transport_rtp->f.data.ptr;
7052 rtcp_report2->report_block[0] = report_block;
7053 transport_rtp->f.datalen += sizeof(struct ast_rtp_rtcp_report_block);
7054 }
7055 transport_rtp->f.offset = AST_FRIENDLY_OFFSET;
7056 transport_rtp->f.samples = 0;
7057 transport_rtp->f.mallocd = 0;
7058 transport_rtp->f.delivery.tv_sec = 0;
7059 transport_rtp->f.delivery.tv_usec = 0;
7060 transport_rtp->f.src = "RTP";
7061 transport_rtp->f.stream_num = rtp->stream_num;
7062 f = &transport_rtp->f;
7063 break;
7064 case AST_RTP_RTCP_RTPFB:
7065 switch (rc) {
7067 /* If retransmissions are not enabled ignore this message */
7068 if (!rtp->send_buffer) {
7069 break;
7070 }
7071
7072 if (rtcp_debug_test_addr(addr)) {
7073 ast_verbose("Received generic RTCP NACK message\n");
7074 }
7075
7076 ast_rtp_rtcp_handle_nack(instance, rtcpheader, position, length);
7077 break;
7078 default:
7079 break;
7080 }
7081 break;
7082 case RTCP_PT_FUR:
7083 /* Handle RTCP FUR as FIR by setting the format to 4 */
7085 case RTCP_PT_PSFB:
7086 switch (rc) {
7089 if (rtcp_debug_test_addr(addr)) {
7090 ast_verbose("Received an RTCP Fast Update Request\n");
7091 }
7092 transport_rtp->f.frametype = AST_FRAME_CONTROL;
7093 transport_rtp->f.subclass.integer = AST_CONTROL_VIDUPDATE;
7094 transport_rtp->f.datalen = 0;
7095 transport_rtp->f.samples = 0;
7096 transport_rtp->f.mallocd = 0;
7097 transport_rtp->f.src = "RTP";
7098 f = &transport_rtp->f;
7099 break;
7101 /* If REMB support is not enabled ignore this message */
7103 break;
7104 }
7105
7106 if (rtcp_debug_test_addr(addr)) {
7107 ast_verbose("Received REMB report\n");
7108 }
7109 transport_rtp->f.frametype = AST_FRAME_RTCP;
7110 transport_rtp->f.subclass.integer = pt;
7111 transport_rtp->f.stream_num = rtp->stream_num;
7112 transport_rtp->f.data.ptr = rtp->rtcp->frame_buf + AST_FRIENDLY_OFFSET;
7113 feedback = transport_rtp->f.data.ptr;
7114 feedback->fmt = rc;
7115
7116 /* We don't actually care about the SSRC information in the feedback message */
7117 first_word = ntohl(rtcpheader[i + 2]);
7118 feedback->remb.br_exp = (first_word >> 18) & ((1 << 6) - 1);
7119 feedback->remb.br_mantissa = first_word & ((1 << 18) - 1);
7120
7121 transport_rtp->f.datalen = sizeof(struct ast_rtp_rtcp_feedback);
7122 transport_rtp->f.offset = AST_FRIENDLY_OFFSET;
7123 transport_rtp->f.samples = 0;
7124 transport_rtp->f.mallocd = 0;
7125 transport_rtp->f.delivery.tv_sec = 0;
7126 transport_rtp->f.delivery.tv_usec = 0;
7127 transport_rtp->f.src = "RTP";
7128 f = &transport_rtp->f;
7129 break;
7130 default:
7131 break;
7132 }
7133 break;
7134 case RTCP_PT_SDES:
7135 if (rtcp_debug_test_addr(addr)) {
7136 ast_verbose("Received an SDES from %s\n",
7138 }
7139#ifdef TEST_FRAMEWORK
7140 if ((test_engine = ast_rtp_instance_get_test(instance))) {
7141 test_engine->sdes_received = 1;
7142 }
7143#endif
7144 break;
7145 case RTCP_PT_BYE:
7146 if (rtcp_debug_test_addr(addr)) {
7147 ast_verbose("Received a BYE from %s\n",
7149 }
7150 break;
7151 default:
7152 break;
7153 }
7154 position += length;
7155 rtp->rtcp->rtcp_info = 1;
7156
7157 if (child) {
7158 ao2_unlock(child);
7159 }
7160 }
7161
7162 return f;
7163}
7164
7165/*! \pre instance is locked */
7166static struct ast_frame *ast_rtcp_read(struct ast_rtp_instance *instance)
7167{
7168 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
7169 struct ast_srtp *srtp = ast_rtp_instance_get_srtp(instance, 1);
7170 struct ast_sockaddr addr;
7171 unsigned char rtcpdata[8192 + AST_FRIENDLY_OFFSET];
7172 unsigned char *read_area = rtcpdata + AST_FRIENDLY_OFFSET;
7173 size_t read_area_size = sizeof(rtcpdata) - AST_FRIENDLY_OFFSET;
7174 int res;
7175
7176 /* Read in RTCP data from the socket */
7177 if ((res = rtcp_recvfrom(instance, read_area, read_area_size,
7178 0, &addr)) < 0) {
7179 if (res == RTP_DTLS_ESTABLISHED) {
7182 return &rtp->f;
7183 }
7184
7185 ast_assert(errno != EBADF);
7186 if (errno != EAGAIN) {
7187 ast_log(LOG_WARNING, "RTCP Read error: %s. Hanging up.\n",
7188 (errno) ? strerror(errno) : "Unspecified");
7189 return NULL;
7190 }
7191 return &ast_null_frame;
7192 }
7193
7194 /* If this was handled by the ICE session don't do anything further */
7195 if (!res) {
7196 return &ast_null_frame;
7197 }
7198
7199 if (!*read_area) {
7200 struct sockaddr_in addr_tmp;
7201 struct ast_sockaddr addr_v4;
7202
7203 if (ast_sockaddr_is_ipv4(&addr)) {
7204 ast_sockaddr_to_sin(&addr, &addr_tmp);
7205 } else if (ast_sockaddr_ipv4_mapped(&addr, &addr_v4)) {
7206 ast_debug_stun(2, "(%p) STUN using IPv6 mapped address %s\n",
7207 instance, ast_sockaddr_stringify(&addr));
7208 ast_sockaddr_to_sin(&addr_v4, &addr_tmp);
7209 } else {
7210 ast_debug_stun(2, "(%p) STUN cannot do for non IPv4 address %s\n",
7211 instance, ast_sockaddr_stringify(&addr));
7212 return &ast_null_frame;
7213 }
7214 if ((ast_stun_handle_packet(rtp->rtcp->s, &addr_tmp, read_area, res, NULL, NULL) == AST_STUN_ACCEPT)) {
7215 ast_sockaddr_from_sin(&addr, &addr_tmp);
7216 ast_sockaddr_copy(&rtp->rtcp->them, &addr);
7217 }
7218 return &ast_null_frame;
7219 }
7220
7221 return ast_rtcp_interpret(instance, srtp, read_area, res, &addr);
7222}
7223
7224/*! \pre instance is locked */
7225static int bridge_p2p_rtp_write(struct ast_rtp_instance *instance,
7226 struct ast_rtp_instance *instance1, unsigned int *rtpheader, int len, int hdrlen)
7227{
7228 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
7229 struct ast_rtp *bridged;
7230 int res = 0, payload = 0, bridged_payload = 0, mark;
7231 RAII_VAR(struct ast_rtp_payload_type *, payload_type, NULL, ao2_cleanup);
7232 int reconstruct = ntohl(rtpheader[0]);
7233 struct ast_sockaddr remote_address = { {0,} };
7234 int ice;
7235 unsigned int timestamp = ntohl(rtpheader[1]);
7236
7237 /* Get fields from packet */
7238 payload = (reconstruct & 0x7f0000) >> 16;
7239 mark = (reconstruct & 0x800000) >> 23;
7240
7241 /* Check what the payload value should be */
7242 payload_type = ast_rtp_codecs_get_payload(ast_rtp_instance_get_codecs(instance), payload);
7243 if (!payload_type) {
7244 return -1;
7245 }
7246
7247 /* Otherwise adjust bridged payload to match */
7249 payload_type->asterisk_format, payload_type->format, payload_type->rtp_code, payload_type->sample_rate);
7250
7251 /* If no codec could be matched between instance and instance1, then somehow things were made incompatible while we were still bridged. Bail. */
7252 if (bridged_payload < 0) {
7253 return -1;
7254 }
7255
7256 /* If the payload coming in is not one of the negotiated ones then send it to the core, this will cause formats to change and the bridge to break */
7257 if (ast_rtp_codecs_find_payload_code(ast_rtp_instance_get_codecs(instance1), bridged_payload) == -1) {
7258 ast_debug_rtp(1, "(%p, %p) RTP unsupported payload type received\n", instance, instance1);
7259 return -1;
7260 }
7261
7262 /*
7263 * Even if we are no longer in dtmf, we could still be receiving
7264 * re-transmissions of the last dtmf end still. Feed those to the
7265 * core so they can be filtered accordingly.
7266 */
7267 if (rtp->last_end_timestamp.is_set && rtp->last_end_timestamp.ts == timestamp) {
7268 ast_debug_rtp(1, "(%p, %p) RTP feeding packet with duplicate timestamp to core\n", instance, instance1);
7269 return -1;
7270 }
7271
7272 if (payload_type->asterisk_format) {
7273 ao2_replace(rtp->lastrxformat, payload_type->format);
7274 }
7275
7276 /*
7277 * We have now determined that we need to send the RTP packet
7278 * out the bridged instance to do local bridging so we must unlock
7279 * the receiving instance to prevent deadlock with the bridged
7280 * instance.
7281 *
7282 * Technically we should grab a ref to instance1 so it won't go
7283 * away on us. However, we should be safe because the bridged
7284 * instance won't change without both channels involved being
7285 * locked and we currently have the channel lock for the receiving
7286 * instance.
7287 */
7288 ao2_unlock(instance);
7289 ao2_lock(instance1);
7290
7291 /*
7292 * Get the peer rtp pointer now to emphasize that using it
7293 * must happen while instance1 is locked.
7294 */
7295 bridged = ast_rtp_instance_get_data(instance1);
7296
7297
7298 /* If bridged peer is in dtmf, feed all packets to core until it finishes to avoid infinite dtmf */
7299 if (bridged->sending_digit) {
7300 ast_debug_rtp(1, "(%p, %p) RTP Feeding packet to core until DTMF finishes\n", instance, instance1);
7301 ao2_unlock(instance1);
7302 ao2_lock(instance);
7303 return -1;
7304 }
7305
7306 if (payload_type->asterisk_format) {
7307 /*
7308 * If bridged peer has already received rtp, perform the asymmetric codec check
7309 * if that feature has been activated
7310 */
7311 if (!bridged->asymmetric_codec
7312 && bridged->lastrxformat != ast_format_none
7313 && ast_format_cmp(payload_type->format, bridged->lastrxformat) == AST_FORMAT_CMP_NOT_EQUAL) {
7314 ast_debug_rtp(1, "(%p, %p) RTP asymmetric RTP codecs detected (TX: %s, RX: %s) sending frame to core\n",
7315 instance, instance1, ast_format_get_name(payload_type->format),
7317 ao2_unlock(instance1);
7318 ao2_lock(instance);
7319 return -1;
7320 }
7321
7322 ao2_replace(bridged->lasttxformat, payload_type->format);
7323 }
7324
7325 ast_rtp_instance_get_remote_address(instance1, &remote_address);
7326
7327 if (ast_sockaddr_isnull(&remote_address)) {
7328 ast_debug_rtp(5, "(%p, %p) RTP remote address is null, most likely RTP has been stopped\n",
7329 instance, instance1);
7330 ao2_unlock(instance1);
7331 ao2_lock(instance);
7332 return 0;
7333 }
7334
7335 /* If the marker bit has been explicitly set turn it on */
7336 if (ast_test_flag(bridged, FLAG_NEED_MARKER_BIT)) {
7337 mark = 1;
7339 }
7340
7341 /* Set the marker bit for the first local bridged packet which has the first bridged peer's SSRC. */
7343 mark = 1;
7345 }
7346
7347 /* Reconstruct part of the packet */
7348 reconstruct &= 0xFF80FFFF;
7349 reconstruct |= (bridged_payload << 16);
7350 reconstruct |= (mark << 23);
7351 rtpheader[0] = htonl(reconstruct);
7352
7353 if (mark) {
7354 /* make this rtp instance aware of the new ssrc it is sending */
7355 bridged->ssrc = ntohl(rtpheader[2]);
7356 }
7357
7358 /* Send the packet back out */
7359 res = rtp_sendto(instance1, (void *)rtpheader, len, 0, &remote_address, &ice);
7360 if (res < 0) {
7363 "RTP Transmission error of packet to %s: %s\n",
7364 ast_sockaddr_stringify(&remote_address),
7365 strerror(errno));
7369 "RTP NAT: Can't write RTP to private "
7370 "address %s, waiting for other end to "
7371 "send audio...\n",
7372 ast_sockaddr_stringify(&remote_address));
7373 }
7375 }
7376 ao2_unlock(instance1);
7377 ao2_lock(instance);
7378 return 0;
7379 }
7380
7381 if (rtp_debug_test_addr(&remote_address)) {
7382 ast_verbose("Sent RTP P2P packet to %s%s (type %-2.2d, len %-6.6d)\n",
7383 ast_sockaddr_stringify(&remote_address),
7384 ice ? " (via ICE)" : "",
7385 bridged_payload, len - hdrlen);
7386 }
7387
7388 ao2_unlock(instance1);
7389 ao2_lock(instance);
7390 return 0;
7391}
7392
7393static void rtp_instance_unlock(struct ast_rtp_instance *instance)
7394{
7395 if (instance) {
7396 ao2_unlock(instance);
7397 }
7398}
7399
7402{
7403 return a.seqno - b.seqno;
7404}
7405
7406static void rtp_transport_wide_cc_feedback_status_vector_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits,
7407 uint16_t *status_vector_chunk, int status)
7408{
7409 /* Appending this status will use up 2 bits */
7410 *status_vector_chunk_bits -= 2;
7411
7412 /* We calculate which bits we want to update the status of. Since a status vector
7413 * is 16 bits we take away 2 (for the header), and then we take away any that have
7414 * already been used.
7415 */
7416 *status_vector_chunk |= (status << (16 - 2 - (14 - *status_vector_chunk_bits)));
7417
7418 /* If there are still bits available we can return early */
7419 if (*status_vector_chunk_bits) {
7420 return;
7421 }
7422
7423 /* Otherwise we have to place this chunk into the packet */
7424 put_unaligned_uint16(rtcpheader + *packet_len, htons(*status_vector_chunk));
7425 *status_vector_chunk_bits = 14;
7426
7427 /* The first bit being 1 indicates that this is a status vector chunk and the second
7428 * bit being 1 indicates that we are using 2 bits to represent each status for a
7429 * packet.
7430 */
7431 *status_vector_chunk = (1 << 15) | (1 << 14);
7432 *packet_len += 2;
7433}
7434
7435static void rtp_transport_wide_cc_feedback_status_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits,
7436 uint16_t *status_vector_chunk, int *run_length_chunk_count, int *run_length_chunk_status, int status)
7437{
7438 if (*run_length_chunk_status != status) {
7439 while (*run_length_chunk_count > 0 && *run_length_chunk_count < 8) {
7440 /* Realistically it only makes sense to use a run length chunk if there were 8 or more
7441 * consecutive packets of the same type, otherwise we could end up making the packet larger
7442 * if we have lots of small blocks of the same type. To help with this we backfill the status
7443 * vector (since it always represents 7 packets). Best case we end up with only that single
7444 * status vector and the rest are run length chunks.
7445 */
7446 rtp_transport_wide_cc_feedback_status_vector_append(rtcpheader, packet_len, status_vector_chunk_bits,
7447 status_vector_chunk, *run_length_chunk_status);
7448 *run_length_chunk_count -= 1;
7449 }
7450
7451 if (*run_length_chunk_count) {
7452 /* There is a run length chunk which needs to be written out */
7453 put_unaligned_uint16(rtcpheader + *packet_len, htons((0 << 15) | (*run_length_chunk_status << 13) | *run_length_chunk_count));
7454 *packet_len += 2;
7455 }
7456
7457 /* In all cases the run length chunk has to be reset */
7458 *run_length_chunk_count = 0;
7459 *run_length_chunk_status = -1;
7460
7461 if (*status_vector_chunk_bits == 14) {
7462 /* We aren't in the middle of a status vector so we can try for a run length chunk */
7463 *run_length_chunk_status = status;
7464 *run_length_chunk_count = 1;
7465 } else {
7466 /* We're doing a status vector so populate it accordingly */
7467 rtp_transport_wide_cc_feedback_status_vector_append(rtcpheader, packet_len, status_vector_chunk_bits,
7468 status_vector_chunk, status);
7469 }
7470 } else {
7471 /* This is easy, the run length chunk count can just get bumped up */
7472 *run_length_chunk_count += 1;
7473 }
7474}
7475
7476static int rtp_transport_wide_cc_feedback_produce(const void *data)
7477{
7478 struct ast_rtp_instance *instance = (struct ast_rtp_instance *) data;
7479 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
7480 unsigned char *rtcpheader;
7481 char bdata[1024];
7482 struct rtp_transport_wide_cc_packet_statistics *first_packet;
7483 struct rtp_transport_wide_cc_packet_statistics *previous_packet;
7484 int i;
7485 int status_vector_chunk_bits = 14;
7486 uint16_t status_vector_chunk = (1 << 15) | (1 << 14);
7487 int run_length_chunk_count = 0;
7488 int run_length_chunk_status = -1;
7489 int packet_len = 20;
7490 int delta_len = 0;
7491 int packet_count = 0;
7492 unsigned int received_msw;
7493 unsigned int received_lsw;
7494 struct ast_sockaddr remote_address = { { 0, } };
7495 int res;
7496 int ice;
7497 unsigned int large_delta_count = 0;
7498 unsigned int small_delta_count = 0;
7499 unsigned int lost_count = 0;
7500
7501 if (!rtp || !rtp->rtcp || rtp->transport_wide_cc.schedid == -1) {
7502 ao2_ref(instance, -1);
7503 return 0;
7504 }
7505
7506 ao2_lock(instance);
7507
7508 /* If no packets have been received then do nothing */
7510 ao2_unlock(instance);
7511 return 1000;
7512 }
7513
7514 rtcpheader = (unsigned char *)bdata;
7515
7516 /* The first packet in the vector acts as our base sequence number and reference time */
7518 previous_packet = first_packet;
7519
7520 /* We go through each packet that we have statistics for, adding it either to a status
7521 * vector chunk or a run length chunk. The code tries to be as efficient as possible to
7522 * reduce packet size and will favor run length chunks when it makes sense.
7523 */
7524 for (i = 0; i < AST_VECTOR_SIZE(&rtp->transport_wide_cc.packet_statistics); ++i) {
7526 int lost = 0;
7527 int res = 0;
7528
7530
7531 packet_count++;
7532
7533 if (first_packet != statistics) {
7534 /* The vector stores statistics in a sorted fashion based on the sequence
7535 * number. This ensures we can detect any packets that have been lost/not
7536 * received by comparing the sequence numbers.
7537 */
7538 lost = statistics->seqno - (previous_packet->seqno + 1);
7539 lost_count += lost;
7540 }
7541
7542 while (lost) {
7543 /* We append a not received status until all the lost packets have been accounted for */
7544 rtp_transport_wide_cc_feedback_status_append(rtcpheader, &packet_len, &status_vector_chunk_bits,
7545 &status_vector_chunk, &run_length_chunk_count, &run_length_chunk_status, 0);
7546 packet_count++;
7547
7548 /* If there is no more room left for storing packets stop now, we leave 20
7549 * extra bits at the end just in case.
7550 */
7551 if (packet_len + delta_len + 20 > sizeof(bdata)) {
7552 res = -1;
7553 break;
7554 }
7555
7556 lost--;
7557 }
7558
7559 /* If the lost packet appending bailed out because we have no more space, then exit here too */
7560 if (res) {
7561 break;
7562 }
7563
7564 /* Per the spec the delta is in increments of 250 */
7565 statistics->delta = ast_tvdiff_us(statistics->received, previous_packet->received) / 250;
7566
7567 /* Based on the delta determine the status of this packet */
7568 if (statistics->delta < 0 || statistics->delta > 127) {
7569 /* Large or negative delta */
7570 rtp_transport_wide_cc_feedback_status_append(rtcpheader, &packet_len, &status_vector_chunk_bits,
7571 &status_vector_chunk, &run_length_chunk_count, &run_length_chunk_status, 2);
7572 delta_len += 2;
7573 large_delta_count++;
7574 } else {
7575 /* Small delta */
7576 rtp_transport_wide_cc_feedback_status_append(rtcpheader, &packet_len, &status_vector_chunk_bits,
7577 &status_vector_chunk, &run_length_chunk_count, &run_length_chunk_status, 1);
7578 delta_len += 1;
7579 small_delta_count++;
7580 }
7581
7582 previous_packet = statistics;
7583
7584 /* If there is no more room left in the packet stop handling of any subsequent packets */
7585 if (packet_len + delta_len + 20 > sizeof(bdata)) {
7586 break;
7587 }
7588 }
7589
7590 if (status_vector_chunk_bits != 14) {
7591 /* If the status vector chunk has packets in it then place it in the RTCP packet */
7592 put_unaligned_uint16(rtcpheader + packet_len, htons(status_vector_chunk));
7593 packet_len += 2;
7594 } else if (run_length_chunk_count) {
7595 /* If there is a run length chunk in progress then place it in the RTCP packet */
7596 put_unaligned_uint16(rtcpheader + packet_len, htons((0 << 15) | (run_length_chunk_status << 13) | run_length_chunk_count));
7597 packet_len += 2;
7598 }
7599
7600 /* We iterate again to build delta chunks */
7601 for (i = 0; i < AST_VECTOR_SIZE(&rtp->transport_wide_cc.packet_statistics); ++i) {
7603
7605
7606 if (statistics->delta < 0 || statistics->delta > 127) {
7607 /* We need 2 bytes to store this delta */
7608 put_unaligned_uint16(rtcpheader + packet_len, htons(statistics->delta));
7609 packet_len += 2;
7610 } else {
7611 /* We can store this delta in 1 byte */
7612 rtcpheader[packet_len] = statistics->delta;
7613 packet_len += 1;
7614 }
7615
7616 /* If this is the last packet handled by the run length chunk or status vector chunk code
7617 * then we can go no further.
7618 */
7619 if (statistics == previous_packet) {
7620 break;
7621 }
7622 }
7623
7624 /* Zero pad the end of the packet */
7625 while (packet_len % 4) {
7626 rtcpheader[packet_len++] = 0;
7627 }
7628
7629 /* Add the general RTCP header information */
7630 put_unaligned_uint32(rtcpheader, htonl((2 << 30) | (AST_RTP_RTCP_FMT_TRANSPORT_WIDE_CC << 24)
7631 | (AST_RTP_RTCP_RTPFB << 16) | ((packet_len / 4) - 1)));
7632 put_unaligned_uint32(rtcpheader + 4, htonl(rtp->ssrc));
7633 put_unaligned_uint32(rtcpheader + 8, htonl(rtp->themssrc));
7634
7635 /* Add the transport-cc specific header information */
7636 put_unaligned_uint32(rtcpheader + 12, htonl((first_packet->seqno << 16) | packet_count));
7637
7638 timeval2ntp(first_packet->received, &received_msw, &received_lsw);
7639 put_unaligned_time24(rtcpheader + 16, received_msw, received_lsw);
7640 rtcpheader[19] = rtp->transport_wide_cc.feedback_count;
7641
7642 /* The packet is now fully constructed so send it out */
7643 ast_sockaddr_copy(&remote_address, &rtp->rtcp->them);
7644
7645 ast_debug_rtcp(2, "(%p) RTCP sending transport-cc feedback packet of size '%d' on '%s' with packet count of %d (small = %d, large = %d, lost = %d)\n",
7646 instance, packet_len, ast_rtp_instance_get_channel_id(instance), packet_count, small_delta_count, large_delta_count, lost_count);
7647
7648 res = rtcp_sendto(instance, (unsigned int *)rtcpheader, packet_len, 0, &remote_address, &ice);
7649 if (res < 0) {
7650 ast_log(LOG_ERROR, "RTCP transport-cc feedback error to %s due to %s\n",
7651 ast_sockaddr_stringify(&remote_address), strerror(errno));
7652 }
7653
7655
7657
7658 ao2_unlock(instance);
7659
7660 return 1000;
7661}
7662
7663static void rtp_instance_parse_transport_wide_cc(struct ast_rtp_instance *instance, struct ast_rtp *rtp,
7664 unsigned char *data, int len)
7665{
7666 uint16_t *seqno = (uint16_t *)data;
7668 struct ast_rtp_instance *transport = rtp->bundled ? rtp->bundled : instance;
7669 struct ast_rtp *transport_rtp = ast_rtp_instance_get_data(transport);
7670
7671 /* If the sequence number has cycled over then record it as such */
7672 if (((int)transport_rtp->transport_wide_cc.last_seqno - (int)ntohs(*seqno)) > 100) {
7673 transport_rtp->transport_wide_cc.cycles += RTP_SEQ_MOD;
7674 }
7675
7676 /* Populate the statistics information for this packet */
7677 statistics.seqno = transport_rtp->transport_wide_cc.cycles + ntohs(*seqno);
7678 statistics.received = ast_tvnow();
7679
7680 /* We allow at a maximum 1000 packet statistics in play at a time, if we hit the
7681 * limit we give up and start fresh.
7682 */
7683 if (AST_VECTOR_SIZE(&transport_rtp->transport_wide_cc.packet_statistics) > 1000) {
7685 }
7686
7687 if (!AST_VECTOR_SIZE(&transport_rtp->transport_wide_cc.packet_statistics) ||
7688 statistics.seqno > transport_rtp->transport_wide_cc.last_extended_seqno) {
7689 /* This is the expected path */
7691 return;
7692 }
7693
7694 transport_rtp->transport_wide_cc.last_extended_seqno = statistics.seqno;
7695 transport_rtp->transport_wide_cc.last_seqno = ntohs(*seqno);
7696 } else {
7697 /* This packet was out of order, so reorder it within the vector accordingly */
7700 return;
7701 }
7702 }
7703
7704 /* If we have not yet scheduled the periodic sending of feedback for this transport then do so */
7705 if (transport_rtp->transport_wide_cc.schedid < 0 && transport_rtp->rtcp) {
7706 ast_debug_rtcp(1, "(%p) RTCP starting transport-cc feedback transmission on RTP instance '%p'\n", instance, transport);
7707 ao2_ref(transport, +1);
7708 transport_rtp->transport_wide_cc.schedid = ast_sched_add(rtp->sched, 1000,
7710 if (transport_rtp->transport_wide_cc.schedid < 0) {
7711 ao2_ref(transport, -1);
7712 ast_log(LOG_WARNING, "Scheduling RTCP transport-cc feedback transmission failed on RTP instance '%p'\n",
7713 transport);
7714 }
7715 }
7716}
7717
7718static void rtp_instance_parse_extmap_extensions(struct ast_rtp_instance *instance, struct ast_rtp *rtp,
7719 unsigned char *extension, int len)
7720{
7721 int transport_wide_cc_id = ast_rtp_instance_extmap_get_id(instance, AST_RTP_EXTENSION_TRANSPORT_WIDE_CC);
7722 int pos = 0;
7723
7724 /* We currently only care about the transport-cc extension, so if that's not negotiated then do nothing */
7725 if (transport_wide_cc_id == -1) {
7726 return;
7727 }
7728
7729 /* Only while we do not exceed available extension data do we continue */
7730 while (pos < len) {
7731 int id = extension[pos] >> 4;
7732 int extension_len = (extension[pos] & 0xF) + 1;
7733
7734 /* We've handled the first byte as it contains the extension id and length, so always
7735 * skip ahead now
7736 */
7737 pos += 1;
7738
7739 if (id == 0) {
7740 /* From the RFC:
7741 * In both forms, padding bytes have the value of 0 (zero). They may be
7742 * placed between extension elements, if desired for alignment, or after
7743 * the last extension element, if needed for padding. A padding byte
7744 * does not supply the ID of an element, nor the length field. When a
7745 * padding byte is found, it is ignored and the parser moves on to
7746 * interpreting the next byte.
7747 */
7748 continue;
7749 } else if (id == 15) {
7750 /* From the RFC:
7751 * The local identifier value 15 is reserved for future extension and
7752 * MUST NOT be used as an identifier. If the ID value 15 is
7753 * encountered, its length field should be ignored, processing of the
7754 * entire extension should terminate at that point, and only the
7755 * extension elements present prior to the element with ID 15
7756 * considered.
7757 */
7758 break;
7759 } else if ((pos + extension_len) > len) {
7760 /* The extension is corrupted and is stating that it contains more data than is
7761 * available in the extensions data.
7762 */
7763 break;
7764 }
7765
7766 /* If this is transport-cc then we need to parse it further */
7767 if (id == transport_wide_cc_id) {
7768 rtp_instance_parse_transport_wide_cc(instance, rtp, extension + pos, extension_len);
7769 }
7770
7771 /* Skip ahead to the next extension */
7772 pos += extension_len;
7773 }
7774}
7775
7776static struct ast_frame *ast_rtp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp,
7777 const struct ast_sockaddr *remote_address, unsigned char *read_area, int length, int prev_seqno,
7778 unsigned int bundled)
7779{
7780 unsigned int *rtpheader = (unsigned int*)(read_area);
7781 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
7782 struct ast_rtp_instance *instance1;
7783 int res = length, hdrlen = 12, ssrc, seqno, payloadtype, padding, mark, ext, cc;
7784 unsigned int timestamp;
7785 RAII_VAR(struct ast_rtp_payload_type *, payload, NULL, ao2_cleanup);
7786 struct frame_list frames;
7787
7788 /* If this payload is encrypted then decrypt it using the given SRTP instance */
7789 if ((*read_area & 0xC0) && res_srtp && srtp && res_srtp->unprotect(
7790 srtp, read_area, &res, 0 | (srtp_replay_protection << 1)) < 0) {
7791 return &ast_null_frame;
7792 }
7793
7794 /* If we are currently sending DTMF to the remote party send a continuation packet */
7795 if (rtp->sending_digit) {
7796 ast_rtp_dtmf_continuation(instance);
7797 }
7798
7799 /* Pull out the various other fields we will need */
7800 ssrc = ntohl(rtpheader[2]);
7801 seqno = ntohl(rtpheader[0]);
7802 payloadtype = (seqno & 0x7f0000) >> 16;
7803 padding = seqno & (1 << 29);
7804 mark = seqno & (1 << 23);
7805 ext = seqno & (1 << 28);
7806 cc = (seqno & 0xF000000) >> 24;
7807 seqno &= 0xffff;
7808 timestamp = ntohl(rtpheader[1]);
7809
7811
7812 /* Remove any padding bytes that may be present */
7813 if (padding) {
7814 res -= read_area[res - 1];
7815 }
7816
7817 /* Skip over any CSRC fields */
7818 if (cc) {
7819 hdrlen += cc * 4;
7820 }
7821
7822 /* Look for any RTP extensions, currently we do not support any */
7823 if (ext) {
7824 int extensions_size = (ntohl(rtpheader[hdrlen/4]) & 0xffff) << 2;
7825 unsigned int profile;
7826 profile = (ntohl(rtpheader[3]) & 0xffff0000) >> 16;
7827
7828 if (profile == 0xbede) {
7829 /* We skip over the first 4 bytes as they are just for the one byte extension header */
7830 rtp_instance_parse_extmap_extensions(instance, rtp, read_area + hdrlen + 4, extensions_size);
7831 } else if (DEBUG_ATLEAST(1)) {
7832 if (profile == 0x505a) {
7833 ast_log(LOG_DEBUG, "Found Zfone extension in RTP stream - zrtp - not supported.\n");
7834 } else {
7835 /* SDP negotiated RTP extensions can not currently be output in logging */
7836 ast_log(LOG_DEBUG, "Found unknown RTP Extensions %x\n", profile);
7837 }
7838 }
7839
7840 hdrlen += extensions_size;
7841 hdrlen += 4;
7842 }
7843
7844 /* Make sure after we potentially mucked with the header length that it is once again valid */
7845 if (res < hdrlen) {
7846 ast_log(LOG_WARNING, "RTP Read too short (%d, expecting %d\n", res, hdrlen);
7848 }
7849
7850 /* Only non-bundled instances can change/learn the remote's SSRC implicitly. */
7851 if (!bundled) {
7852 /* Force a marker bit and change SSRC if the SSRC changes */
7853 if (rtp->themssrc_valid && rtp->themssrc != ssrc) {
7854 struct ast_frame *f, srcupdate = {
7856 .subclass.integer = AST_CONTROL_SRCCHANGE,
7857 };
7858
7859 if (!mark) {
7861 ast_debug(0, "(%p) RTP forcing Marker bit, because SSRC has changed\n", instance);
7862 }
7863 mark = 1;
7864 }
7865
7866 f = ast_frisolate(&srcupdate);
7868
7869 rtp->seedrxseqno = 0;
7870 rtp->rxcount = 0;
7871 rtp->rxoctetcount = 0;
7872 rtp->cycles = 0;
7873 prev_seqno = 0;
7874 rtp->last_seqno = 0;
7875 rtp->last_end_timestamp.ts = 0;
7876 rtp->last_end_timestamp.is_set = 0;
7877 if (rtp->rtcp) {
7878 rtp->rtcp->expected_prior = 0;
7879 rtp->rtcp->received_prior = 0;
7880 }
7881 }
7882
7883 rtp->themssrc = ssrc; /* Record their SSRC to put in future RR */
7884 rtp->themssrc_valid = 1;
7885 }
7886
7887 rtp->rxcount++;
7888 rtp->rxoctetcount += (res - hdrlen);
7889 if (rtp->rxcount == 1) {
7890 rtp->seedrxseqno = seqno;
7891 }
7892
7893 /* Do not schedule RR if RTCP isn't run */
7894 if (rtp->rtcp && !ast_sockaddr_isnull(&rtp->rtcp->them) && rtp->rtcp->schedid < 0) {
7895 /* Schedule transmission of Receiver Report */
7896 ao2_ref(instance, +1);
7898 if (rtp->rtcp->schedid < 0) {
7899 ao2_ref(instance, -1);
7900 ast_log(LOG_WARNING, "scheduling RTCP transmission failed.\n");
7901 }
7902 }
7903 if ((int)prev_seqno - (int)seqno > 100) /* if so it would indicate that the sender cycled; allow for misordering */
7904 rtp->cycles += RTP_SEQ_MOD;
7905
7906 /* If we are directly bridged to another instance send the audio directly out,
7907 * but only after updating core information about the received traffic so that
7908 * outgoing RTCP reflects it.
7909 */
7910 instance1 = ast_rtp_instance_get_bridged(instance);
7911 if (instance1
7912 && !bridge_p2p_rtp_write(instance, instance1, rtpheader, res, hdrlen)) {
7913 struct timeval rxtime;
7914 struct ast_frame *f;
7915
7916 /* Update statistics for jitter so they are correct in RTCP */
7917 calc_rxstamp_and_jitter(&rxtime, rtp, timestamp, mark);
7918
7919
7920 /* When doing P2P we don't need to raise any frames about SSRC change to the core */
7921 while ((f = AST_LIST_REMOVE_HEAD(&frames, frame_list)) != NULL) {
7922 ast_frfree(f);
7923 }
7924
7925 return &ast_null_frame;
7926 }
7927
7928 payload = ast_rtp_codecs_get_payload(ast_rtp_instance_get_codecs(instance), payloadtype);
7929 if (!payload) {
7930 /* Unknown payload type. */
7932 }
7933
7934 /* If the payload is not actually an Asterisk one but a special one pass it off to the respective handler */
7935 if (!payload->asterisk_format) {
7936 struct ast_frame *f = NULL;
7937 if (payload->rtp_code == AST_RTP_DTMF) {
7938 /* process_dtmf_rfc2833 may need to return multiple frames. We do this
7939 * by passing the pointer to the frame list to it so that the method
7940 * can append frames to the list as needed.
7941 */
7942 process_dtmf_rfc2833(instance, read_area + hdrlen, res - hdrlen, seqno, timestamp, payloadtype, mark, &frames);
7943 } else if (payload->rtp_code == AST_RTP_CISCO_DTMF) {
7944 f = process_dtmf_cisco(instance, read_area + hdrlen, res - hdrlen, seqno, timestamp, payloadtype, mark);
7945 } else if (payload->rtp_code == AST_RTP_CN) {
7946 f = process_cn_rfc3389(instance, read_area + hdrlen, res - hdrlen, seqno, timestamp, payloadtype, mark);
7947 } else {
7948 ast_log(LOG_NOTICE, "Unknown RTP codec %d received from '%s'\n",
7949 payloadtype,
7950 ast_sockaddr_stringify(remote_address));
7951 }
7952
7953 if (f) {
7955 }
7956 /* Even if no frame was returned by one of the above methods,
7957 * we may have a frame to return in our frame list
7958 */
7960 }
7961
7962 ao2_replace(rtp->lastrxformat, payload->format);
7963 ao2_replace(rtp->f.subclass.format, payload->format);
7964 switch (ast_format_get_type(rtp->f.subclass.format)) {
7967 break;
7970 break;
7972 rtp->f.frametype = AST_FRAME_TEXT;
7973 break;
7975 /* Fall through */
7976 default:
7977 ast_log(LOG_WARNING, "Unknown or unsupported media type: %s\n",
7979 return &ast_null_frame;
7980 }
7981
7982 if (rtp->dtmf_timeout && rtp->dtmf_timeout < timestamp) {
7983 rtp->dtmf_timeout = 0;
7984
7985 if (rtp->resp) {
7986 struct ast_frame *f;
7987 f = create_dtmf_frame(instance, AST_FRAME_DTMF_END, 0);
7989 rtp->resp = 0;
7990 rtp->dtmf_timeout = rtp->dtmf_duration = 0;
7992 return AST_LIST_FIRST(&frames);
7993 }
7994 }
7995
7996 rtp->f.src = "RTP";
7997 rtp->f.mallocd = 0;
7998 rtp->f.datalen = res - hdrlen;
7999 rtp->f.data.ptr = read_area + hdrlen;
8000 rtp->f.offset = hdrlen + AST_FRIENDLY_OFFSET;
8002 rtp->f.seqno = seqno;
8003 rtp->f.stream_num = rtp->stream_num;
8004
8006 && ((int)seqno - (prev_seqno + 1) > 0)
8007 && ((int)seqno - (prev_seqno + 1) < 10)) {
8008 unsigned char *data = rtp->f.data.ptr;
8009
8010 memmove(rtp->f.data.ptr+3, rtp->f.data.ptr, rtp->f.datalen);
8011 rtp->f.datalen +=3;
8012 *data++ = 0xEF;
8013 *data++ = 0xBF;
8014 *data = 0xBD;
8015 }
8016
8018 unsigned char *data = rtp->f.data.ptr;
8019 unsigned char *header_end;
8020 int num_generations;
8021 int header_length;
8022 int len;
8023 int diff =(int)seqno - (prev_seqno+1); /* if diff = 0, no drop*/
8024 int x;
8025
8027 header_end = memchr(data, ((*data) & 0x7f), rtp->f.datalen);
8028 if (header_end == NULL) {
8030 }
8031 header_end++;
8032
8033 header_length = header_end - data;
8034 num_generations = header_length / 4;
8035 len = header_length;
8036
8037 if (!diff) {
8038 for (x = 0; x < num_generations; x++)
8039 len += data[x * 4 + 3];
8040
8041 if (!(rtp->f.datalen - len))
8043
8044 rtp->f.data.ptr += len;
8045 rtp->f.datalen -= len;
8046 } else if (diff > num_generations && diff < 10) {
8047 len -= 3;
8048 rtp->f.data.ptr += len;
8049 rtp->f.datalen -= len;
8050
8051 data = rtp->f.data.ptr;
8052 *data++ = 0xEF;
8053 *data++ = 0xBF;
8054 *data = 0xBD;
8055 } else {
8056 for ( x = 0; x < num_generations - diff; x++)
8057 len += data[x * 4 + 3];
8058
8059 rtp->f.data.ptr += len;
8060 rtp->f.datalen -= len;
8061 }
8062 }
8063
8065 rtp->f.samples = ast_codec_samples_count(&rtp->f);
8067 ast_frame_byteswap_be(&rtp->f);
8068 }
8069 calc_rxstamp_and_jitter(&rtp->f.delivery, rtp, timestamp, mark);
8070 /* Add timing data to let ast_generic_bridge() put the frame into a jitterbuf */
8072 rtp->f.ts = timestamp / (ast_rtp_get_rate(rtp->f.subclass.format) / 1000);
8073 rtp->f.len = rtp->f.samples / ((ast_format_get_sample_rate(rtp->f.subclass.format) / 1000));
8075 /* Video -- samples is # of samples vs. 90000 */
8076 if (!rtp->lastividtimestamp)
8077 rtp->lastividtimestamp = timestamp;
8078 calc_rxstamp_and_jitter(&rtp->f.delivery, rtp, timestamp, mark);
8080 rtp->f.ts = timestamp / (ast_rtp_get_rate(rtp->f.subclass.format) / 1000);
8081 rtp->f.samples = timestamp - rtp->lastividtimestamp;
8082 rtp->lastividtimestamp = timestamp;
8083 rtp->f.delivery.tv_sec = 0;
8084 rtp->f.delivery.tv_usec = 0;
8085 /* Pass the RTP marker bit as bit */
8086 rtp->f.subclass.frame_ending = mark ? 1 : 0;
8088 /* TEXT -- samples is # of samples vs. 1000 */
8089 if (!rtp->lastitexttimestamp)
8090 rtp->lastitexttimestamp = timestamp;
8091 rtp->f.samples = timestamp - rtp->lastitexttimestamp;
8092 rtp->lastitexttimestamp = timestamp;
8093 rtp->f.delivery.tv_sec = 0;
8094 rtp->f.delivery.tv_usec = 0;
8095 } else {
8096 ast_log(LOG_WARNING, "Unknown or unsupported media type: %s\n",
8098 return &ast_null_frame;
8099 }
8100
8102 return AST_LIST_FIRST(&frames);
8103}
8104
8105#ifdef AST_DEVMODE
8106
8107struct rtp_drop_packets_data {
8108 /* Whether or not to randomize the number of packets to drop. */
8109 unsigned int use_random_num;
8110 /* Whether or not to randomize the time interval between packets drops. */
8111 unsigned int use_random_interval;
8112 /* The total number of packets to drop. If 'use_random_num' is true then this
8113 * value becomes the upper bound for a number of random packets to drop. */
8114 unsigned int num_to_drop;
8115 /* The current number of packets that have been dropped during an interval. */
8116 unsigned int num_dropped;
8117 /* The optional interval to use between packet drops. If 'use_random_interval'
8118 * is true then this values becomes the upper bound for a random interval used. */
8119 struct timeval interval;
8120 /* The next time a packet drop should be triggered. */
8121 struct timeval next;
8122 /* An optional IP address from which to drop packets from. */
8123 struct ast_sockaddr addr;
8124 /* The optional port from which to drop packets from. */
8125 unsigned int port;
8126};
8127
8128static struct rtp_drop_packets_data drop_packets_data;
8129
8130static void drop_packets_data_update(struct timeval tv)
8131{
8132 /*
8133 * num_dropped keeps up with the number of packets that have been dropped for a
8134 * given interval. Once the specified number of packets have been dropped and
8135 * the next time interval is ready to trigger then set this number to zero (drop
8136 * the next 'n' packets up to 'num_to_drop'), or if 'use_random_num' is set to
8137 * true then set to a random number between zero and 'num_to_drop'.
8138 */
8139 drop_packets_data.num_dropped = drop_packets_data.use_random_num ?
8140 ast_random() % drop_packets_data.num_to_drop : 0;
8141
8142 /*
8143 * A specified number of packets can be dropped at a given interval (e.g every
8144 * 30 seconds). If 'use_random_interval' is false simply add the interval to
8145 * the given time to get the next trigger point. If set to true, then get a
8146 * random time between the given time and up to the specified interval.
8147 */
8148 if (drop_packets_data.use_random_interval) {
8149 /* Calculate as a percentage of the specified drop packets interval */
8150 struct timeval interval = ast_time_create_by_unit(ast_time_tv_to_usec(
8151 &drop_packets_data.interval) * ((double)(ast_random() % 100 + 1) / 100),
8153
8154 drop_packets_data.next = ast_tvadd(tv, interval);
8155 } else {
8156 drop_packets_data.next = ast_tvadd(tv, drop_packets_data.interval);
8157 }
8158}
8159
8160static int should_drop_packets(struct ast_sockaddr *addr)
8161{
8162 struct timeval tv;
8163
8164 if (!drop_packets_data.num_to_drop) {
8165 return 0;
8166 }
8167
8168 /*
8169 * If an address has been specified then filter on it, and also the port if
8170 * it too was included.
8171 */
8172 if (!ast_sockaddr_isnull(&drop_packets_data.addr) &&
8173 (drop_packets_data.port ?
8174 ast_sockaddr_cmp(&drop_packets_data.addr, addr) :
8175 ast_sockaddr_cmp_addr(&drop_packets_data.addr, addr)) != 0) {
8176 /* Address and/or port does not match */
8177 return 0;
8178 }
8179
8180 /* Keep dropping packets until we've reached the total to drop */
8181 if (drop_packets_data.num_dropped < drop_packets_data.num_to_drop) {
8182 ++drop_packets_data.num_dropped;
8183 return 1;
8184 }
8185
8186 /*
8187 * Once the set number of packets has been dropped check to see if it's
8188 * time to drop more.
8189 */
8190
8191 if (ast_tvzero(drop_packets_data.interval)) {
8192 /* If no interval then drop specified number of packets and be done */
8193 drop_packets_data.num_to_drop = 0;
8194 return 0;
8195 }
8196
8197 tv = ast_tvnow();
8198 if (ast_tvcmp(tv, drop_packets_data.next) == -1) {
8199 /* Still waiting for the next time interval to elapse */
8200 return 0;
8201 }
8202
8203 /*
8204 * The next time interval has elapsed so update the tracking structure
8205 * in order to start dropping more packets, and figure out when the next
8206 * time interval is.
8207 */
8208 drop_packets_data_update(tv);
8209 return 1;
8210}
8211
8212#endif
8213
8214/*! \pre instance is locked */
8215static struct ast_frame *ast_rtp_read(struct ast_rtp_instance *instance, int rtcp)
8216{
8217 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
8218 struct ast_srtp *srtp;
8220 struct ast_sockaddr addr;
8221 int res, hdrlen = 12, version, payloadtype;
8222 unsigned char *read_area = rtp->rawdata + AST_FRIENDLY_OFFSET;
8223 size_t read_area_size = sizeof(rtp->rawdata) - AST_FRIENDLY_OFFSET;
8224 unsigned int *rtpheader = (unsigned int*)(read_area), seqno, ssrc, timestamp, prev_seqno;
8225 struct ast_sockaddr remote_address = { {0,} };
8226 struct frame_list frames;
8227 struct ast_frame *frame;
8228 unsigned int bundled;
8229
8230 /* If this is actually RTCP let's hop on over and handle it */
8231 if (rtcp) {
8232 if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
8233 return ast_rtcp_read(instance);
8234 }
8235 return &ast_null_frame;
8236 }
8237
8238 /* Actually read in the data from the socket */
8239 if ((res = rtp_recvfrom(instance, read_area, read_area_size, 0,
8240 &addr)) < 0) {
8241 if (res == RTP_DTLS_ESTABLISHED) {
8244 return &rtp->f;
8245 }
8246
8247 ast_assert(errno != EBADF);
8248 if (errno != EAGAIN) {
8249 ast_log(LOG_WARNING, "RTP Read error: %s. Hanging up.\n",
8250 (errno) ? strerror(errno) : "Unspecified");
8251 return NULL;
8252 }
8253 return &ast_null_frame;
8254 }
8255
8256 /* If this was handled by the ICE session don't do anything */
8257 if (!res) {
8258 return &ast_null_frame;
8259 }
8260
8261 /* This could be a multiplexed RTCP packet. If so, be sure to interpret it correctly */
8262 if (rtcp_mux(rtp, read_area)) {
8263 return ast_rtcp_interpret(instance, ast_rtp_instance_get_srtp(instance, 1), read_area, res, &addr);
8264 }
8265
8266 /* Make sure the data that was read in is actually enough to make up an RTP packet */
8267 if (res < hdrlen) {
8268 /* If this is a keepalive containing only nulls, don't bother with a warning */
8269 int i;
8270 for (i = 0; i < res; ++i) {
8271 if (read_area[i] != '\0') {
8272 ast_log(LOG_WARNING, "RTP Read too short\n");
8273 return &ast_null_frame;
8274 }
8275 }
8276 return &ast_null_frame;
8277 }
8278
8279 /* Get fields and verify this is an RTP packet */
8280 seqno = ntohl(rtpheader[0]);
8281
8282 ast_rtp_instance_get_remote_address(instance, &remote_address);
8283
8284 if (!(version = (seqno & 0xC0000000) >> 30)) {
8285 struct sockaddr_in addr_tmp;
8286 struct ast_sockaddr addr_v4;
8287 if (ast_sockaddr_is_ipv4(&addr)) {
8288 ast_sockaddr_to_sin(&addr, &addr_tmp);
8289 } else if (ast_sockaddr_ipv4_mapped(&addr, &addr_v4)) {
8290 ast_debug_stun(1, "(%p) STUN using IPv6 mapped address %s\n",
8291 instance, ast_sockaddr_stringify(&addr));
8292 ast_sockaddr_to_sin(&addr_v4, &addr_tmp);
8293 } else {
8294 ast_debug_stun(1, "(%p) STUN cannot do for non IPv4 address %s\n",
8295 instance, ast_sockaddr_stringify(&addr));
8296 return &ast_null_frame;
8297 }
8298 if ((ast_stun_handle_packet(rtp->s, &addr_tmp, read_area, res, NULL, NULL) == AST_STUN_ACCEPT) &&
8299 ast_sockaddr_isnull(&remote_address)) {
8300 ast_sockaddr_from_sin(&addr, &addr_tmp);
8301 ast_rtp_instance_set_remote_address(instance, &addr);
8302 }
8303 return &ast_null_frame;
8304 }
8305
8306 /* If the version is not what we expected by this point then just drop the packet */
8307 if (version != 2) {
8308 return &ast_null_frame;
8309 }
8310
8311 /* We use the SSRC to determine what RTP instance this packet is actually for */
8312 ssrc = ntohl(rtpheader[2]);
8313
8314 /* We use the SRTP data from the provided instance that it came in on, not the child */
8315 srtp = ast_rtp_instance_get_srtp(instance, 0);
8316
8317 /* Determine the appropriate instance for this */
8318 child = rtp_find_instance_by_packet_source_ssrc(instance, rtp, ssrc);
8319 if (!child) {
8320 /* Neither the bundled parent nor any child has this SSRC */
8321 return &ast_null_frame;
8322 }
8323 if (child != instance) {
8324 /* It is safe to hold the child lock while holding the parent lock, we guarantee that the locking order
8325 * is always parent->child or that the child lock is not held when acquiring the parent lock.
8326 */
8327 ao2_lock(child);
8328 instance = child;
8329 rtp = ast_rtp_instance_get_data(instance);
8330 } else {
8331 /* The child is the parent! We don't need to unlock it. */
8332 child = NULL;
8333 }
8334
8335 /* If strict RTP protection is enabled see if we need to learn the remote address or if we need to drop the packet */
8336 switch (rtp->strict_rtp_state) {
8337 case STRICT_RTP_LEARN:
8338 /*
8339 * Scenario setup:
8340 * PartyA -- Ast1 -- Ast2 -- PartyB
8341 *
8342 * The learning timeout is necessary for Ast1 to handle the above
8343 * setup where PartyA calls PartyB and Ast2 initiates direct media
8344 * between Ast1 and PartyB. Ast1 may lock onto the Ast2 stream and
8345 * never learn the PartyB stream when it starts. The timeout makes
8346 * Ast1 stay in the learning state long enough to see and learn the
8347 * RTP stream from PartyB.
8348 *
8349 * To mitigate against attack, the learning state cannot switch
8350 * streams while there are competing streams. The competing streams
8351 * interfere with each other's qualification. Once we accept a
8352 * stream and reach the timeout, an attacker cannot interfere
8353 * anymore.
8354 *
8355 * Here are a few scenarios and each one assumes that the streams
8356 * are continuous:
8357 *
8358 * 1) We already have a known stream source address and the known
8359 * stream wants to change to a new source address. An attacking
8360 * stream will block learning the new stream source. After the
8361 * timeout we re-lock onto the original stream source address which
8362 * likely went away. The result is one way audio.
8363 *
8364 * 2) We already have a known stream source address and the known
8365 * stream doesn't want to change source addresses. An attacking
8366 * stream will not be able to replace the known stream. After the
8367 * timeout we re-lock onto the known stream. The call is not
8368 * affected.
8369 *
8370 * 3) We don't have a known stream source address. This presumably
8371 * is the start of a call. Competing streams will result in staying
8372 * in learning mode until a stream becomes the victor and we reach
8373 * the timeout. We cannot exit learning if we have no known stream
8374 * to lock onto. The result is one way audio until there is a victor.
8375 *
8376 * If we learn a stream source address before the timeout we will be
8377 * in scenario 1) or 2) when a competing stream starts.
8378 */
8381 ast_verb(4, "%p -- Strict RTP learning complete - Locking on source address %s\n",
8383 ast_test_suite_event_notify("STRICT_RTP_LEARN", "Source: %s",
8386 } else {
8387 struct ast_sockaddr target_address;
8388
8389 if (!ast_sockaddr_cmp(&rtp->strict_rtp_address, &addr)) {
8390 /*
8391 * We are open to learning a new address but have received
8392 * traffic from the current address, accept it and reset
8393 * the learning counts for a new source. When no more
8394 * current source packets arrive a new source can take over
8395 * once sufficient traffic is received.
8396 */
8398 break;
8399 }
8400
8401 /*
8402 * We give preferential treatment to the requested target address
8403 * (negotiated SDP address) where we are to send our RTP. However,
8404 * the other end has no obligation to send from that address even
8405 * though it is practically a requirement when NAT is involved.
8406 */
8407 ast_rtp_instance_get_requested_target_address(instance, &target_address);
8408 if (!ast_sockaddr_cmp(&target_address, &addr)) {
8409 /* Accept the negotiated target RTP stream as the source */
8410 ast_verb(4, "%p -- Strict RTP switching to RTP target address %s as source\n",
8411 rtp, ast_sockaddr_stringify(&addr));
8414 break;
8415 }
8416
8417 /*
8418 * Trying to learn a new address. If we pass a probationary period
8419 * with it, that means we've stopped getting RTP from the original
8420 * source and we should switch to it.
8421 */
8424 struct ast_rtp_codecs *codecs;
8425
8429 ast_verb(4, "%p -- Strict RTP qualifying stream type: %s\n",
8431 }
8432 if (!rtp_learning_rtp_seq_update(&rtp->rtp_source_learn, seqno)) {
8433 /* Accept the new RTP stream */
8434 ast_verb(4, "%p -- Strict RTP switching source address to %s\n",
8435 rtp, ast_sockaddr_stringify(&addr));
8438 break;
8439 }
8440 /* Not ready to accept the RTP stream candidate */
8441 ast_debug_rtp(1, "(%p) RTP %p -- Received packet from %s, dropping due to strict RTP protection. Will switch to it in %d packets.\n",
8442 instance, rtp, ast_sockaddr_stringify(&addr), rtp->rtp_source_learn.packets);
8443 } else {
8444 /*
8445 * This is either an attacking stream or
8446 * the start of the expected new stream.
8447 */
8450 ast_debug_rtp(1, "(%p) RTP %p -- Received packet from %s, dropping due to strict RTP protection. Qualifying new stream.\n",
8451 instance, rtp, ast_sockaddr_stringify(&addr));
8452 }
8453 return &ast_null_frame;
8454 }
8455 /* Fall through */
8456 case STRICT_RTP_CLOSED:
8457 /*
8458 * We should not allow a stream address change if the SSRC matches
8459 * once strictrtp learning is closed. Any kind of address change
8460 * like this should have happened while we were in the learning
8461 * state. We do not want to allow the possibility of an attacker
8462 * interfering with the RTP stream after the learning period.
8463 * An attacker could manage to get an RTCP packet redirected to
8464 * them which can contain the SSRC value.
8465 */
8466 if (!ast_sockaddr_cmp(&rtp->strict_rtp_address, &addr)) {
8467 break;
8468 }
8469 ast_debug_rtp(1, "(%p) RTP %p -- Received packet from %s, dropping due to strict RTP protection.\n",
8470 instance, rtp, ast_sockaddr_stringify(&addr));
8471#ifdef TEST_FRAMEWORK
8472 {
8473 static int strict_rtp_test_event = 1;
8474 if (strict_rtp_test_event) {
8475 ast_test_suite_event_notify("STRICT_RTP_CLOSED", "Source: %s",
8476 ast_sockaddr_stringify(&addr));
8477 strict_rtp_test_event = 0; /* Only run this event once to prevent possible spam */
8478 }
8479 }
8480#endif
8481 return &ast_null_frame;
8482 case STRICT_RTP_OPEN:
8483 break;
8484 }
8485
8486 /* If symmetric RTP is enabled see if the remote side is not what we expected and change where we are sending audio */
8488 if (ast_sockaddr_cmp(&remote_address, &addr)) {
8489 /* do not update the originally given address, but only the remote */
8491 ast_sockaddr_copy(&remote_address, &addr);
8492 if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
8493 ast_sockaddr_copy(&rtp->rtcp->them, &addr);
8495 }
8498 ast_debug(0, "(%p) RTP NAT: Got audio from other end. Now sending to address %s\n",
8499 instance, ast_sockaddr_stringify(&remote_address));
8500 }
8501 }
8502
8503 /* Pull out the various other fields we will need */
8504 payloadtype = (seqno & 0x7f0000) >> 16;
8505 seqno &= 0xffff;
8506 timestamp = ntohl(rtpheader[1]);
8507
8508#ifdef AST_DEVMODE
8509 if (should_drop_packets(&addr)) {
8510 ast_debug(0, "(%p) RTP: drop received packet from %s (type %-2.2d, seq %-6.6u, ts %-6.6u, len %-6.6d)\n",
8511 instance, ast_sockaddr_stringify(&addr), payloadtype, seqno, timestamp, res - hdrlen);
8512 return &ast_null_frame;
8513 }
8514#endif
8515
8516 if (rtp_debug_test_addr(&addr)) {
8517 ast_verbose("Got RTP packet from %s (type %-2.2d, seq %-6.6u, ts %-6.6u, len %-6.6d)\n",
8519 payloadtype, seqno, timestamp, res - hdrlen);
8520 }
8521
8523
8524 bundled = (child || AST_VECTOR_SIZE(&rtp->ssrc_mapping)) ? 1 : 0;
8525
8526 prev_seqno = rtp->lastrxseqno;
8527 /* We need to save lastrxseqno for use by jitter before resetting it. */
8528 rtp->prevrxseqno = rtp->lastrxseqno;
8529 rtp->lastrxseqno = seqno;
8530
8531 if (!rtp->recv_buffer) {
8532 /* If there is no receive buffer then we can pass back the frame directly */
8533 frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
8535 return AST_LIST_FIRST(&frames);
8536 } else if (rtp->expectedrxseqno == -1 || seqno == rtp->expectedrxseqno) {
8537 rtp->expectedrxseqno = seqno + 1;
8538
8539 /* We've cycled over, so go back to 0 */
8540 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8541 rtp->expectedrxseqno = 0;
8542 }
8543
8544 /* If there are no buffered packets that will be placed after this frame then we can
8545 * return it directly without duplicating it.
8546 */
8548 frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
8550 return AST_LIST_FIRST(&frames);
8551 }
8552
8555 ast_debug_rtp(2, "(%p) RTP Packet with sequence number '%d' on instance is no longer missing\n",
8556 instance, seqno);
8557 }
8558
8559 /* If we don't have the next packet after this we can directly return the frame, as there is no
8560 * chance it will be overwritten.
8561 */
8563 frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
8565 return AST_LIST_FIRST(&frames);
8566 }
8567
8568 /* Otherwise we need to dupe the frame so that the potential processing of frames placed after
8569 * it do not overwrite the data. You may be thinking that we could just add the current packet
8570 * to the head of the frames list and avoid having to duplicate it but this would result in out
8571 * of order packet processing by libsrtp which we are trying to avoid.
8572 */
8573 frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled));
8574 if (frame) {
8576 prev_seqno = seqno;
8577 }
8578
8579 /* Add any additional packets that we have buffered and that are available */
8580 while (ast_data_buffer_count(rtp->recv_buffer)) {
8581 struct ast_rtp_rtcp_nack_payload *payload;
8582
8584 if (!payload) {
8585 break;
8586 }
8587
8588 frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, payload->buf, payload->size, prev_seqno, bundled));
8589 ast_free(payload);
8590
8591 if (!frame) {
8592 /* If this packet can't be interpreted due to being out of memory we return what we have and assume
8593 * that we will determine it is a missing packet later and NACK for it.
8594 */
8595 return AST_LIST_FIRST(&frames);
8596 }
8597
8598 ast_debug_rtp(2, "(%p) RTP pulled buffered packet with sequence number '%d' to additionally return\n",
8599 instance, frame->seqno);
8601 prev_seqno = rtp->expectedrxseqno;
8602 rtp->expectedrxseqno++;
8603 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8604 rtp->expectedrxseqno = 0;
8605 }
8606 }
8607
8608 return AST_LIST_FIRST(&frames);
8609 } else if ((((seqno - rtp->expectedrxseqno) > 100) && timestamp > rtp->lastividtimestamp) ||
8611 int inserted = 0;
8612
8613 /* We have a large number of outstanding buffered packets or we've jumped far ahead in time.
8614 * To compensate we dump what we have in the buffer and place the current packet in a logical
8615 * spot. In the case of video we also require a full frame to give the decoding side a fighting
8616 * chance.
8617 */
8618
8620 ast_debug_rtp(2, "(%p) RTP source has wild gap or packet loss, sending FIR\n",
8621 instance);
8622 rtp_write_rtcp_fir(instance, rtp, &remote_address);
8623 }
8624
8625 /* This works by going through the progression of the sequence number retrieving buffered packets
8626 * or inserting the current received packet until we've run out of packets. This ensures that the
8627 * packets are in the correct sequence number order.
8628 */
8629 while (ast_data_buffer_count(rtp->recv_buffer)) {
8630 struct ast_rtp_rtcp_nack_payload *payload;
8631
8632 /* If the packet we received is the one we are expecting at this point then add it in */
8633 if (rtp->expectedrxseqno == seqno) {
8634 frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled));
8635 if (frame) {
8637 prev_seqno = seqno;
8638 ast_debug_rtp(2, "(%p) RTP inserted just received packet with sequence number '%d' in correct order\n",
8639 instance, seqno);
8640 }
8641 /* It is possible due to packet retransmission for this packet to also exist in the receive
8642 * buffer so we explicitly remove it in case this occurs, otherwise the receive buffer will
8643 * never be empty.
8644 */
8645 payload = (struct ast_rtp_rtcp_nack_payload *)ast_data_buffer_remove(rtp->recv_buffer, seqno);
8646 if (payload) {
8647 ast_free(payload);
8648 }
8649 rtp->expectedrxseqno++;
8650 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8651 rtp->expectedrxseqno = 0;
8652 }
8653 inserted = 1;
8654 continue;
8655 }
8656
8658 if (payload) {
8659 frame = ast_frdup(ast_rtp_interpret(instance, srtp, &addr, payload->buf, payload->size, prev_seqno, bundled));
8660 if (frame) {
8662 prev_seqno = rtp->expectedrxseqno;
8663 ast_debug_rtp(2, "(%p) RTP emptying queue and returning packet with sequence number '%d'\n",
8664 instance, frame->seqno);
8665 }
8666 ast_free(payload);
8667 }
8668
8669 rtp->expectedrxseqno++;
8670 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8671 rtp->expectedrxseqno = 0;
8672 }
8673 }
8674
8675 if (!inserted) {
8676 /* This current packet goes after them, and we assume that packets going forward will follow
8677 * that new sequence number increment. It is okay for this to not be duplicated as it is guaranteed
8678 * to be the last packet processed right now and it is also guaranteed that it will always return
8679 * non-NULL.
8680 */
8681 frame = ast_rtp_interpret(instance, srtp, &addr, read_area, res, prev_seqno, bundled);
8683 rtp->expectedrxseqno = seqno + 1;
8684 if (rtp->expectedrxseqno == SEQNO_CYCLE_OVER) {
8685 rtp->expectedrxseqno = 0;
8686 }
8687
8688 ast_debug_rtp(2, "(%p) RTP adding just received packet with sequence number '%d' to end of dumped queue\n",
8689 instance, seqno);
8690 }
8691
8692 /* When we flush increase our chance for next time by growing the receive buffer when possible
8693 * by how many packets we missed, to give ourselves a bit more breathing room.
8694 */
8697 ast_debug_rtp(2, "(%p) RTP receive buffer is now at maximum of %zu\n", instance, ast_data_buffer_max(rtp->recv_buffer));
8698
8699 /* As there is such a large gap we don't want to flood the order side with missing packets, so we
8700 * give up and start anew.
8701 */
8703
8704 return AST_LIST_FIRST(&frames);
8705 }
8706
8707 /* We're finished with the frames list */
8709
8710 /* Determine if the received packet is from the last OLD_PACKET_COUNT (1000 by default) packets or not.
8711 * For the case where the received sequence number exceeds that of the expected sequence number we calculate
8712 * the past sequence number that would be 1000 sequence numbers ago. If the received sequence number
8713 * exceeds or meets that then it is within OLD_PACKET_COUNT packets ago. For example if the expected
8714 * sequence number is 100 and we receive 65530, then it would be considered old. This is because
8715 * 65535 - 1000 + 100 = 64635 which gives us the sequence number at which we would consider the packets
8716 * old. Since 65530 is above that, it would be considered old.
8717 * For the case where the received sequence number is less than the expected sequence number we can do
8718 * a simple subtraction to see if it is 1000 packets ago or not.
8719 */
8720 if ((seqno < rtp->expectedrxseqno && ((rtp->expectedrxseqno - seqno) <= OLD_PACKET_COUNT)) ||
8721 (seqno > rtp->expectedrxseqno && (seqno >= (65535 - OLD_PACKET_COUNT + rtp->expectedrxseqno)))) {
8722 /* If this is a packet from the past then we have received a duplicate packet, so just drop it */
8723 ast_debug_rtp(2, "(%p) RTP received an old packet with sequence number '%d', dropping it\n",
8724 instance, seqno);
8725 return &ast_null_frame;
8726 } else if (ast_data_buffer_get(rtp->recv_buffer, seqno)) {
8727 /* If this is a packet we already have buffered then it is a duplicate, so just drop it */
8728 ast_debug_rtp(2, "(%p) RTP received a duplicate transmission of packet with sequence number '%d', dropping it\n",
8729 instance, seqno);
8730 return &ast_null_frame;
8731 } else {
8732 /* This is an out of order packet from the future */
8733 struct ast_rtp_rtcp_nack_payload *payload;
8734 int missing_seqno;
8735 int remove_failed;
8736 unsigned int missing_seqnos_added = 0;
8737
8738 ast_debug_rtp(2, "(%p) RTP received an out of order packet with sequence number '%d' while expecting '%d' from the future\n",
8739 instance, seqno, rtp->expectedrxseqno);
8740
8741 payload = ast_malloc(sizeof(*payload) + res);
8742 if (!payload) {
8743 /* If the payload can't be allocated then we can't defer this packet right now.
8744 * Instead of dumping what we have we pretend we lost this packet. It will then
8745 * get NACKed later or the existing buffer will be returned entirely. Well, we may
8746 * try since we're seemingly out of memory. It's a bad situation all around and
8747 * packets are likely to get lost anyway.
8748 */
8749 return &ast_null_frame;
8750 }
8751
8752 payload->size = res;
8753 memcpy(payload->buf, rtpheader, res);
8754 if (ast_data_buffer_put(rtp->recv_buffer, seqno, payload) == -1) {
8755 ast_free(payload);
8756 }
8757
8758 /* If this sequence number is removed that means we had a gap and this packet has filled it in
8759 * some. Since it was part of the gap we will have already added any other missing sequence numbers
8760 * before it (and possibly after it) to the vector so we don't need to do that again. Note that
8761 * remove_failed will be set to -1 if the sequence number isn't removed, and 0 if it is.
8762 */
8763 remove_failed = AST_VECTOR_REMOVE_CMP_ORDERED(&rtp->missing_seqno, seqno, find_by_value,
8765 if (!remove_failed) {
8766 ast_debug_rtp(2, "(%p) RTP packet with sequence number '%d' is no longer missing\n",
8767 instance, seqno);
8768 }
8769
8770 /* The missing sequence number code works by taking the sequence number of the
8771 * packet we've just received and going backwards until we hit the sequence number
8772 * of the last packet we've received. While doing so we check to make sure that the
8773 * sequence number is not already missing and that it is not already buffered.
8774 */
8775 missing_seqno = seqno;
8776 while (remove_failed) {
8777 missing_seqno -= 1;
8778
8779 /* If we've cycled backwards then start back at the top */
8780 if (missing_seqno < 0) {
8781 missing_seqno = 65535;
8782 }
8783
8784 /* We've gone backwards enough such that we've hit the previous sequence number */
8785 if (missing_seqno == prev_seqno) {
8786 break;
8787 }
8788
8789 /* We don't want missing sequence number duplicates. If, for some reason,
8790 * packets are really out of order, we could end up in this scenario:
8791 *
8792 * We are expecting sequence number 100
8793 * We receive sequence number 105
8794 * Sequence numbers 100 through 104 get added to the vector
8795 * We receive sequence number 101 (this section is skipped)
8796 * We receive sequence number 103
8797 * Sequence number 102 is added to the vector
8798 *
8799 * This will prevent the duplicate from being added.
8800 */
8801 if (AST_VECTOR_GET_CMP(&rtp->missing_seqno, missing_seqno,
8802 find_by_value)) {
8803 continue;
8804 }
8805
8806 /* If this packet has been buffered already then don't count it amongst the
8807 * missing.
8808 */
8809 if (ast_data_buffer_get(rtp->recv_buffer, missing_seqno)) {
8810 continue;
8811 }
8812
8813 ast_debug_rtp(2, "(%p) RTP added missing sequence number '%d'\n",
8814 instance, missing_seqno);
8815 AST_VECTOR_ADD_SORTED(&rtp->missing_seqno, missing_seqno,
8817 missing_seqnos_added++;
8818 }
8819
8820 /* When we add a large number of missing sequence numbers we assume there was a substantial
8821 * gap in reception so we trigger an immediate NACK. When our data buffer is 1/4 full we
8822 * assume that the packets aren't just out of order but have actually been lost. At 1/2
8823 * full we get more aggressive and ask for retransmission when we get a new packet.
8824 * To get them back we construct and send a NACK causing the sender to retransmit them.
8825 */
8826 if (missing_seqnos_added >= MISSING_SEQNOS_ADDED_TRIGGER ||
8829 int packet_len = 0;
8830 int res = 0;
8831 int ice;
8832 int sr;
8833 size_t data_size = AST_UUID_STR_LEN + 128 + (AST_VECTOR_SIZE(&rtp->missing_seqno) * 4);
8834 RAII_VAR(unsigned char *, rtcpheader, NULL, ast_free_ptr);
8835 RAII_VAR(struct ast_rtp_rtcp_report *, rtcp_report,
8837 ao2_cleanup);
8838
8839 /* Sufficient space for RTCP headers and report, SDES with CNAME, NACK header,
8840 * and worst case 4 bytes per missing sequence number.
8841 */
8842 rtcpheader = ast_malloc(sizeof(*rtcpheader) + data_size);
8843 if (!rtcpheader) {
8844 ast_debug_rtcp(1, "(%p) RTCP failed to allocate memory for NACK\n", instance);
8845 return &ast_null_frame;
8846 }
8847
8848 memset(rtcpheader, 0, data_size);
8849
8850 res = ast_rtcp_generate_compound_prefix(instance, rtcpheader, rtcp_report, &sr);
8851
8852 if (res == 0 || res == 1) {
8853 return &ast_null_frame;
8854 }
8855
8856 packet_len += res;
8857
8858 res = ast_rtcp_generate_nack(instance, rtcpheader + packet_len);
8859
8860 if (res == 0) {
8861 ast_debug_rtcp(1, "(%p) RTCP failed to construct NACK, stopping here\n", instance);
8862 return &ast_null_frame;
8863 }
8864
8865 packet_len += res;
8866
8867 res = rtcp_sendto(instance, rtcpheader, packet_len, 0, &remote_address, &ice);
8868 if (res < 0) {
8869 ast_debug_rtcp(1, "(%p) RTCP failed to send NACK request out\n", instance);
8870 } else {
8871 ast_debug_rtcp(2, "(%p) RTCP sending a NACK request to get missing packets\n", instance);
8872 /* Update RTCP SR/RR statistics */
8873 ast_rtcp_calculate_sr_rr_statistics(instance, rtcp_report, remote_address, ice, sr);
8874 }
8875 }
8876 }
8877
8878 return &ast_null_frame;
8879}
8880
8881/*! \pre instance is locked */
8882static void ast_rtp_prop_set(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value)
8883{
8884 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
8885
8886 if (property == AST_RTP_PROPERTY_RTCP) {
8887 if (value) {
8888 struct ast_sockaddr local_addr;
8889
8890 if (rtp->rtcp && rtp->rtcp->type == value) {
8891 ast_debug_rtcp(1, "(%p) RTCP ignoring duplicate property\n", instance);
8892 return;
8893 }
8894
8895 if (!rtp->rtcp) {
8896 rtp->rtcp = ast_calloc(1, sizeof(*rtp->rtcp));
8897 if (!rtp->rtcp) {
8898 return;
8899 }
8900 rtp->rtcp->s = -1;
8901#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
8902 rtp->rtcp->dtls.timeout_timer = -1;
8903#endif
8904 rtp->rtcp->schedid = -1;
8905 }
8906
8907 rtp->rtcp->type = value;
8908
8909 /* Grab the IP address and port we are going to use */
8910 ast_rtp_instance_get_local_address(instance, &rtp->rtcp->us);
8913 ast_sockaddr_port(&rtp->rtcp->us) + 1);
8914 }
8915
8916 ast_sockaddr_copy(&local_addr, &rtp->rtcp->us);
8917 if (!ast_find_ourip(&local_addr, &rtp->rtcp->us, 0)) {
8918 ast_sockaddr_set_port(&local_addr, ast_sockaddr_port(&rtp->rtcp->us));
8919 } else {
8920 /* Failed to get local address reset to use default. */
8921 ast_sockaddr_copy(&local_addr, &rtp->rtcp->us);
8922 }
8923
8926 if (!rtp->rtcp->local_addr_str) {
8927 ast_free(rtp->rtcp);
8928 rtp->rtcp = NULL;
8929 return;
8930 }
8931
8933 /* We're either setting up RTCP from scratch or
8934 * switching from MUX. Either way, we won't have
8935 * a socket set up, and we need to set it up
8936 */
8937 if ((rtp->rtcp->s =
8938 create_new_socket("RTCP",
8939 ast_sockaddr_is_ipv4(&rtp->rtcp->us) ?
8940 AF_INET :
8941 ast_sockaddr_is_ipv6(&rtp->rtcp->us) ?
8942 AF_INET6 : -1)) < 0) {
8943 ast_debug_rtcp(1, "(%p) RTCP failed to create a new socket\n", instance);
8945 ast_free(rtp->rtcp);
8946 rtp->rtcp = NULL;
8947 return;
8948 }
8949
8950 /* Try to actually bind to the IP address and port we are going to use for RTCP, if this fails we have to bail out */
8951 if (ast_bind(rtp->rtcp->s, &rtp->rtcp->us)) {
8952 ast_debug_rtcp(1, "(%p) RTCP failed to setup RTP instance\n", instance);
8953 close(rtp->rtcp->s);
8955 ast_free(rtp->rtcp);
8956 rtp->rtcp = NULL;
8957 return;
8958 }
8959#ifdef HAVE_PJPROJECT
8960 if (rtp->ice) {
8961 rtp_add_candidates_to_ice(instance, rtp, &rtp->rtcp->us, ast_sockaddr_port(&rtp->rtcp->us), AST_RTP_ICE_COMPONENT_RTCP, TRANSPORT_SOCKET_RTCP);
8962 }
8963#endif
8964#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
8965 dtls_setup_rtcp(instance);
8966#endif
8967 } else {
8968 struct ast_sockaddr addr;
8969 /* RTCPMUX uses the same socket as RTP. If we were previously using standard RTCP
8970 * then close the socket we previously created.
8971 *
8972 * It may seem as though there is a possible race condition here where we might try
8973 * to close the RTCP socket while it is being used to send data. However, this is not
8974 * a problem in practice since setting and adjusting of RTCP properties happens prior
8975 * to activating RTP. It is not until RTP is activated that timers start for RTCP
8976 * transmission
8977 */
8978 if (rtp->rtcp->s > -1 && rtp->rtcp->s != rtp->s) {
8979 close(rtp->rtcp->s);
8980 }
8981 rtp->rtcp->s = rtp->s;
8982 ast_rtp_instance_get_remote_address(instance, &addr);
8983 ast_sockaddr_copy(&rtp->rtcp->them, &addr);
8984#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
8985 if (rtp->rtcp->dtls.ssl && rtp->rtcp->dtls.ssl != rtp->dtls.ssl) {
8986 SSL_free(rtp->rtcp->dtls.ssl);
8987 }
8988 rtp->rtcp->dtls.ssl = rtp->dtls.ssl;
8989#endif
8990 }
8991
8992 ast_debug_rtcp(1, "(%s) RTCP setup on RTP instance\n",
8994 } else {
8995 if (rtp->rtcp) {
8996 if (rtp->rtcp->schedid > -1) {
8997 ao2_unlock(instance);
8998 if (!ast_sched_del(rtp->sched, rtp->rtcp->schedid)) {
8999 /* Successfully cancelled scheduler entry. */
9000 ao2_ref(instance, -1);
9001 } else {
9002 /* Unable to cancel scheduler entry */
9003 ast_debug_rtcp(1, "(%p) RTCP failed to tear down RTCP\n", instance);
9004 ao2_lock(instance);
9005 return;
9006 }
9007 ao2_lock(instance);
9008 rtp->rtcp->schedid = -1;
9009 }
9010 if (rtp->transport_wide_cc.schedid > -1) {
9011 ao2_unlock(instance);
9012 if (!ast_sched_del(rtp->sched, rtp->transport_wide_cc.schedid)) {
9013 ao2_ref(instance, -1);
9014 } else {
9015 ast_debug_rtcp(1, "(%p) RTCP failed to tear down transport-cc feedback\n", instance);
9016 ao2_lock(instance);
9017 return;
9018 }
9019 ao2_lock(instance);
9020 rtp->transport_wide_cc.schedid = -1;
9021 }
9022 if (rtp->rtcp->s > -1 && rtp->rtcp->s != rtp->s) {
9023 close(rtp->rtcp->s);
9024 }
9025#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
9026 ao2_unlock(instance);
9027 dtls_srtp_stop_timeout_timer(instance, rtp, 1);
9028 ao2_lock(instance);
9029
9030 if (rtp->rtcp->dtls.ssl && rtp->rtcp->dtls.ssl != rtp->dtls.ssl) {
9031 SSL_free(rtp->rtcp->dtls.ssl);
9032 }
9033#endif
9035 ast_free(rtp->rtcp);
9036 rtp->rtcp = NULL;
9037 ast_debug_rtcp(1, "(%s) RTCP torn down on RTP instance\n",
9039 }
9040 }
9041 } else if (property == AST_RTP_PROPERTY_ASYMMETRIC_CODEC) {
9042 rtp->asymmetric_codec = value;
9043 } else if (property == AST_RTP_PROPERTY_RETRANS_SEND) {
9044 if (value) {
9045 if (!rtp->send_buffer) {
9047 }
9048 } else {
9049 if (rtp->send_buffer) {
9051 rtp->send_buffer = NULL;
9052 }
9053 }
9054 } else if (property == AST_RTP_PROPERTY_RETRANS_RECV) {
9055 if (value) {
9056 if (!rtp->recv_buffer) {
9059 }
9060 } else {
9061 if (rtp->recv_buffer) {
9063 rtp->recv_buffer = NULL;
9065 }
9066 }
9067 }
9068}
9069
9070/*! \pre instance is locked */
9071static int ast_rtp_fd(struct ast_rtp_instance *instance, int rtcp)
9072{
9073 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9074
9075 return rtcp ? (rtp->rtcp ? rtp->rtcp->s : -1) : rtp->s;
9076}
9077
9078/*! \pre instance is locked */
9079static void ast_rtp_remote_address_set(struct ast_rtp_instance *instance, struct ast_sockaddr *addr)
9080{
9081 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9082 struct ast_sockaddr local;
9083 int index;
9084
9085 ast_rtp_instance_get_local_address(instance, &local);
9086 if (!ast_sockaddr_isnull(addr)) {
9087 /* Update the local RTP address with what is being used */
9088 if (ast_ouraddrfor(addr, &local)) {
9089 /* Failed to update our address so reuse old local address */
9090 ast_rtp_instance_get_local_address(instance, &local);
9091 } else {
9092 ast_rtp_instance_set_local_address(instance, &local);
9093 }
9094 }
9095
9096 if (rtp->rtcp && !ast_sockaddr_isnull(addr)) {
9097 ast_debug_rtcp(1, "(%p) RTCP setting address on RTP instance\n", instance);
9098 ast_sockaddr_copy(&rtp->rtcp->them, addr);
9099
9102
9103 /* Update the local RTCP address with what is being used */
9104 ast_sockaddr_set_port(&local, ast_sockaddr_port(&local) + 1);
9105 }
9106 ast_sockaddr_copy(&rtp->rtcp->us, &local);
9107
9110 }
9111
9112 /* Update any bundled RTP instances */
9113 for (index = 0; index < AST_VECTOR_SIZE(&rtp->ssrc_mapping); ++index) {
9114 struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&rtp->ssrc_mapping, index);
9115
9117 }
9118
9119 /* Need to reset the DTMF last sequence number and the timestamp of the last END packet */
9120 rtp->last_seqno = 0;
9121 rtp->last_end_timestamp.ts = 0;
9122 rtp->last_end_timestamp.is_set = 0;
9123
9125 && !ast_sockaddr_isnull(addr) && ast_sockaddr_cmp(addr, &rtp->strict_rtp_address)) {
9126 /* We only need to learn a new strict source address if we've been told the source is
9127 * changing to something different.
9128 */
9129 ast_verb(4, "%p -- Strict RTP learning after remote address set to: %s\n",
9130 rtp, ast_sockaddr_stringify(addr));
9131 rtp_learning_start(rtp);
9132 }
9133}
9134
9135/*!
9136 * \brief Write t140 redundancy frame
9137 *
9138 * \param data primary data to be buffered
9139 *
9140 * Scheduler callback
9141 */
9142static int red_write(const void *data)
9143{
9144 struct ast_rtp_instance *instance = (struct ast_rtp_instance*) data;
9145 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9146
9147 ao2_lock(instance);
9148 if (rtp->red->t140.datalen > 0) {
9149 ast_rtp_write(instance, &rtp->red->t140);
9150 }
9151 ao2_unlock(instance);
9152
9153 return 1;
9154}
9155
9156/*! \pre instance is locked */
9157static int rtp_red_init(struct ast_rtp_instance *instance, int buffer_time, int *payloads, int generations)
9158{
9159 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9160 int x;
9161
9162 rtp->red = ast_calloc(1, sizeof(*rtp->red));
9163 if (!rtp->red) {
9164 return -1;
9165 }
9166
9169 rtp->red->t140.data.ptr = &rtp->red->buf_data;
9170
9171 rtp->red->t140red = rtp->red->t140;
9172 rtp->red->t140red.data.ptr = &rtp->red->t140red_data;
9173
9174 rtp->red->ti = buffer_time;
9175 rtp->red->num_gen = generations;
9176 rtp->red->hdrlen = generations * 4 + 1;
9177
9178 for (x = 0; x < generations; x++) {
9179 rtp->red->pt[x] = payloads[x];
9180 rtp->red->pt[x] |= 1 << 7; /* mark redundant generations pt */
9181 rtp->red->t140red_data[x*4] = rtp->red->pt[x];
9182 }
9183 rtp->red->t140red_data[x*4] = rtp->red->pt[x] = payloads[x]; /* primary pt */
9184 rtp->red->schedid = ast_sched_add(rtp->sched, generations, red_write, instance);
9185
9186 return 0;
9187}
9188
9189/*! \pre instance is locked */
9190static int rtp_red_buffer(struct ast_rtp_instance *instance, struct ast_frame *frame)
9191{
9192 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9193 struct rtp_red *red = rtp->red;
9194
9195 if (!red) {
9196 return 0;
9197 }
9198
9199 if (frame->datalen > 0) {
9200 if (red->t140.datalen > 0) {
9201 const unsigned char *primary = red->buf_data;
9202
9203 /* There is something already in the T.140 buffer */
9204 if (primary[0] == 0x08 || primary[0] == 0x0a || primary[0] == 0x0d) {
9205 /* Flush the previous T.140 packet if it is a command */
9206 ast_rtp_write(instance, &rtp->red->t140);
9207 } else {
9208 primary = frame->data.ptr;
9209 if (primary[0] == 0x08 || primary[0] == 0x0a || primary[0] == 0x0d) {
9210 /* Flush the previous T.140 packet if we are buffering a command now */
9211 ast_rtp_write(instance, &rtp->red->t140);
9212 }
9213 }
9214 }
9215
9216 memcpy(&red->buf_data[red->t140.datalen], frame->data.ptr, frame->datalen);
9217 red->t140.datalen += frame->datalen;
9218 red->t140.ts = frame->ts;
9219 }
9220
9221 return 0;
9222}
9223
9224/*! \pre Neither instance0 nor instance1 are locked */
9225static int ast_rtp_local_bridge(struct ast_rtp_instance *instance0, struct ast_rtp_instance *instance1)
9226{
9227 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance0);
9228
9229 ao2_lock(instance0);
9231 if (rtp->smoother) {
9233 rtp->smoother = NULL;
9234 }
9235
9236 /* We must use a new SSRC when local bridge ends */
9237 if (!instance1) {
9238 rtp->ssrc = rtp->ssrc_orig;
9239 rtp->ssrc_orig = 0;
9240 rtp->ssrc_saved = 0;
9241 } else if (!rtp->ssrc_saved) {
9242 /* In case ast_rtp_local_bridge is called multiple times, only save the ssrc from before local bridge began */
9243 rtp->ssrc_orig = rtp->ssrc;
9244 rtp->ssrc_saved = 1;
9245 }
9246
9247 ao2_unlock(instance0);
9248
9249 return 0;
9250}
9251
9252/*! \pre instance is locked */
9253static int ast_rtp_get_stat(struct ast_rtp_instance *instance, struct ast_rtp_instance_stats *stats, enum ast_rtp_instance_stat stat)
9254{
9255 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9256
9257 if (!rtp->rtcp) {
9258 return -1;
9259 }
9260
9265
9277
9289
9296
9308
9309
9313
9314 return 0;
9315}
9316
9317/*! \pre Neither instance0 nor instance1 are locked */
9318static int ast_rtp_dtmf_compatible(struct ast_channel *chan0, struct ast_rtp_instance *instance0, struct ast_channel *chan1, struct ast_rtp_instance *instance1)
9319{
9320 /* If both sides are not using the same method of DTMF transmission
9321 * (ie: one is RFC2833, other is INFO... then we can not do direct media.
9322 * --------------------------------------------------
9323 * | DTMF Mode | HAS_DTMF | Accepts Begin Frames |
9324 * |-----------|------------|-----------------------|
9325 * | Inband | False | True |
9326 * | RFC2833 | True | True |
9327 * | SIP INFO | False | False |
9328 * --------------------------------------------------
9329 */
9331 (!ast_channel_tech(chan0)->send_digit_begin != !ast_channel_tech(chan1)->send_digit_begin)) ? 0 : 1);
9332}
9333
9334/*! \pre instance is NOT locked */
9335static void ast_rtp_stun_request(struct ast_rtp_instance *instance, struct ast_sockaddr *suggestion, const char *username)
9336{
9337 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9338 struct sockaddr_in suggestion_tmp;
9339
9340 /*
9341 * The instance should not be locked because we can block
9342 * waiting for a STUN respone.
9343 */
9344 ast_sockaddr_to_sin(suggestion, &suggestion_tmp);
9345 ast_stun_request(rtp->s, &suggestion_tmp, username, NULL);
9346 ast_sockaddr_from_sin(suggestion, &suggestion_tmp);
9347}
9348
9349/*! \pre instance is locked */
9350static void ast_rtp_stop(struct ast_rtp_instance *instance)
9351{
9352 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9353 struct ast_sockaddr addr = { {0,} };
9354
9355#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
9356 ao2_unlock(instance);
9357 AST_SCHED_DEL_UNREF(rtp->sched, rtp->rekeyid, ao2_ref(instance, -1));
9358
9359 dtls_srtp_stop_timeout_timer(instance, rtp, 0);
9360 if (rtp->rtcp) {
9361 dtls_srtp_stop_timeout_timer(instance, rtp, 1);
9362 }
9363 ao2_lock(instance);
9364#endif
9365 ast_debug_rtp(1, "(%s) RTP Stop\n",
9367
9368 if (rtp->rtcp && rtp->rtcp->schedid > -1) {
9369 ao2_unlock(instance);
9370 if (!ast_sched_del(rtp->sched, rtp->rtcp->schedid)) {
9371 /* successfully cancelled scheduler entry. */
9372 ao2_ref(instance, -1);
9373 }
9374 ao2_lock(instance);
9375 rtp->rtcp->schedid = -1;
9376 }
9377
9378 if (rtp->transport_wide_cc.schedid > -1) {
9379 ao2_unlock(instance);
9380 if (!ast_sched_del(rtp->sched, rtp->transport_wide_cc.schedid)) {
9381 ao2_ref(instance, -1);
9382 }
9383 ao2_lock(instance);
9384 rtp->transport_wide_cc.schedid = -1;
9385 }
9386
9387 if (rtp->red) {
9388 ao2_unlock(instance);
9389 AST_SCHED_DEL(rtp->sched, rtp->red->schedid);
9390 ao2_lock(instance);
9391 ast_free(rtp->red);
9392 rtp->red = NULL;
9393 }
9394
9395 ast_rtp_instance_set_remote_address(instance, &addr);
9396
9398}
9399
9400/*! \pre instance is locked */
9401static int ast_rtp_qos_set(struct ast_rtp_instance *instance, int tos, int cos, const char *desc)
9402{
9403 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9404
9405 return ast_set_qos(rtp->s, tos, cos, desc);
9406}
9407
9408/*!
9409 * \brief generate comfort noice (CNG)
9410 *
9411 * \pre instance is locked
9412 */
9413static int ast_rtp_sendcng(struct ast_rtp_instance *instance, int level)
9414{
9415 unsigned int *rtpheader;
9416 int hdrlen = 12;
9417 int res, payload = 0;
9418 char data[256];
9419 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9420 struct ast_sockaddr remote_address = { {0,} };
9421 int ice;
9422
9423 ast_rtp_instance_get_remote_address(instance, &remote_address);
9424
9425 if (ast_sockaddr_isnull(&remote_address)) {
9426 return -1;
9427 }
9428
9430
9431 level = 127 - (level & 0x7f);
9432
9433 rtp->dtmfmute = ast_tvadd(ast_tvnow(), ast_tv(0, 500000));
9434
9435 /* Get a pointer to the header */
9436 rtpheader = (unsigned int *)data;
9437 rtpheader[0] = htonl((2 << 30) | (payload << 16) | (rtp->seqno));
9438 rtpheader[1] = htonl(rtp->lastts);
9439 rtpheader[2] = htonl(rtp->ssrc);
9440 data[12] = level;
9441
9442 res = rtp_sendto(instance, (void *) rtpheader, hdrlen + 1, 0, &remote_address, &ice);
9443
9444 if (res < 0) {
9445 ast_log(LOG_ERROR, "RTP Comfort Noise Transmission error to %s: %s\n", ast_sockaddr_stringify(&remote_address), strerror(errno));
9446 return res;
9447 }
9448
9449 if (rtp_debug_test_addr(&remote_address)) {
9450 ast_verbose("Sent Comfort Noise RTP packet to %s%s (type %-2.2d, seq %-6.6d, ts %-6.6u, len %-6.6d)\n",
9451 ast_sockaddr_stringify(&remote_address),
9452 ice ? " (via ICE)" : "",
9453 AST_RTP_CN, rtp->seqno, rtp->lastdigitts, res - hdrlen);
9454 }
9455
9456 rtp->seqno++;
9457
9458 return res;
9459}
9460
9461/*! \pre instance is locked */
9462static unsigned int ast_rtp_get_ssrc(struct ast_rtp_instance *instance)
9463{
9464 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9465
9466 return rtp->ssrc;
9467}
9468
9469/*! \pre instance is locked */
9470static const char *ast_rtp_get_cname(struct ast_rtp_instance *instance)
9471{
9472 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9473
9474 return rtp->cname;
9475}
9476
9477/*! \pre instance is locked */
9478static void ast_rtp_set_remote_ssrc(struct ast_rtp_instance *instance, unsigned int ssrc)
9479{
9480 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9481
9482 if (rtp->themssrc_valid && rtp->themssrc == ssrc) {
9483 return;
9484 }
9485
9486 rtp->themssrc = ssrc;
9487 rtp->themssrc_valid = 1;
9488
9489 /* If this is bundled we need to update the SSRC mapping */
9490 if (rtp->bundled) {
9491 struct ast_rtp *bundled_rtp;
9492 int index;
9493
9494 ao2_unlock(instance);
9495
9496 /* The child lock can't be held while accessing the parent */
9497 ao2_lock(rtp->bundled);
9498 bundled_rtp = ast_rtp_instance_get_data(rtp->bundled);
9499
9500 for (index = 0; index < AST_VECTOR_SIZE(&bundled_rtp->ssrc_mapping); ++index) {
9501 struct rtp_ssrc_mapping *mapping = AST_VECTOR_GET_ADDR(&bundled_rtp->ssrc_mapping, index);
9502
9503 if (mapping->instance == instance) {
9504 mapping->ssrc = ssrc;
9505 mapping->ssrc_valid = 1;
9506 break;
9507 }
9508 }
9509
9510 ao2_unlock(rtp->bundled);
9511
9513 }
9514}
9515
9516static void ast_rtp_set_stream_num(struct ast_rtp_instance *instance, int stream_num)
9517{
9518 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9519
9520 rtp->stream_num = stream_num;
9521}
9522
9524{
9525 switch (extension) {
9528 return 1;
9529 default:
9530 return 0;
9531 }
9532}
9533
9534/*! \pre child is locked */
9535static int ast_rtp_bundle(struct ast_rtp_instance *child, struct ast_rtp_instance *parent)
9536{
9537 struct ast_rtp *child_rtp = ast_rtp_instance_get_data(child);
9538 struct ast_rtp *parent_rtp;
9539 struct rtp_ssrc_mapping mapping;
9540 struct ast_sockaddr them = { { 0, } };
9541
9542 if (child_rtp->bundled == parent) {
9543 return 0;
9544 }
9545
9546 /* If this instance was already bundled then remove the SSRC mapping */
9547 if (child_rtp->bundled) {
9548 struct ast_rtp *bundled_rtp;
9549
9550 ao2_unlock(child);
9551
9552 /* The child lock can't be held while accessing the parent */
9553 ao2_lock(child_rtp->bundled);
9554 bundled_rtp = ast_rtp_instance_get_data(child_rtp->bundled);
9556 ao2_unlock(child_rtp->bundled);
9557
9558 ao2_lock(child);
9559 ao2_ref(child_rtp->bundled, -1);
9560 child_rtp->bundled = NULL;
9561 }
9562
9563 if (!parent) {
9564 /* We transitioned away from bundle so we need our own transport resources once again */
9565 rtp_allocate_transport(child, child_rtp);
9566 return 0;
9567 }
9568
9569 parent_rtp = ast_rtp_instance_get_data(parent);
9570
9571 /* We no longer need any transport related resources as we will use our parent RTP instance instead */
9572 rtp_deallocate_transport(child, child_rtp);
9573
9574 /* Children maintain a reference to the parent to guarantee that the transport doesn't go away on them */
9575 child_rtp->bundled = ao2_bump(parent);
9576
9577 mapping.ssrc = child_rtp->themssrc;
9578 mapping.ssrc_valid = child_rtp->themssrc_valid;
9579 mapping.instance = child;
9580
9581 ao2_unlock(child);
9582
9583 ao2_lock(parent);
9584
9585 AST_VECTOR_APPEND(&parent_rtp->ssrc_mapping, mapping);
9586
9587#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
9588 /* If DTLS-SRTP is already in use then add the local SSRC to it, otherwise it will get added once DTLS
9589 * negotiation has been completed.
9590 */
9591 if (parent_rtp->dtls.connection == AST_RTP_DTLS_CONNECTION_EXISTING) {
9592 dtls_srtp_add_local_ssrc(parent_rtp, parent, 0, child_rtp->ssrc, 0);
9593 }
9594#endif
9595
9596 /* Bundle requires that RTCP-MUX be in use so only the main remote address needs to match */
9598
9599 ao2_unlock(parent);
9600
9601 ao2_lock(child);
9602
9604
9605 return 0;
9606}
9607
9608#ifdef HAVE_PJPROJECT
9609static void stunaddr_resolve_callback(const struct ast_dns_query *query)
9610{
9611 const int lowest_ttl = ast_dns_result_get_lowest_ttl(ast_dns_query_get_result(query));
9612 const char *stunaddr_name = ast_dns_query_get_name(query);
9613 const char *stunaddr_resolved_str;
9614
9615 if (!store_stunaddr_resolved(query)) {
9616 ast_log(LOG_WARNING, "Failed to resolve stunaddr '%s'. Cancelling recurring resolution.\n", stunaddr_name);
9617 return;
9618 }
9619
9620 if (DEBUG_ATLEAST(2)) {
9621 ast_rwlock_rdlock(&stunaddr_lock);
9622 stunaddr_resolved_str = ast_inet_ntoa(stunaddr.sin_addr);
9623 ast_rwlock_unlock(&stunaddr_lock);
9624
9625 ast_debug_stun(2, "Resolved stunaddr '%s' to '%s'. Lowest TTL = %d.\n",
9626 stunaddr_name,
9627 stunaddr_resolved_str,
9628 lowest_ttl);
9629 }
9630
9631 if (!lowest_ttl) {
9632 ast_log(LOG_WARNING, "Resolution for stunaddr '%s' returned TTL = 0. Recurring resolution was cancelled.\n", ast_dns_query_get_name(query));
9633 }
9634}
9635
9636static int store_stunaddr_resolved(const struct ast_dns_query *query)
9637{
9638 const struct ast_dns_result *result = ast_dns_query_get_result(query);
9639 const struct ast_dns_record *record;
9640
9641 for (record = ast_dns_result_get_records(result); record; record = ast_dns_record_get_next(record)) {
9642 const size_t data_size = ast_dns_record_get_data_size(record);
9643 const unsigned char *data = (unsigned char *)ast_dns_record_get_data(record);
9644 const int rr_type = ast_dns_record_get_rr_type(record);
9645
9646 if (rr_type == ns_t_a && data_size == 4) {
9647 ast_rwlock_wrlock(&stunaddr_lock);
9648 memcpy(&stunaddr.sin_addr, data, data_size);
9649 stunaddr.sin_family = AF_INET;
9650 ast_rwlock_unlock(&stunaddr_lock);
9651
9652 return 1;
9653 } else {
9654 ast_debug_stun(3, "Unrecognized rr_type '%u' or data_size '%zu' from DNS query for stunaddr '%s'\n",
9655 rr_type, data_size, ast_dns_query_get_name(query));
9656 continue;
9657 }
9658 }
9659 return 0;
9660}
9661
9662static void clean_stunaddr(void) {
9663 if (stunaddr_resolver) {
9664 if (ast_dns_resolve_recurring_cancel(stunaddr_resolver)) {
9665 ast_log(LOG_ERROR, "Failed to cancel recurring DNS resolution of previous stunaddr.\n");
9666 }
9667 ao2_ref(stunaddr_resolver, -1);
9668 stunaddr_resolver = NULL;
9669 }
9670 ast_rwlock_wrlock(&stunaddr_lock);
9671 memset(&stunaddr, 0, sizeof(stunaddr));
9672 ast_rwlock_unlock(&stunaddr_lock);
9673}
9674#endif
9675
9676#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
9677/*! \pre instance is locked */
9678static int ast_rtp_activate(struct ast_rtp_instance *instance)
9679{
9680 struct ast_rtp *rtp = ast_rtp_instance_get_data(instance);
9681
9682 /* If ICE negotiation is enabled the DTLS Handshake will be performed upon completion of it */
9683#ifdef HAVE_PJPROJECT
9684 if (rtp->ice) {
9685 return 0;
9686 }
9687#endif
9688
9689 ast_debug_dtls(3, "(%p) DTLS - ast_rtp_activate rtp=%p - setup and perform DTLS'\n", instance, rtp);
9690
9691 dtls_perform_setup(&rtp->dtls);
9692 dtls_perform_handshake(instance, &rtp->dtls, 0);
9693
9694 if (rtp->rtcp && rtp->rtcp->type == AST_RTP_INSTANCE_RTCP_STANDARD) {
9695 dtls_perform_setup(&rtp->rtcp->dtls);
9696 dtls_perform_handshake(instance, &rtp->rtcp->dtls, 1);
9697 }
9698
9699 return 0;
9700}
9701#endif
9702
9703static char *rtp_do_debug_ip(struct ast_cli_args *a)
9704{
9705 char *arg = ast_strdupa(a->argv[4]);
9706 char *debughost = NULL;
9707 char *debugport = NULL;
9708
9709 if (!ast_sockaddr_parse(&rtpdebugaddr, arg, 0) || !ast_sockaddr_split_hostport(arg, &debughost, &debugport, 0)) {
9710 ast_cli(a->fd, "Lookup failed for '%s'\n", arg);
9711 return CLI_FAILURE;
9712 }
9713 rtpdebugport = (!ast_strlen_zero(debugport) && debugport[0] != '0');
9714 ast_cli(a->fd, "RTP Packet Debugging Enabled for address: %s\n",
9717 return CLI_SUCCESS;
9718}
9719
9720static char *rtcp_do_debug_ip(struct ast_cli_args *a)
9721{
9722 char *arg = ast_strdupa(a->argv[4]);
9723 char *debughost = NULL;
9724 char *debugport = NULL;
9725
9726 if (!ast_sockaddr_parse(&rtcpdebugaddr, arg, 0) || !ast_sockaddr_split_hostport(arg, &debughost, &debugport, 0)) {
9727 ast_cli(a->fd, "Lookup failed for '%s'\n", arg);
9728 return CLI_FAILURE;
9729 }
9730 rtcpdebugport = (!ast_strlen_zero(debugport) && debugport[0] != '0');
9731 ast_cli(a->fd, "RTCP Packet Debugging Enabled for address: %s\n",
9734 return CLI_SUCCESS;
9735}
9736
9737static char *handle_cli_rtp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9738{
9739 switch (cmd) {
9740 case CLI_INIT:
9741 e->command = "rtp set debug {on|off|ip}";
9742 e->usage =
9743 "Usage: rtp set debug {on|off|ip host[:port]}\n"
9744 " Enable/Disable dumping of all RTP packets. If 'ip' is\n"
9745 " specified, limit the dumped packets to those to and from\n"
9746 " the specified 'host' with optional port.\n";
9747 return NULL;
9748 case CLI_GENERATE:
9749 return NULL;
9750 }
9751
9752 if (a->argc == e->args) { /* set on or off */
9753 if (!strncasecmp(a->argv[e->args-1], "on", 2)) {
9755 memset(&rtpdebugaddr, 0, sizeof(rtpdebugaddr));
9756 ast_cli(a->fd, "RTP Packet Debugging Enabled\n");
9757 return CLI_SUCCESS;
9758 } else if (!strncasecmp(a->argv[e->args-1], "off", 3)) {
9760 ast_cli(a->fd, "RTP Packet Debugging Disabled\n");
9761 return CLI_SUCCESS;
9762 }
9763 } else if (a->argc == e->args +1) { /* ip */
9764 return rtp_do_debug_ip(a);
9765 }
9766
9767 return CLI_SHOWUSAGE; /* default, failure */
9768}
9769
9770
9771static char *handle_cli_rtp_settings(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9772{
9773#ifdef HAVE_PJPROJECT
9774 struct sockaddr_in stunaddr_copy;
9775#endif
9776 switch (cmd) {
9777 case CLI_INIT:
9778 e->command = "rtp show settings";
9779 e->usage =
9780 "Usage: rtp show settings\n"
9781 " Display RTP configuration settings\n";
9782 return NULL;
9783 case CLI_GENERATE:
9784 return NULL;
9785 }
9786
9787 if (a->argc != 3) {
9788 return CLI_SHOWUSAGE;
9789 }
9790
9791 ast_cli(a->fd, "\n\nGeneral Settings:\n");
9792 ast_cli(a->fd, "----------------\n");
9793 ast_cli(a->fd, " Port start: %d\n", rtpstart);
9794 ast_cli(a->fd, " Port end: %d\n", rtpend);
9795#ifdef SO_NO_CHECK
9796 ast_cli(a->fd, " Checksums: %s\n", AST_CLI_YESNO(nochecksums == 0));
9797#endif
9798 ast_cli(a->fd, " DTMF Timeout: %d\n", dtmftimeout);
9799 ast_cli(a->fd, " Strict RTP: %s\n", AST_CLI_YESNO(strictrtp));
9800
9801 if (strictrtp) {
9802 ast_cli(a->fd, " Probation: %d frames\n", learning_min_sequential);
9803 }
9804
9805 ast_cli(a->fd, " Replay Protect: %s\n", AST_CLI_YESNO(srtp_replay_protection));
9806#ifdef HAVE_PJPROJECT
9807 ast_cli(a->fd, " ICE support: %s\n", AST_CLI_YESNO(icesupport));
9808
9809 ast_rwlock_rdlock(&stunaddr_lock);
9810 memcpy(&stunaddr_copy, &stunaddr, sizeof(stunaddr));
9811 ast_rwlock_unlock(&stunaddr_lock);
9812 ast_cli(a->fd, " STUN address: %s:%d\n", ast_inet_ntoa(stunaddr_copy.sin_addr), htons(stunaddr_copy.sin_port));
9813#endif
9814 return CLI_SUCCESS;
9815}
9816
9817
9818static char *handle_cli_rtcp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9819{
9820 switch (cmd) {
9821 case CLI_INIT:
9822 e->command = "rtcp set debug {on|off|ip}";
9823 e->usage =
9824 "Usage: rtcp set debug {on|off|ip host[:port]}\n"
9825 " Enable/Disable dumping of all RTCP packets. If 'ip' is\n"
9826 " specified, limit the dumped packets to those to and from\n"
9827 " the specified 'host' with optional port.\n";
9828 return NULL;
9829 case CLI_GENERATE:
9830 return NULL;
9831 }
9832
9833 if (a->argc == e->args) { /* set on or off */
9834 if (!strncasecmp(a->argv[e->args-1], "on", 2)) {
9836 memset(&rtcpdebugaddr, 0, sizeof(rtcpdebugaddr));
9837 ast_cli(a->fd, "RTCP Packet Debugging Enabled\n");
9838 return CLI_SUCCESS;
9839 } else if (!strncasecmp(a->argv[e->args-1], "off", 3)) {
9841 ast_cli(a->fd, "RTCP Packet Debugging Disabled\n");
9842 return CLI_SUCCESS;
9843 }
9844 } else if (a->argc == e->args +1) { /* ip */
9845 return rtcp_do_debug_ip(a);
9846 }
9847
9848 return CLI_SHOWUSAGE; /* default, failure */
9849}
9850
9851static char *handle_cli_rtcp_set_stats(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9852{
9853 switch (cmd) {
9854 case CLI_INIT:
9855 e->command = "rtcp set stats {on|off}";
9856 e->usage =
9857 "Usage: rtcp set stats {on|off}\n"
9858 " Enable/Disable dumping of RTCP stats.\n";
9859 return NULL;
9860 case CLI_GENERATE:
9861 return NULL;
9862 }
9863
9864 if (a->argc != e->args)
9865 return CLI_SHOWUSAGE;
9866
9867 if (!strncasecmp(a->argv[e->args-1], "on", 2))
9868 rtcpstats = 1;
9869 else if (!strncasecmp(a->argv[e->args-1], "off", 3))
9870 rtcpstats = 0;
9871 else
9872 return CLI_SHOWUSAGE;
9873
9874 ast_cli(a->fd, "RTCP Stats %s\n", rtcpstats ? "Enabled" : "Disabled");
9875 return CLI_SUCCESS;
9876}
9877
9878#ifdef AST_DEVMODE
9879
9880static unsigned int use_random(struct ast_cli_args *a, int pos, unsigned int index)
9881{
9882 return pos >= index && !ast_strlen_zero(a->argv[index - 1]) &&
9883 !strcasecmp(a->argv[index - 1], "random");
9884}
9885
9886static char *handle_cli_rtp_drop_incoming_packets(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
9887{
9888 static const char * const completions_2[] = { "stop", "<N>", NULL };
9889 static const char * const completions_3[] = { "random", "incoming packets", NULL };
9890 static const char * const completions_5[] = { "on", "every", NULL };
9891 static const char * const completions_units[] = { "random", "usec", "msec", "sec", "min", NULL };
9892
9893 unsigned int use_random_num = 0;
9894 unsigned int use_random_interval = 0;
9895 unsigned int num_to_drop = 0;
9896 unsigned int interval = 0;
9897 const char *interval_s = NULL;
9898 const char *unit_s = NULL;
9899 struct ast_sockaddr addr;
9900 const char *addr_s = NULL;
9901
9902 switch (cmd) {
9903 case CLI_INIT:
9904 e->command = "rtp drop";
9905 e->usage =
9906 "Usage: rtp drop [stop|[<N> [random] incoming packets[ every <N> [random] {usec|msec|sec|min}][ on <ip[:port]>]]\n"
9907 " Drop RTP incoming packets.\n";
9908 return NULL;
9909 case CLI_GENERATE:
9910 use_random_num = use_random(a, a->pos, 4);
9911 use_random_interval = use_random(a, a->pos, 8 + use_random_num) ||
9912 use_random(a, a->pos, 10 + use_random_num);
9913
9914 switch (a->pos - use_random_num - use_random_interval) {
9915 case 2:
9916 return ast_cli_complete(a->word, completions_2, a->n);
9917 case 3:
9918 return ast_cli_complete(a->word, completions_3 + use_random_num, a->n);
9919 case 5:
9920 return ast_cli_complete(a->word, completions_5, a->n);
9921 case 7:
9922 if (!strcasecmp(a->argv[a->pos - 2], "on")) {
9924 break;
9925 }
9926 /* Fall through */
9927 case 9:
9928 if (!strcasecmp(a->argv[a->pos - 2 - use_random_interval], "every")) {
9929 return ast_cli_complete(a->word, completions_units + use_random_interval, a->n);
9930 }
9931 break;
9932 case 8:
9933 if (!strcasecmp(a->argv[a->pos - 3 - use_random_interval], "every")) {
9935 }
9936 break;
9937 }
9938
9939 return NULL;
9940 }
9941
9942 if (a->argc < 3) {
9943 return CLI_SHOWUSAGE;
9944 }
9945
9946 use_random_num = use_random(a, a->argc, 4);
9947 use_random_interval = use_random(a, a->argc, 8 + use_random_num) ||
9948 use_random(a, a->argc, 10 + use_random_num);
9949
9950 if (!strcasecmp(a->argv[2], "stop")) {
9951 /* rtp drop stop */
9952 } else if (a->argc < 5) {
9953 return CLI_SHOWUSAGE;
9954 } else if (ast_str_to_uint(a->argv[2], &num_to_drop)) {
9955 ast_cli(a->fd, "%s is not a valid number of packets to drop\n", a->argv[2]);
9956 return CLI_FAILURE;
9957 } else if (a->argc - use_random_num == 5) {
9958 /* rtp drop <N> [random] incoming packets */
9959 } else if (a->argc - use_random_num >= 7 && !strcasecmp(a->argv[5 + use_random_num], "on")) {
9960 /* rtp drop <N> [random] incoming packets on <ip[:port]> */
9961 addr_s = a->argv[6 + use_random_num];
9962 if (a->argc - use_random_num - use_random_interval == 10 &&
9963 !strcasecmp(a->argv[7 + use_random_num], "every")) {
9964 /* rtp drop <N> [random] incoming packets on <ip[:port]> every <N> [random] {usec|msec|sec|min} */
9965 interval_s = a->argv[8 + use_random_num];
9966 unit_s = a->argv[9 + use_random_num + use_random_interval];
9967 }
9968 } else if (a->argc - use_random_num >= 8 && !strcasecmp(a->argv[5 + use_random_num], "every")) {
9969 /* rtp drop <N> [random] incoming packets every <N> [random] {usec|msec|sec|min} */
9970 interval_s = a->argv[6 + use_random_num];
9971 unit_s = a->argv[7 + use_random_num + use_random_interval];
9972 if (a->argc == 10 + use_random_num + use_random_interval &&
9973 !strcasecmp(a->argv[8 + use_random_num + use_random_interval], "on")) {
9974 /* rtp drop <N> [random] incoming packets every <N> [random] {usec|msec|sec|min} on <ip[:port]> */
9975 addr_s = a->argv[9 + use_random_num + use_random_interval];
9976 }
9977 } else {
9978 return CLI_SHOWUSAGE;
9979 }
9980
9981 if (a->argc - use_random_num >= 8 && !interval_s && !addr_s) {
9982 return CLI_SHOWUSAGE;
9983 }
9984
9985 if (interval_s && ast_str_to_uint(interval_s, &interval)) {
9986 ast_cli(a->fd, "%s is not a valid interval number\n", interval_s);
9987 return CLI_FAILURE;
9988 }
9989
9990 memset(&addr, 0, sizeof(addr));
9991 if (addr_s && !ast_sockaddr_parse(&addr, addr_s, 0)) {
9992 ast_cli(a->fd, "%s is not a valid hostname[:port]\n", addr_s);
9993 return CLI_FAILURE;
9994 }
9995
9996 drop_packets_data.use_random_num = use_random_num;
9997 drop_packets_data.use_random_interval = use_random_interval;
9998 drop_packets_data.num_to_drop = num_to_drop;
9999 drop_packets_data.interval = ast_time_create_by_unit_str(interval, unit_s);
10000 ast_sockaddr_copy(&drop_packets_data.addr, &addr);
10001 drop_packets_data.port = ast_sockaddr_port(&addr);
10002
10003 drop_packets_data_update(ast_tvnow());
10004
10005 return CLI_SUCCESS;
10006}
10007#endif
10008
10009static struct ast_cli_entry cli_rtp[] = {
10010 AST_CLI_DEFINE(handle_cli_rtp_set_debug, "Enable/Disable RTP debugging"),
10011 AST_CLI_DEFINE(handle_cli_rtp_settings, "Display RTP settings"),
10012 AST_CLI_DEFINE(handle_cli_rtcp_set_debug, "Enable/Disable RTCP debugging"),
10013 AST_CLI_DEFINE(handle_cli_rtcp_set_stats, "Enable/Disable RTCP stats"),
10014#ifdef AST_DEVMODE
10015 AST_CLI_DEFINE(handle_cli_rtp_drop_incoming_packets, "Drop RTP incoming packets"),
10016#endif
10017};
10018
10019static int rtp_reload(int reload, int by_external_config)
10020{
10021 struct ast_config *cfg;
10022 const char *s;
10023 struct ast_flags config_flags = { (reload && !by_external_config) ? CONFIG_FLAG_FILEUNCHANGED : 0 };
10024
10025#ifdef HAVE_PJPROJECT
10026 struct ast_variable *var;
10027 struct ast_ice_host_candidate *candidate;
10028 int acl_subscription_flag = 0;
10029#endif
10030
10031 cfg = ast_config_load2("rtp.conf", "rtp", config_flags);
10032 if (!cfg || cfg == CONFIG_STATUS_FILEUNCHANGED || cfg == CONFIG_STATUS_FILEINVALID) {
10033 return 0;
10034 }
10035
10036#ifdef SO_NO_CHECK
10037 nochecksums = 0;
10038#endif
10039
10048
10049 /** This resource is not "reloaded" so much as unloaded and loaded again.
10050 * In the case of the TURN related variables, the memory referenced by a
10051 * previously loaded instance *should* have been released when the
10052 * corresponding pool was destroyed. If at some point in the future this
10053 * resource were to support ACTUAL live reconfiguration and did NOT release
10054 * the pool this will cause a small memory leak.
10055 */
10056
10057#ifdef HAVE_PJPROJECT
10058 icesupport = DEFAULT_ICESUPPORT;
10059 stun_software_attribute = DEFAULT_STUN_SOFTWARE_ATTRIBUTE;
10060 turnport = DEFAULT_TURN_PORT;
10061 clean_stunaddr();
10062 turnaddr = pj_str(NULL);
10063 turnusername = pj_str(NULL);
10064 turnpassword = pj_str(NULL);
10065 host_candidate_overrides_clear();
10066#endif
10067
10068#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
10069 dtls_mtu = DEFAULT_DTLS_MTU;
10070#endif
10071
10072 if ((s = ast_variable_retrieve(cfg, "general", "rtpstart"))) {
10073 rtpstart = atoi(s);
10078 }
10079 if ((s = ast_variable_retrieve(cfg, "general", "rtpend"))) {
10080 rtpend = atoi(s);
10085 }
10086 if ((s = ast_variable_retrieve(cfg, "general", "rtcpinterval"))) {
10087 rtcpinterval = atoi(s);
10088 if (rtcpinterval == 0)
10089 rtcpinterval = 0; /* Just so we're clear... it's zero */
10091 rtcpinterval = RTCP_MIN_INTERVALMS; /* This catches negative numbers too */
10094 }
10095 if ((s = ast_variable_retrieve(cfg, "general", "rtpchecksums"))) {
10096#ifdef SO_NO_CHECK
10097 nochecksums = ast_false(s) ? 1 : 0;
10098#else
10099 if (ast_false(s))
10100 ast_log(LOG_WARNING, "Disabling RTP checksums is not supported on this operating system!\n");
10101#endif
10102 }
10103 if ((s = ast_variable_retrieve(cfg, "general", "dtmftimeout"))) {
10104 dtmftimeout = atoi(s);
10105 if ((dtmftimeout < 0) || (dtmftimeout > 64000)) {
10106 ast_log(LOG_WARNING, "DTMF timeout of '%d' outside range, using default of '%d' instead\n",
10109 };
10110 }
10111 if ((s = ast_variable_retrieve(cfg, "general", "strictrtp"))) {
10112 if (ast_true(s)) {
10114 } else if (!strcasecmp(s, "seqno")) {
10116 } else {
10118 }
10119 }
10120 if ((s = ast_variable_retrieve(cfg, "general", "probation"))) {
10121 if ((sscanf(s, "%d", &learning_min_sequential) != 1) || learning_min_sequential <= 1) {
10122 ast_log(LOG_WARNING, "Value for 'probation' could not be read, using default of '%d' instead\n",
10125 }
10127 }
10128 if ((s = ast_variable_retrieve(cfg, "general", "srtpreplayprotection"))) {
10130 }
10131#ifdef HAVE_PJPROJECT
10132 if ((s = ast_variable_retrieve(cfg, "general", "icesupport"))) {
10133 icesupport = ast_true(s);
10134 }
10135 if ((s = ast_variable_retrieve(cfg, "general", "stun_software_attribute"))) {
10136 stun_software_attribute = ast_true(s);
10137 }
10138 if ((s = ast_variable_retrieve(cfg, "general", "stunaddr"))) {
10139 char *hostport, *host, *port;
10140 unsigned int port_parsed = STANDARD_STUN_PORT;
10141 struct ast_sockaddr stunaddr_parsed;
10142
10143 hostport = ast_strdupa(s);
10144
10145 if (!ast_parse_arg(hostport, PARSE_ADDR, &stunaddr_parsed)) {
10146 ast_debug_stun(3, "stunaddr = '%s' does not need name resolution\n",
10147 ast_sockaddr_stringify_host(&stunaddr_parsed));
10148 if (!ast_sockaddr_port(&stunaddr_parsed)) {
10149 ast_sockaddr_set_port(&stunaddr_parsed, STANDARD_STUN_PORT);
10150 }
10151 ast_rwlock_wrlock(&stunaddr_lock);
10152 ast_sockaddr_to_sin(&stunaddr_parsed, &stunaddr);
10153 ast_rwlock_unlock(&stunaddr_lock);
10154 } else if (ast_sockaddr_split_hostport(hostport, &host, &port, 0)) {
10155 if (port) {
10156 ast_parse_arg(port, PARSE_UINT32|PARSE_IN_RANGE, &port_parsed, 1, 65535);
10157 }
10158 stunaddr.sin_port = htons(port_parsed);
10159
10160 stunaddr_resolver = ast_dns_resolve_recurring(host, T_A, C_IN,
10161 &stunaddr_resolve_callback, NULL);
10162 if (!stunaddr_resolver) {
10163 ast_log(LOG_ERROR, "Failed to setup recurring DNS resolution of stunaddr '%s'",
10164 host);
10165 }
10166 } else {
10167 ast_log(LOG_ERROR, "Failed to parse stunaddr '%s'", hostport);
10168 }
10169 }
10170 if ((s = ast_variable_retrieve(cfg, "general", "turnaddr"))) {
10171 struct sockaddr_in addr;
10172 addr.sin_port = htons(DEFAULT_TURN_PORT);
10173 if (ast_parse_arg(s, PARSE_INADDR, &addr)) {
10174 ast_log(LOG_WARNING, "Invalid TURN server address: %s\n", s);
10175 } else {
10176 pj_strdup2_with_null(pool, &turnaddr, ast_inet_ntoa(addr.sin_addr));
10177 /* ntohs() is not a bug here. The port number is used in host byte order with
10178 * a pjnat API. */
10179 turnport = ntohs(addr.sin_port);
10180 }
10181 }
10182 if ((s = ast_variable_retrieve(cfg, "general", "turnusername"))) {
10183 pj_strdup2_with_null(pool, &turnusername, s);
10184 }
10185 if ((s = ast_variable_retrieve(cfg, "general", "turnpassword"))) {
10186 pj_strdup2_with_null(pool, &turnpassword, s);
10187 }
10188
10189 AST_RWLIST_WRLOCK(&host_candidates);
10190 for (var = ast_variable_browse(cfg, "ice_host_candidates"); var; var = var->next) {
10191 struct ast_sockaddr local_addr, advertised_addr;
10192 unsigned int include_local_address = 0;
10193 char *sep;
10194
10195 ast_sockaddr_setnull(&local_addr);
10196 ast_sockaddr_setnull(&advertised_addr);
10197
10198 if (ast_parse_arg(var->name, PARSE_ADDR | PARSE_PORT_IGNORE, &local_addr)) {
10199 ast_log(LOG_WARNING, "Invalid local ICE host address: %s\n", var->name);
10200 continue;
10201 }
10202
10203 sep = strchr(var->value,',');
10204 if (sep) {
10205 *sep = '\0';
10206 sep++;
10207 sep = ast_skip_blanks(sep);
10208 include_local_address = strcmp(sep, "include_local_address") == 0;
10209 }
10210
10211 if (ast_parse_arg(var->value, PARSE_ADDR | PARSE_PORT_IGNORE, &advertised_addr)) {
10212 ast_log(LOG_WARNING, "Invalid advertised ICE host address: %s\n", var->value);
10213 continue;
10214 }
10215
10216 if (!(candidate = ast_calloc(1, sizeof(*candidate)))) {
10217 ast_log(LOG_ERROR, "Failed to allocate ICE host candidate mapping.\n");
10218 break;
10219 }
10220
10221 candidate->include_local = include_local_address;
10222
10223 ast_sockaddr_copy(&candidate->local, &local_addr);
10224 ast_sockaddr_copy(&candidate->advertised, &advertised_addr);
10225
10226 AST_RWLIST_INSERT_TAIL(&host_candidates, candidate, next);
10227 }
10228 AST_RWLIST_UNLOCK(&host_candidates);
10229
10230 ast_rwlock_wrlock(&ice_acl_lock);
10231 ast_rwlock_wrlock(&stun_acl_lock);
10232
10233 ice_acl = ast_free_acl_list(ice_acl);
10234 stun_acl = ast_free_acl_list(stun_acl);
10235
10236 for (var = ast_variable_browse(cfg, "general"); var; var = var->next) {
10237 const char* sense = NULL;
10238 struct ast_acl_list **acl = NULL;
10239 if (strncasecmp(var->name, "ice_", 4) == 0) {
10240 sense = var->name + 4;
10241 acl = &ice_acl;
10242 } else if (strncasecmp(var->name, "stun_", 5) == 0) {
10243 sense = var->name + 5;
10244 acl = &stun_acl;
10245 } else {
10246 continue;
10247 }
10248
10249 if (strcasecmp(sense, "blacklist") == 0) {
10250 sense = "deny";
10251 }
10252
10253 if (strcasecmp(sense, "acl") && strcasecmp(sense, "permit") && strcasecmp(sense, "deny")) {
10254 continue;
10255 }
10256
10257 ast_append_acl(sense, var->value, acl, NULL, &acl_subscription_flag);
10258 }
10259 ast_rwlock_unlock(&ice_acl_lock);
10260 ast_rwlock_unlock(&stun_acl_lock);
10261
10262 if (acl_subscription_flag && !acl_change_sub) {
10266 } else if (!acl_subscription_flag && acl_change_sub) {
10268 }
10269#endif
10270#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP)
10271 if ((s = ast_variable_retrieve(cfg, "general", "dtls_mtu"))) {
10272 if ((sscanf(s, "%d", &dtls_mtu) != 1) || dtls_mtu < 256) {
10273 ast_log(LOG_WARNING, "Value for 'dtls_mtu' could not be read, using default of '%d' instead\n",
10275 dtls_mtu = DEFAULT_DTLS_MTU;
10276 }
10277 }
10278#endif
10279
10280 ast_config_destroy(cfg);
10281
10282 /* Choosing an odd start port casues issues (like a potential infinite loop) and as odd parts are not
10283 chosen anyway, we are going to round up and issue a warning */
10284 if (rtpstart & 1) {
10285 rtpstart++;
10286 ast_log(LOG_WARNING, "Odd start value for RTP port in rtp.conf, rounding up to %d\n", rtpstart);
10287 }
10288
10289 if (rtpstart >= rtpend) {
10290 ast_log(LOG_WARNING, "Unreasonable values for RTP start/end port in rtp.conf\n");
10293 }
10294 ast_verb(2, "RTP Allocating from port range %d -> %d\n", rtpstart, rtpend);
10295 return 0;
10296}
10297
10298static int reload_module(void)
10299{
10300 rtp_reload(1, 0);
10301 return 0;
10302}
10303
10304#ifdef HAVE_PJPROJECT
10305static void rtp_terminate_pjproject(void)
10306{
10307 pj_thread_register_check();
10308
10309 if (timer_thread) {
10310 timer_terminate = 1;
10311 pj_thread_join(timer_thread);
10312 pj_thread_destroy(timer_thread);
10313 }
10314
10316 pj_shutdown();
10317}
10318
10319static void acl_change_stasis_cb(void *data, struct stasis_subscription *sub, struct stasis_message *message)
10320{
10322 return;
10323 }
10324
10325 /* There is no simple way to just reload the ACLs, so just execute a forced reload. */
10326 rtp_reload(1, 1);
10327}
10328#endif
10329
10330static int load_module(void)
10331{
10332#ifdef HAVE_PJPROJECT
10333 pj_lock_t *lock;
10334
10336
10338 if (pj_init() != PJ_SUCCESS) {
10340 }
10341
10342 if (pjlib_util_init() != PJ_SUCCESS) {
10343 rtp_terminate_pjproject();
10345 }
10346
10347 if (pjnath_init() != PJ_SUCCESS) {
10348 rtp_terminate_pjproject();
10350 }
10351
10352 ast_pjproject_caching_pool_init(&cachingpool, &pj_pool_factory_default_policy, 0);
10353
10354 pool = pj_pool_create(&cachingpool.factory, "timer", 512, 512, NULL);
10355
10356 if (pj_timer_heap_create(pool, 100, &timer_heap) != PJ_SUCCESS) {
10357 rtp_terminate_pjproject();
10359 }
10360
10361 if (pj_lock_create_recursive_mutex(pool, "rtp%p", &lock) != PJ_SUCCESS) {
10362 rtp_terminate_pjproject();
10364 }
10365
10366 pj_timer_heap_set_lock(timer_heap, lock, PJ_TRUE);
10367
10368 if (pj_thread_create(pool, "timer", &timer_worker_thread, NULL, 0, 0, &timer_thread) != PJ_SUCCESS) {
10369 rtp_terminate_pjproject();
10371 }
10372
10373#endif
10374
10375#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
10376 dtls_bio_methods = BIO_meth_new(BIO_TYPE_BIO, "rtp write");
10377 if (!dtls_bio_methods) {
10378#ifdef HAVE_PJPROJECT
10379 rtp_terminate_pjproject();
10380#endif
10382 }
10383 BIO_meth_set_write(dtls_bio_methods, dtls_bio_write);
10384 BIO_meth_set_ctrl(dtls_bio_methods, dtls_bio_ctrl);
10385 BIO_meth_set_create(dtls_bio_methods, dtls_bio_new);
10386 BIO_meth_set_destroy(dtls_bio_methods, dtls_bio_free);
10387#endif
10388
10390#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
10391 BIO_meth_free(dtls_bio_methods);
10392#endif
10393#ifdef HAVE_PJPROJECT
10394 rtp_terminate_pjproject();
10395#endif
10397 }
10398
10400#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
10401 BIO_meth_free(dtls_bio_methods);
10402#endif
10403#ifdef HAVE_PJPROJECT
10405 rtp_terminate_pjproject();
10406#endif
10408 }
10409
10410 rtp_reload(0, 0);
10411
10413}
10414
10415static int unload_module(void)
10416{
10419
10420#if defined(HAVE_OPENSSL) && (OPENSSL_VERSION_NUMBER >= 0x10001000L) && !defined(OPENSSL_NO_SRTP) && defined(HAVE_OPENSSL_BIO_METHOD)
10421 if (dtls_bio_methods) {
10422 BIO_meth_free(dtls_bio_methods);
10423 }
10424#endif
10425
10426#ifdef HAVE_PJPROJECT
10427 host_candidate_overrides_clear();
10428 pj_thread_register_check();
10429 rtp_terminate_pjproject();
10430
10432 rtp_unload_acl(&ice_acl_lock, &ice_acl);
10433 rtp_unload_acl(&stun_acl_lock, &stun_acl);
10434 clean_stunaddr();
10435#endif
10436
10437 return 0;
10438}
10439
10441 .support_level = AST_MODULE_SUPPORT_CORE,
10442 .load = load_module,
10443 .unload = unload_module,
10445 .load_pri = AST_MODPRI_CHANNEL_DEPEND,
10446#ifdef HAVE_PJPROJECT
10447 .requires = "res_pjproject",
10448#endif
Access Control of various sorts.
struct stasis_message_type * ast_named_acl_change_type(void)
a stasis_message_type for changes against a named ACL or the set of all named ACLs
int ast_ouraddrfor(const struct ast_sockaddr *them, struct ast_sockaddr *us)
Get our local IP address when contacting a remote host.
Definition: acl.c:1021
void ast_append_acl(const char *sense, const char *stuff, struct ast_acl_list **path, int *error, int *named_acl_flag)
Add a rule to an ACL struct.
Definition: acl.c:429
int ast_find_ourip(struct ast_sockaddr *ourip, const struct ast_sockaddr *bindaddr, int family)
Find our IP address.
Definition: acl.c:1068
@ AST_SENSE_DENY
Definition: acl.h:37
enum ast_acl_sense ast_apply_acl_nolog(struct ast_acl_list *acl_list, const struct ast_sockaddr *addr)
Apply a set of rules to a given IP address, don't log failure.
Definition: acl.c:803
struct ast_acl_list * ast_free_acl_list(struct ast_acl_list *acl)
Free a list of ACLs.
Definition: acl.c:233
char digit
jack_status_t status
Definition: app_jack.c:146
const char * str
Definition: app_jack.c:147
enum queue_result id
Definition: app_queue.c:1667
pthread_t thread
Definition: app_sla.c:329
ast_cond_t cond
Definition: app_sla.c:330
ast_mutex_t lock
Definition: app_sla.c:331
static volatile unsigned int seq
Definition: app_sms.c:120
#define var
Definition: ast_expr2f.c:605
if(!yyg->yy_init)
Definition: ast_expr2f.c:854
Asterisk main include file. File version handling, generic pbx functions.
#define ast_free(a)
Definition: astmm.h:180
#define ast_strndup(str, len)
A wrapper for strndup()
Definition: astmm.h:256
#define ast_strdup(str)
A wrapper for strdup()
Definition: astmm.h:241
#define ast_strdupa(s)
duplicate a string in memory from the stack
Definition: astmm.h:298
void ast_free_ptr(void *ptr)
free() wrapper
Definition: astmm.c:1739
#define ast_calloc(num, len)
A wrapper for calloc()
Definition: astmm.h:202
#define ast_malloc(len)
A wrapper for malloc()
Definition: astmm.h:191
#define ast_log
Definition: astobj2.c:42
#define ao2_iterator_next(iter)
Definition: astobj2.h:1911
#define ao2_link(container, obj)
Add an object to a container.
Definition: astobj2.h:1532
@ CMP_MATCH
Definition: astobj2.h:1027
@ CMP_STOP
Definition: astobj2.h:1028
#define OBJ_POINTER
Definition: astobj2.h:1150
@ AO2_ALLOC_OPT_LOCK_NOLOCK
Definition: astobj2.h:367
@ AO2_ALLOC_OPT_LOCK_MUTEX
Definition: astobj2.h:363
int ao2_container_count(struct ao2_container *c)
Returns the number of elements in a container.
#define ao2_cleanup(obj)
Definition: astobj2.h:1934
#define ao2_find(container, arg, flags)
Definition: astobj2.h:1736
struct ao2_iterator ao2_iterator_init(struct ao2_container *c, int flags) attribute_warn_unused_result
Create an iterator for a container.
#define ao2_unlock(a)
Definition: astobj2.h:729
#define ao2_replace(dst, src)
Replace one object reference with another cleaning up the original.
Definition: astobj2.h:501
#define ao2_lock(a)
Definition: astobj2.h:717
#define ao2_ref(o, delta)
Reference/unreference an object and return the old refcount.
Definition: astobj2.h:459
#define ao2_alloc_options(data_size, destructor_fn, options)
Definition: astobj2.h:404
void * ao2_object_get_lockaddr(void *obj)
Return the mutex lock address of an object.
Definition: astobj2.c:476
#define ao2_bump(obj)
Bump refcount on an AO2 object by one, returning the object.
Definition: astobj2.h:480
void ao2_iterator_destroy(struct ao2_iterator *iter)
Destroy a container iterator.
#define ao2_container_alloc_list(ao2_options, container_options, sort_fn, cmp_fn)
Allocate and initialize a list container.
Definition: astobj2.h:1327
#define ao2_alloc(data_size, destructor_fn)
Definition: astobj2.h:409
static int tmp()
Definition: bt_open.c:389
static const char desc[]
Definition: cdr_radius.c:84
static PGresult * result
Definition: cel_pgsql.c:84
unsigned int tos
Definition: chan_iax2.c:355
static struct stasis_subscription * acl_change_sub
Definition: chan_iax2.c:328
unsigned int cos
Definition: chan_iax2.c:356
static void acl_change_stasis_cb(void *data, struct stasis_subscription *sub, struct stasis_message *message)
Definition: chan_iax2.c:1558
static struct ast_sched_context * sched
Definition: chan_ooh323.c:400
static const char type[]
Definition: chan_ooh323.c:109
static char version[AST_MAX_EXTENSION]
Definition: chan_ooh323.c:391
static int answer(void *data)
Definition: chan_pjsip.c:687
General Asterisk PBX channel definitions.
const struct ast_channel_tech * ast_channel_tech(const struct ast_channel *chan)
Standard Command Line Interface.
#define CLI_SHOWUSAGE
Definition: cli.h:45
#define AST_CLI_YESNO(x)
Return Yes or No depending on the argument.
Definition: cli.h:71
#define CLI_SUCCESS
Definition: cli.h:44
int ast_cli_unregister_multiple(struct ast_cli_entry *e, int len)
Unregister multiple commands.
Definition: clicompat.c:30
#define AST_CLI_DEFINE(fn, txt,...)
Definition: cli.h:197
int ast_cli_completion_add(char *value)
Add a result to a request for completion options.
Definition: main/cli.c:2768
void ast_cli(int fd, const char *fmt,...)
Definition: clicompat.c:6
char * ast_cli_complete(const char *word, const char *const choices[], int pos)
Definition: main/cli.c:1853
@ CLI_INIT
Definition: cli.h:152
@ CLI_GENERATE
Definition: cli.h:153
#define CLI_FAILURE
Definition: cli.h:46
#define ast_cli_register_multiple(e, len)
Register multiple commands.
Definition: cli.h:265
static struct ao2_container * codecs
Registered codecs.
Definition: codec.c:48
ast_media_type
Types of media.
Definition: codec.h:30
@ AST_MEDIA_TYPE_AUDIO
Definition: codec.h:32
@ AST_MEDIA_TYPE_UNKNOWN
Definition: codec.h:31
@ AST_MEDIA_TYPE_VIDEO
Definition: codec.h:33
@ AST_MEDIA_TYPE_END
Definition: codec.h:36
@ AST_MEDIA_TYPE_IMAGE
Definition: codec.h:34
@ AST_MEDIA_TYPE_TEXT
Definition: codec.h:35
unsigned int ast_codec_samples_count(struct ast_frame *frame)
Get the number of samples contained within a frame.
Definition: codec.c:379
const char * ast_codec_media_type2str(enum ast_media_type type)
Conversion function to take a media type and turn it into a string.
Definition: codec.c:348
static int reconstruct(int sign, int dqln, int y)
Definition: codec_g726.c:331
Conversion utility functions.
int ast_str_to_uint(const char *str, unsigned int *res)
Convert the given string to an unsigned integer.
Definition: conversions.c:56
Data Buffer API.
void * ast_data_buffer_get(const struct ast_data_buffer *buffer, size_t pos)
Retrieve a data payload from the data buffer.
Definition: data_buffer.c:269
struct ast_data_buffer * ast_data_buffer_alloc(ast_data_buffer_free_callback free_fn, size_t size)
Allocate a data buffer.
Definition: data_buffer.c:145
size_t ast_data_buffer_count(const struct ast_data_buffer *buffer)
Return the number of payloads in a data buffer.
Definition: data_buffer.c:356
void ast_data_buffer_resize(struct ast_data_buffer *buffer, size_t size)
Resize a data buffer.
Definition: data_buffer.c:168
int ast_data_buffer_put(struct ast_data_buffer *buffer, size_t pos, void *payload)
Place a data payload at a position in the data buffer.
Definition: data_buffer.c:203
size_t ast_data_buffer_max(const struct ast_data_buffer *buffer)
Return the maximum number of payloads a data buffer can hold.
Definition: data_buffer.c:363
void * ast_data_buffer_remove(struct ast_data_buffer *buffer, size_t pos)
Remove a data payload from the data buffer.
Definition: data_buffer.c:299
void ast_data_buffer_free(struct ast_data_buffer *buffer)
Free a data buffer (and all held data payloads)
Definition: data_buffer.c:338
Core DNS API.
const struct ast_dns_record * ast_dns_record_get_next(const struct ast_dns_record *record)
Get the next DNS record.
Definition: dns_core.c:170
int ast_dns_result_get_lowest_ttl(const struct ast_dns_result *result)
Retrieve the lowest TTL from a result.
Definition: dns_core.c:112
const char * ast_dns_record_get_data(const struct ast_dns_record *record)
Retrieve the raw DNS record.
Definition: dns_core.c:160
const struct ast_dns_record * ast_dns_result_get_records(const struct ast_dns_result *result)
Get the first record of a DNS Result.
Definition: dns_core.c:102
struct ast_dns_result * ast_dns_query_get_result(const struct ast_dns_query *query)
Get the result information for a DNS query.
Definition: dns_core.c:77
int ast_dns_record_get_rr_type(const struct ast_dns_record *record)
Get the resource record type of a DNS record.
Definition: dns_core.c:145
const char * ast_dns_query_get_name(const struct ast_dns_query *query)
Get the name queried in a DNS query.
Definition: dns_core.c:57
size_t ast_dns_record_get_data_size(const struct ast_dns_record *record)
Retrieve the size of the raw DNS record.
Definition: dns_core.c:165
Internal DNS structure definitions.
DNS Recurring Resolution API.
int ast_dns_resolve_recurring_cancel(struct ast_dns_query_recurring *recurring)
Cancel an asynchronous recurring DNS resolution.
struct ast_dns_query_recurring * ast_dns_resolve_recurring(const char *name, int rr_type, int rr_class, ast_dns_resolve_callback callback, void *data)
Asynchronously resolve a DNS query, and continue resolving it according to the lowest TTL available.
char * end
Definition: eagi_proxy.c:73
char buf[BUFSIZE]
Definition: eagi_proxy.c:66
void ast_verbose(const char *fmt,...)
Definition: extconf.c:2206
char * address
Definition: f2c.h:59
#define abs(x)
Definition: f2c.h:195
int ast_format_get_smoother_flags(const struct ast_format *format)
Get smoother flags for this format.
Definition: format.c:349
enum ast_media_type ast_format_get_type(const struct ast_format *format)
Get the media type of a format.
Definition: format.c:354
int ast_format_can_be_smoothed(const struct ast_format *format)
Get whether or not the format can be smoothed.
Definition: format.c:344
unsigned int ast_format_get_minimum_bytes(const struct ast_format *format)
Get the minimum number of bytes expected in a frame for this format.
Definition: format.c:374
unsigned int ast_format_get_sample_rate(const struct ast_format *format)
Get the sample rate of a media format.
Definition: format.c:379
unsigned int ast_format_get_minimum_ms(const struct ast_format *format)
Get the minimum amount of media carried in this format.
Definition: format.c:364
enum ast_format_cmp_res ast_format_cmp(const struct ast_format *format1, const struct ast_format *format2)
Compare two formats.
Definition: format.c:201
@ AST_FORMAT_CMP_EQUAL
Definition: format.h:36
@ AST_FORMAT_CMP_NOT_EQUAL
Definition: format.h:38
const char * ast_format_get_name(const struct ast_format *format)
Get the name associated with a format.
Definition: format.c:334
unsigned int ast_format_get_default_ms(const struct ast_format *format)
Get the default framing size (in milliseconds) for a format.
Definition: format.c:359
Media Format Cache API.
int ast_format_cache_is_slinear(struct ast_format *format)
Determines if a format is one of the cached slin formats.
Definition: format_cache.c:534
struct ast_format * ast_format_none
Built-in "null" format.
Definition: format_cache.c:246
struct ast_format * ast_format_t140_red
Built-in cached t140 red format.
Definition: format_cache.c:236
struct ast_format * ast_format_g722
Built-in cached g722 format.
Definition: format_cache.c:106
struct ast_format * ast_format_t140
Built-in cached t140 format.
Definition: format_cache.c:231
static const char name[]
Definition: format_mp3.c:68
static int replace(struct ast_channel *chan, const char *cmd, char *data, struct ast_str **buf, ssize_t len)
Definition: func_strings.c:888
static int len(struct ast_channel *chan, const char *cmd, char *data, char *buf, size_t buflen)
struct stasis_message_type * ast_rtp_rtcp_sent_type(void)
Message type for an RTCP message sent from this Asterisk instance.
struct stasis_message_type * ast_rtp_rtcp_received_type(void)
Message type for an RTCP message received from some external source.
const char * ext
Definition: http.c:150
void timersub(struct timeval *tvend, struct timeval *tvstart, struct timeval *tvdiff)
char * strsep(char **str, const char *delims)
Configuration File Parser.
struct ast_config * ast_config_load2(const char *filename, const char *who_asked, struct ast_flags flags)
Load a config file.
Definition: main/config.c:3336
#define CONFIG_STATUS_FILEUNCHANGED
#define CONFIG_STATUS_FILEINVALID
int ast_parse_arg(const char *arg, enum ast_parse_flags flags, void *p_result,...)
The argument parsing routine.
Definition: main/config.c:3842
void ast_config_destroy(struct ast_config *cfg)
Destroys a config.
Definition: extconf.c:1289
const char * ast_variable_retrieve(struct ast_config *config, const char *category, const char *variable)
Definition: main/config.c:784
struct ast_variable * ast_variable_browse(const struct ast_config *config, const char *category_name)
Definition: extconf.c:1215
@ CONFIG_FLAG_FILEUNCHANGED
Asterisk internal frame definitions.
@ AST_FRFLAG_HAS_SEQUENCE_NUMBER
@ AST_FRFLAG_HAS_TIMING_INFO
#define ast_frame_byteswap_be(fr)
#define ast_frisolate(fr)
Makes a frame independent of any static storage.
void ast_frame_free(struct ast_frame *frame, int cache)
Frees a frame or list of frames.
Definition: main/frame.c:176
#define ast_frdup(fr)
Copies a frame.
#define ast_frfree(fr)
#define AST_FRIENDLY_OFFSET
Offset into a frame's data buffer.
ast_frame_type
Frame types.
@ AST_FRAME_VIDEO
@ AST_FRAME_DTMF_END
@ AST_FRAME_DTMF_BEGIN
@ AST_FRAME_VOICE
@ AST_FRAME_RTCP
@ AST_FRAME_CONTROL
@ AST_FRAME_TEXT
@ AST_CONTROL_VIDUPDATE
@ AST_CONTROL_FLASH
@ AST_CONTROL_SRCCHANGE
struct ast_frame ast_null_frame
Definition: main/frame.c:79
#define DEBUG_ATLEAST(level)
#define ast_debug(level,...)
Log a DEBUG message.
#define LOG_DEBUG
#define LOG_ERROR
#define ast_verb(level,...)
#define LOG_NOTICE
#define LOG_WARNING
struct ssl_ctx_st SSL_CTX
Definition: iostream.h:38
struct ssl_st SSL
Definition: iostream.h:37
void ast_json_unref(struct ast_json *value)
Decrease refcount on value. If refcount reaches zero, value is freed.
Definition: json.c:73
struct ast_json * ast_json_pack(char const *format,...)
Helper for creating complex JSON values.
Definition: json.c:612
#define AST_RWLIST_REMOVE_CURRENT
Definition: linkedlists.h:570
#define AST_RWLIST_RDLOCK(head)
Read locks a list.
Definition: linkedlists.h:78
#define AST_LIST_HEAD_INIT_NOLOCK(head)
Initializes a list head structure.
Definition: linkedlists.h:681
#define AST_LIST_HEAD_STATIC(name, type)
Defines a structure to be used to hold a list of specified type, statically initialized.
Definition: linkedlists.h:291
#define AST_LIST_HEAD_NOLOCK(name, type)
Defines a structure to be used to hold a list of specified type (with no lock).
Definition: linkedlists.h:225
#define AST_RWLIST_TRAVERSE_SAFE_BEGIN
Definition: linkedlists.h:545
#define AST_RWLIST_WRLOCK(head)
Write locks a list.
Definition: linkedlists.h:52
#define AST_RWLIST_UNLOCK(head)
Attempts to unlock a read/write based list.
Definition: linkedlists.h:151
#define AST_LIST_TRAVERSE(head, var, field)
Loops over (traverses) the entries in a list.
Definition: linkedlists.h:491
#define AST_RWLIST_HEAD_STATIC(name, type)
Defines a structure to be used to hold a read/write list of specified type, statically initialized.
Definition: linkedlists.h:333
#define AST_LIST_INSERT_TAIL(head, elm, field)
Appends a list entry to the tail of a list.
Definition: linkedlists.h:731
#define AST_LIST_ENTRY(type)
Declare a forward link structure inside a list entry.
Definition: linkedlists.h:410
#define AST_RWLIST_TRAVERSE_SAFE_END
Definition: linkedlists.h:617
#define AST_LIST_LOCK(head)
Locks a list.
Definition: linkedlists.h:40
#define AST_LIST_INSERT_HEAD(head, elm, field)
Inserts a list entry at the head of a list.
Definition: linkedlists.h:711
#define AST_LIST_REMOVE(head, elm, field)
Removes a specific entry from a list.
Definition: linkedlists.h:856
#define AST_RWLIST_INSERT_TAIL
Definition: linkedlists.h:741
#define AST_LIST_REMOVE_HEAD(head, field)
Removes and returns the head entry from a list.
Definition: linkedlists.h:833
#define AST_LIST_UNLOCK(head)
Attempts to unlock a list.
Definition: linkedlists.h:140
#define AST_RWLIST_ENTRY
Definition: linkedlists.h:415
#define AST_LIST_FIRST(head)
Returns the first entry contained in a list.
Definition: linkedlists.h:421
#define AST_LIST_NEXT(elm, field)
Returns the next entry in the list after the given entry.
Definition: linkedlists.h:439
Asterisk locking-related definitions:
#define ast_rwlock_wrlock(a)
Definition: lock.h:236
#define AST_RWLOCK_INIT_VALUE
Definition: lock.h:98
#define ast_cond_init(cond, attr)
Definition: lock.h:201
#define ast_cond_timedwait(cond, mutex, time)
Definition: lock.h:206
#define ast_rwlock_rdlock(a)
Definition: lock.h:235
pthread_cond_t ast_cond_t
Definition: lock.h:178
#define ast_rwlock_unlock(a)
Definition: lock.h:234
#define ast_cond_signal(cond)
Definition: lock.h:203
#define AST_LOG_CATEGORY_DISABLED
#define AST_LOG_CATEGORY_ENABLED
#define ast_debug_category(sublevel, ids,...)
Log for a debug category.
int ast_debug_category_set_sublevel(const char *name, int sublevel)
Set the debug category's sublevel.
int errno
The AMI - Asterisk Manager Interface - is a TCP protocol created to manage Asterisk with third-party ...
Asterisk module definitions.
@ AST_MODFLAG_LOAD_ORDER
Definition: module.h:331
#define AST_MODULE_INFO(keystr, flags_to_set, desc, fields...)
Definition: module.h:557
@ AST_MODPRI_CHANNEL_DEPEND
Definition: module.h:340
@ AST_MODULE_SUPPORT_CORE
Definition: module.h:121
#define ASTERISK_GPL_KEY
The text the key() function should return.
Definition: module.h:46
@ AST_MODULE_LOAD_SUCCESS
Definition: module.h:70
@ AST_MODULE_LOAD_DECLINE
Module has failed to load, may be in an inconsistent state.
Definition: module.h:78
def info(msg)
int ast_sockaddr_ipv4_mapped(const struct ast_sockaddr *addr, struct ast_sockaddr *ast_mapped)
Convert an IPv4-mapped IPv6 address into an IPv4 address.
Definition: netsock2.c:37
static char * ast_sockaddr_stringify(const struct ast_sockaddr *addr)
Wrapper around ast_sockaddr_stringify_fmt() with default format.
Definition: netsock2.h:256
#define ast_sockaddr_port(addr)
Get the port number of a socket address.
Definition: netsock2.h:517
static void ast_sockaddr_copy(struct ast_sockaddr *dst, const struct ast_sockaddr *src)
Copies the data from one ast_sockaddr to another.
Definition: netsock2.h:167
int ast_sockaddr_is_ipv6(const struct ast_sockaddr *addr)
Determine if this is an IPv6 address.
Definition: netsock2.c:524
int ast_bind(int sockfd, const struct ast_sockaddr *addr)
Wrapper around bind(2) that uses struct ast_sockaddr.
Definition: netsock2.c:590
#define ast_sockaddr_from_sockaddr(addr, sa)
Converts a struct sockaddr to a struct ast_sockaddr.
Definition: netsock2.h:819
int ast_sockaddr_cmp_addr(const struct ast_sockaddr *a, const struct ast_sockaddr *b)
Compares the addresses of two ast_sockaddr structures.
Definition: netsock2.c:413
static char * ast_sockaddr_stringify_host(const struct ast_sockaddr *addr)
Wrapper around ast_sockaddr_stringify_fmt() to return an address only, suitable for a URL (with brack...
Definition: netsock2.h:327
ssize_t ast_sendto(int sockfd, const void *buf, size_t len, int flags, const struct ast_sockaddr *dest_addr)
Wrapper around sendto(2) that uses ast_sockaddr.
Definition: netsock2.c:614
int ast_sockaddr_is_any(const struct ast_sockaddr *addr)
Determine if the address type is unspecified, or "any" address.
Definition: netsock2.c:534
int ast_sockaddr_split_hostport(char *str, char **host, char **port, int flags)
Splits a string into its host and port components.
Definition: netsock2.c:164
int ast_set_qos(int sockfd, int tos, int cos, const char *desc)
Set type of service.
Definition: netsock2.c:621
ast_transport
Definition: netsock2.h:59
@ AST_TRANSPORT_UDP
Definition: netsock2.h:60
@ AST_TRANSPORT_TCP
Definition: netsock2.h:61
#define ast_sockaddr_to_sin(addr, sin)
Converts a struct ast_sockaddr to a struct sockaddr_in.
Definition: netsock2.h:765
int ast_sockaddr_parse(struct ast_sockaddr *addr, const char *str, int flags)
Parse an IPv4 or IPv6 address string.
Definition: netsock2.c:230
static int ast_sockaddr_isnull(const struct ast_sockaddr *addr)
Checks if the ast_sockaddr is null. "null" in this sense essentially means uninitialized,...
Definition: netsock2.h:127
ssize_t ast_recvfrom(int sockfd, void *buf, size_t len, int flags, struct ast_sockaddr *src_addr)
Wrapper around recvfrom(2) that uses struct ast_sockaddr.
Definition: netsock2.c:606
int ast_sockaddr_cmp(const struct ast_sockaddr *a, const struct ast_sockaddr *b)
Compares two ast_sockaddr structures.
Definition: netsock2.c:388
#define ast_sockaddr_set_port(addr, port)
Sets the port number of a socket address.
Definition: netsock2.h:532
#define ast_sockaddr_from_sin(addr, sin)
Converts a struct sockaddr_in to a struct ast_sockaddr.
Definition: netsock2.h:778
static void ast_sockaddr_setnull(struct ast_sockaddr *addr)
Sets address addr to null.
Definition: netsock2.h:138
int ast_sockaddr_is_ipv4(const struct ast_sockaddr *addr)
Determine if the address is an IPv4 address.
Definition: netsock2.c:497
const char * ast_inet_ntoa(struct in_addr ia)
thread-safe replacement for inet_ntoa().
Definition: utils.c:928
Options provided by main asterisk program.
#define AST_PJPROJECT_INIT_LOG_LEVEL()
Get maximum log level pjproject was compiled with.
Definition: options.h:167
static int frames
Definition: parser.c:51
Core PBX routines and definitions.
static void * cleanup(void *unused)
Definition: pbx_realtime.c:124
static char * generate_random_string(char *buf, size_t size)
Generate 32 byte random string (stolen from chan_sip.c)
Definition: res_calendar.c:719
static int reload(void)
struct stasis_forward * sub
Definition: res_corosync.c:240
int ast_sockaddr_to_pj_sockaddr(const struct ast_sockaddr *addr, pj_sockaddr *pjaddr)
Fill a pj_sockaddr from an ast_sockaddr.
void ast_pjproject_caching_pool_destroy(pj_caching_pool *cp)
Destroy caching pool factory and all cached pools.
int ast_sockaddr_pj_sockaddr_cmp(const struct ast_sockaddr *addr, const pj_sockaddr *pjaddr)
Compare an ast_sockaddr to a pj_sockaddr.
void ast_pjproject_caching_pool_init(pj_caching_pool *cp, const pj_pool_factory_policy *policy, pj_size_t max_capacity)
Initialize the caching pool factory.
static struct ast_threadstorage pj_thread_storage
Definition: res_pjsip.c:2281
static pj_caching_pool cachingpool
Pool factory used by pjlib to allocate memory.
#define OLD_PACKET_COUNT
#define TURN_STATE_WAIT_TIME
static int ast_rtp_dtmf_compatible(struct ast_channel *chan0, struct ast_rtp_instance *instance0, struct ast_channel *chan1, struct ast_rtp_instance *instance1)
static int rtpdebugport
static void ast_rtp_update_source(struct ast_rtp_instance *instance)
#define TRANSPORT_TURN_RTCP
static int ast_rtp_destroy(struct ast_rtp_instance *instance)
#define RTCP_LENGTH_SHIFT
struct ast_srtp_res * res_srtp
Definition: rtp_engine.c:176
static int ast_rtp_rtcp_handle_nack(struct ast_rtp_instance *instance, unsigned int *nackdata, unsigned int position, unsigned int length)
static int rtp_reload(int reload, int by_external_config)
#define RTCP_PAYLOAD_TYPE_SHIFT
#define DEFAULT_RTP_RECV_BUFFER_SIZE
#define MAX_TIMESTAMP_SKEW
#define DEFAULT_ICESUPPORT
static void ntp2timeval(unsigned int msw, unsigned int lsw, struct timeval *tv)
#define RTCP_VALID_VALUE
#define RTCP_FB_NACK_BLOCK_WORD_LENGTH
static struct ast_sockaddr rtpdebugaddr
#define DEFAULT_LEARNING_MIN_SEQUENTIAL
#define FLAG_3389_WARNING
static int rtp_learning_rtp_seq_update(struct rtp_learning_info *info, uint16_t seq)
static int rtp_transport_wide_cc_feedback_produce(const void *data)
#define RTCP_RR_BLOCK_WORD_LENGTH
static struct ast_frame * ast_rtcp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp, const unsigned char *rtcpdata, size_t size, struct ast_sockaddr *addr)
static const char * rtcp_payload_subtype2str(unsigned int pt, unsigned int subtype)
static int ast_rtp_new(struct ast_rtp_instance *instance, struct ast_sched_context *sched, struct ast_sockaddr *addr, void *data)
static char * handle_cli_rtp_settings(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
static struct ast_frame * ast_rtcp_read(struct ast_rtp_instance *instance)
#define RTP_IGNORE_FIRST_PACKETS_COUNT
static int rtp_raw_write(struct ast_rtp_instance *instance, struct ast_frame *frame, int codec)
static int rtcpdebugport
#define RTCP_SR_BLOCK_WORD_LENGTH
static int ast_rtp_dtmf_end_with_duration(struct ast_rtp_instance *instance, char digit, unsigned int duration)
#define DEFAULT_RTP_END
static int rtcp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
static struct ast_rtp_instance * rtp_find_instance_by_packet_source_ssrc(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned int ssrc)
#define SRTP_MASTER_LEN
#define RTCP_REPORT_COUNT_SHIFT
#define RTCP_PT_FUR
#define RTCP_DEFAULT_INTERVALMS
static void rtp_deallocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
#define RTP_DTLS_ESTABLISHED
static int bridge_p2p_rtp_write(struct ast_rtp_instance *instance, struct ast_rtp_instance *instance1, unsigned int *rtpheader, int len, int hdrlen)
#define DEFAULT_DTMF_TIMEOUT
static void put_unaligned_time24(void *p, uint32_t time_msw, uint32_t time_lsw)
#define RTCP_MAX_INTERVALMS
static int ast_rtcp_generate_nack(struct ast_rtp_instance *instance, unsigned char *rtcpheader)
static char * handle_cli_rtp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
strict_rtp_mode
@ STRICT_RTP_SEQNO
@ STRICT_RTP_YES
@ STRICT_RTP_NO
static void rtp_transport_wide_cc_feedback_status_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits, uint16_t *status_vector_chunk, int *run_length_chunk_count, int *run_length_chunk_status, int status)
static int ast_rtp_bundle(struct ast_rtp_instance *child, struct ast_rtp_instance *parent)
static struct ast_rtp_engine asterisk_rtp_engine
static const char * rtcp_payload_type2str(unsigned int pt)
#define TRANSPORT_SOCKET_RTP
static int rtpend
static void rtp_instance_parse_transport_wide_cc(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned char *data, int len)
static void calc_rxstamp_and_jitter(struct timeval *tv, struct ast_rtp *rtp, unsigned int rx_rtp_ts, int mark)
static unsigned int calc_txstamp(struct ast_rtp *rtp, struct timeval *delivery)
static int ast_rtp_dtmf_continuation(struct ast_rtp_instance *instance)
#define RTCP_PT_RR
#define SRTP_MASTER_KEY_LEN
static int learning_min_sequential
static int rtp_allocate_transport(struct ast_rtp_instance *instance, struct ast_rtp *rtp)
static char * rtcp_do_debug_ip(struct ast_cli_args *a)
static int ast_rtcp_generate_report(struct ast_rtp_instance *instance, unsigned char *rtcpheader, struct ast_rtp_rtcp_report *rtcp_report, int *sr)
static struct ast_frame * ast_rtp_read(struct ast_rtp_instance *instance, int rtcp)
static char * handle_cli_rtcp_set_debug(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
struct ast_srtp_policy_res * res_srtp_policy
Definition: rtp_engine.c:177
#define RTCP_PT_BYE
static struct ast_rtp_instance * __rtp_find_instance_by_ssrc(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned int ssrc, int source)
static void calculate_lost_packet_statistics(struct ast_rtp *rtp, unsigned int *lost_packets, int *fraction_lost)
#define RTCP_HEADER_SSRC_LENGTH
static void process_dtmf_rfc2833(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark, struct frame_list *frames)
#define RTCP_VALID_MASK
static int srtp_replay_protection
static void ast_rtp_set_stream_num(struct ast_rtp_instance *instance, int stream_num)
static int learning_min_duration
static int create_new_socket(const char *type, int af)
static int ast_rtp_fd(struct ast_rtp_instance *instance, int rtcp)
static int ast_rtcp_generate_compound_prefix(struct ast_rtp_instance *instance, unsigned char *rtcpheader, struct ast_rtp_rtcp_report *report, int *sr)
static void update_jitter_stats(struct ast_rtp *rtp, unsigned int ia_jitter)
#define RTCP_FB_REMB_BLOCK_WORD_LENGTH
#define RTCP_PT_PSFB
static struct ast_frame * process_cn_rfc3389(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
#define DEFAULT_SRTP_REPLAY_PROTECTION
#define DEFAULT_DTLS_MTU
static int reload_module(void)
#define FLAG_NAT_INACTIVE
static int rtcp_debug_test_addr(struct ast_sockaddr *addr)
static int ast_rtp_qos_set(struct ast_rtp_instance *instance, int tos, int cos, const char *desc)
static void ast_rtp_change_source(struct ast_rtp_instance *instance)
static int ast_rtp_dtmf_end(struct ast_rtp_instance *instance, char digit)
static void calc_mean_and_standard_deviation(double new_sample, double *mean, double *std_dev, unsigned int *count)
static int compare_by_value(int elem, int value)
Helper function to compare an elem in a vector by value.
static int update_rtt_stats(struct ast_rtp *rtp, unsigned int lsr, unsigned int dlsr)
static int rtcp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
static struct ast_sockaddr rtcpdebugaddr
static struct ast_rtp_instance * rtp_find_instance_by_media_source_ssrc(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned int ssrc)
#define MAXIMUM_RTP_RECV_BUFFER_SIZE
static int rtp_red_buffer(struct ast_rtp_instance *instance, struct ast_frame *frame)
#define STRICT_RTP_LEARN_TIMEOUT
Strict RTP learning timeout time in milliseconds.
#define RTCP_VERSION_SHIFTED
static int rtcpinterval
static int strictrtp
static int ast_rtp_dtmf_begin(struct ast_rtp_instance *instance, char digit)
static void rtp_instance_parse_extmap_extensions(struct ast_rtp_instance *instance, struct ast_rtp *rtp, unsigned char *extension, int len)
static int find_by_value(int elem, int value)
Helper function to find an elem in a vector by value.
#define RTCP_REPORT_COUNT_MASK
static void rtp_instance_unlock(struct ast_rtp_instance *instance)
#define DEFAULT_RTP_START
#define TRANSPORT_TURN_RTP
static int rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa)
static int rtpstart
#define MINIMUM_RTP_PORT
static struct ast_cli_entry cli_rtp[]
static int ast_rtp_get_stat(struct ast_rtp_instance *instance, struct ast_rtp_instance_stats *stats, enum ast_rtp_instance_stat stat)
#define RESCALE(in, inmin, inmax, outmin, outmax)
#define RTCP_PT_SDES
#define MISSING_SEQNOS_ADDED_TRIGGER
#define SRTP_MASTER_SALT_LEN
static int ast_rtp_write(struct ast_rtp_instance *instance, struct ast_frame *frame)
#define RTCP_PAYLOAD_TYPE_MASK
#define DEFAULT_RTP_SEND_BUFFER_SIZE
#define FLAG_NAT_ACTIVE
#define FLAG_NEED_MARKER_BIT
static int __rtp_recvfrom(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp)
#define RTCP_MIN_INTERVALMS
static void ast_rtp_stop(struct ast_rtp_instance *instance)
#define FLAG_REQ_LOCAL_BRIDGE_BIT
#define RTCP_PT_SR
static int __rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int rtcp, int *via_ice, int use_srtp)
static int load_module(void)
static int ast_rtcp_calculate_sr_rr_statistics(struct ast_rtp_instance *instance, struct ast_rtp_rtcp_report *rtcp_report, struct ast_sockaddr remote_address, int ice, int sr)
#define RTCP_VERSION_MASK_SHIFTED
#define CALC_LEARNING_MIN_DURATION(count)
Calculate the min learning duration in ms.
static int rtp_transport_wide_cc_packet_statistics_cmp(struct rtp_transport_wide_cc_packet_statistics a, struct rtp_transport_wide_cc_packet_statistics b)
#define SSRC_MAPPING_ELEM_CMP(elem, value)
SSRC mapping comparator for AST_VECTOR_REMOVE_CMP_UNORDERED()
static int rtp_debug_test_addr(struct ast_sockaddr *addr)
static int rtp_red_init(struct ast_rtp_instance *instance, int buffer_time, int *payloads, int generations)
strict_rtp_state
@ STRICT_RTP_LEARN
@ STRICT_RTP_OPEN
@ STRICT_RTP_CLOSED
static int unload_module(void)
static void ast_rtp_set_remote_ssrc(struct ast_rtp_instance *instance, unsigned int ssrc)
static void ast_rtp_prop_set(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value)
#define FLAG_NAT_INACTIVE_NOWARN
static int rtcp_mux(struct ast_rtp *rtp, const unsigned char *packet)
static void rtp_learning_seq_init(struct rtp_learning_info *info, uint16_t seq)
#define TRANSPORT_SOCKET_RTCP
static void rtp_learning_start(struct ast_rtp *rtp)
Start the strictrtp learning mode.
static int ast_rtp_dtmf_mode_set(struct ast_rtp_instance *instance, enum ast_rtp_dtmf_mode dtmf_mode)
static unsigned int ast_rtcp_calc_interval(struct ast_rtp *rtp)
static char * rtp_do_debug_ip(struct ast_cli_args *a)
static enum ast_rtp_dtmf_mode ast_rtp_dtmf_mode_get(struct ast_rtp_instance *instance)
static int rtp_sendto(struct ast_rtp_instance *instance, void *buf, size_t size, int flags, struct ast_sockaddr *sa, int *ice)
static unsigned int ast_rtp_get_ssrc(struct ast_rtp_instance *instance)
#define MAXIMUM_RTP_PORT
static void timeval2ntp(struct timeval tv, unsigned int *msw, unsigned int *lsw)
static void ast_rtp_remote_address_set(struct ast_rtp_instance *instance, struct ast_sockaddr *addr)
static struct ast_frame * ast_rtp_interpret(struct ast_rtp_instance *instance, struct ast_srtp *srtp, const struct ast_sockaddr *remote_address, unsigned char *read_area, int length, int prev_seqno, unsigned int bundled)
static int ast_rtp_local_bridge(struct ast_rtp_instance *instance0, struct ast_rtp_instance *instance1)
static struct ast_frame * red_t140_to_red(struct rtp_red *red)
static int ast_rtcp_generate_sdes(struct ast_rtp_instance *instance, unsigned char *rtcpheader, struct ast_rtp_rtcp_report *rtcp_report)
#define SEQNO_CYCLE_OVER
static double calc_media_experience_score(struct ast_rtp_instance *instance, double normdevrtt, double normdev_rxjitter, double stdev_rxjitter, double normdev_rxlost)
Calculate a "media experience score" based on given data.
static void update_reported_mes_stats(struct ast_rtp *rtp)
static int dtmftimeout
#define DEFAULT_STRICT_RTP
static int ast_rtp_sendcng(struct ast_rtp_instance *instance, int level)
generate comfort noice (CNG)
static char * handle_cli_rtcp_set_stats(struct ast_cli_entry *e, int cmd, struct ast_cli_args *a)
static void update_lost_stats(struct ast_rtp *rtp, unsigned int lost_packets)
static void ast_rtp_stun_request(struct ast_rtp_instance *instance, struct ast_sockaddr *suggestion, const char *username)
static const char * ast_rtp_get_cname(struct ast_rtp_instance *instance)
static void rtp_write_rtcp_psfb(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_frame *frame, struct ast_sockaddr *remote_address)
static int rtcpstats
static struct ast_frame * process_dtmf_cisco(struct ast_rtp_instance *instance, unsigned char *data, int len, unsigned int seqno, unsigned int timestamp, int payloadtype, int mark)
#define RTP_SEQ_MOD
static struct ast_frame * create_dtmf_frame(struct ast_rtp_instance *instance, enum ast_frame_type type, int compensate)
static void rtp_write_rtcp_fir(struct ast_rtp_instance *instance, struct ast_rtp *rtp, struct ast_sockaddr *remote_address)
#define DEFAULT_TURN_PORT
#define MAXIMUM_RTP_SEND_BUFFER_SIZE
static int red_write(const void *data)
Write t140 redundancy frame.
#define DEFAULT_STUN_SOFTWARE_ATTRIBUTE
#define RTCP_LENGTH_MASK
#define DEFAULT_LEARNING_MIN_DURATION
static void update_local_mes_stats(struct ast_rtp *rtp)
static void rtp_transport_wide_cc_feedback_status_vector_append(unsigned char *rtcpheader, int *packet_len, int *status_vector_chunk_bits, uint16_t *status_vector_chunk, int status)
static int ast_rtp_extension_enable(struct ast_rtp_instance *instance, enum ast_rtp_extension extension)
static int ast_rtcp_write(const void *data)
Write a RTCP packet to the far end.
ast_srtp_suite
Definition: res_srtp.h:56
@ AST_AES_CM_128_HMAC_SHA1_80
Definition: res_srtp.h:58
@ AST_AES_CM_128_HMAC_SHA1_32
Definition: res_srtp.h:59
#define NULL
Definition: resample.c:96
Pluggable RTP Architecture.
ast_rtp_dtls_setup
DTLS setup types.
Definition: rtp_engine.h:564
@ AST_RTP_DTLS_SETUP_PASSIVE
Definition: rtp_engine.h:566
@ AST_RTP_DTLS_SETUP_HOLDCONN
Definition: rtp_engine.h:568
@ AST_RTP_DTLS_SETUP_ACTPASS
Definition: rtp_engine.h:567
@ AST_RTP_DTLS_SETUP_ACTIVE
Definition: rtp_engine.h:565
#define AST_RTP_RTCP_PSFB
Definition: rtp_engine.h:329
#define AST_DEBUG_CATEGORY_DTLS
Definition: rtp_engine.h:3089
#define ast_debug_rtcp_packet_is_allowed
Definition: rtp_engine.h:3124
ast_rtp_ice_role
ICE role during negotiation.
Definition: rtp_engine.h:519
@ AST_RTP_ICE_ROLE_CONTROLLING
Definition: rtp_engine.h:521
@ AST_RTP_ICE_ROLE_CONTROLLED
Definition: rtp_engine.h:520
#define AST_RTP_RTCP_FMT_FIR
Definition: rtp_engine.h:337
#define ast_debug_rtcp(sublevel,...)
Log debug level RTCP information.
Definition: rtp_engine.h:3116
struct ast_format * ast_rtp_codecs_get_preferred_format(struct ast_rtp_codecs *codecs)
Retrieve rx preferred format.
Definition: rtp_engine.c:1572
ast_rtp_ice_component_type
ICE component types.
Definition: rtp_engine.h:513
@ AST_RTP_ICE_COMPONENT_RTCP
Definition: rtp_engine.h:515
@ AST_RTP_ICE_COMPONENT_RTP
Definition: rtp_engine.h:514
struct ast_rtp_rtcp_report * ast_rtp_rtcp_report_alloc(unsigned int report_blocks)
Allocate an ao2 ref counted instance of ast_rtp_rtcp_report.
Definition: rtp_engine.c:3679
struct ast_rtp_payload_type * ast_rtp_codecs_get_payload(struct ast_rtp_codecs *codecs, int payload)
Retrieve rx payload mapped information by payload type.
Definition: rtp_engine.c:1548
int ast_rtp_instance_get_prop(struct ast_rtp_instance *instance, enum ast_rtp_property property)
Get the value of an RTP instance property.
Definition: rtp_engine.c:738
ast_rtp_dtls_hash
DTLS fingerprint hashes.
Definition: rtp_engine.h:578
@ AST_RTP_DTLS_HASH_SHA1
Definition: rtp_engine.h:580
@ AST_RTP_DTLS_HASH_SHA256
Definition: rtp_engine.h:579
int ast_rtp_engine_srtp_is_registered(void)
Definition: rtp_engine.c:2931
ast_rtp_dtmf_mode
Definition: rtp_engine.h:151
#define AST_RED_MAX_GENERATION
Definition: rtp_engine.h:98
#define AST_RTP_DTMF
Definition: rtp_engine.h:294
ast_rtp_instance_rtcp
Definition: rtp_engine.h:283
@ AST_RTP_INSTANCE_RTCP_MUX
Definition: rtp_engine.h:289
@ AST_RTP_INSTANCE_RTCP_STANDARD
Definition: rtp_engine.h:287
void ast_rtp_publish_rtcp_message(struct ast_rtp_instance *rtp, struct stasis_message_type *message_type, struct ast_rtp_rtcp_report *report, struct ast_json *blob)
Publish an RTCP message to Stasis Message Bus API.
Definition: rtp_engine.c:3690
struct ast_srtp * ast_rtp_instance_get_srtp(struct ast_rtp_instance *instance, int rtcp)
Obtain the SRTP instance associated with an RTP instance.
Definition: rtp_engine.c:2963
#define AST_RTP_STAT_TERMINATOR(combined)
Definition: rtp_engine.h:500
#define AST_RTP_RTCP_RTPFB
Definition: rtp_engine.h:327
struct ast_rtp_instance * ast_rtp_instance_get_bridged(struct ast_rtp_instance *instance)
Get the other RTP instance that an instance is bridged to.
Definition: rtp_engine.c:2410
ast_rtp_dtls_verify
DTLS verification settings.
Definition: rtp_engine.h:584
@ AST_RTP_DTLS_VERIFY_FINGERPRINT
Definition: rtp_engine.h:586
@ AST_RTP_DTLS_VERIFY_CERTIFICATE
Definition: rtp_engine.h:587
#define ast_debug_rtp_packet_is_allowed
Definition: rtp_engine.h:3107
#define AST_LOG_CATEGORY_RTCP_PACKET
Definition: rtp_engine.h:3069
ast_rtp_instance_stat
Definition: rtp_engine.h:185
@ AST_RTP_INSTANCE_STAT_LOCAL_MAXRXPLOSS
Definition: rtp_engine.h:207
@ AST_RTP_INSTANCE_STAT_REMOTE_NORMDEVRXPLOSS
Definition: rtp_engine.h:203
@ AST_RTP_INSTANCE_STAT_REMOTE_MAXRXPLOSS
Definition: rtp_engine.h:199
@ AST_RTP_INSTANCE_STAT_REMOTE_NORMDEVMES
Definition: rtp_engine.h:270
@ AST_RTP_INSTANCE_STAT_REMOTE_MINJITTER
Definition: rtp_engine.h:223
@ AST_RTP_INSTANCE_STAT_LOCAL_NORMDEVMES
Definition: rtp_engine.h:278
@ AST_RTP_INSTANCE_STAT_MIN_RTT
Definition: rtp_engine.h:243
@ AST_RTP_INSTANCE_STAT_TXMES
Definition: rtp_engine.h:262
@ AST_RTP_INSTANCE_STAT_CHANNEL_UNIQUEID
Definition: rtp_engine.h:253
@ AST_RTP_INSTANCE_STAT_TXPLOSS
Definition: rtp_engine.h:195
@ AST_RTP_INSTANCE_STAT_MAX_RTT
Definition: rtp_engine.h:241
@ AST_RTP_INSTANCE_STAT_RXPLOSS
Definition: rtp_engine.h:197
@ AST_RTP_INSTANCE_STAT_REMOTE_MAXJITTER
Definition: rtp_engine.h:221
@ AST_RTP_INSTANCE_STAT_LOCAL_MAXJITTER
Definition: rtp_engine.h:229
@ AST_RTP_INSTANCE_STAT_REMOTE_MINMES
Definition: rtp_engine.h:268
@ AST_RTP_INSTANCE_STAT_REMOTE_STDEVJITTER
Definition: rtp_engine.h:227
@ AST_RTP_INSTANCE_STAT_REMOTE_MINRXPLOSS
Definition: rtp_engine.h:201
@ AST_RTP_INSTANCE_STAT_LOCAL_MINMES
Definition: rtp_engine.h:276
@ AST_RTP_INSTANCE_STAT_TXOCTETCOUNT
Definition: rtp_engine.h:255
@ AST_RTP_INSTANCE_STAT_RXMES
Definition: rtp_engine.h:264
@ AST_RTP_INSTANCE_STAT_REMOTE_STDEVMES
Definition: rtp_engine.h:272
@ AST_RTP_INSTANCE_STAT_LOCAL_NORMDEVRXPLOSS
Definition: rtp_engine.h:211
@ AST_RTP_INSTANCE_STAT_REMOTE_STDEVRXPLOSS
Definition: rtp_engine.h:205
@ AST_RTP_INSTANCE_STAT_LOCAL_STDEVRXPLOSS
Definition: rtp_engine.h:213
@ AST_RTP_INSTANCE_STAT_REMOTE_MAXMES
Definition: rtp_engine.h:266
@ AST_RTP_INSTANCE_STAT_TXCOUNT
Definition: rtp_engine.h:189
@ AST_RTP_INSTANCE_STAT_STDEVRTT
Definition: rtp_engine.h:247
@ AST_RTP_INSTANCE_STAT_COMBINED_MES
Definition: rtp_engine.h:260
@ AST_RTP_INSTANCE_STAT_LOCAL_MAXMES
Definition: rtp_engine.h:274
@ AST_RTP_INSTANCE_STAT_RXJITTER
Definition: rtp_engine.h:219
@ AST_RTP_INSTANCE_STAT_LOCAL_MINRXPLOSS
Definition: rtp_engine.h:209
@ AST_RTP_INSTANCE_STAT_LOCAL_SSRC
Definition: rtp_engine.h:249
@ AST_RTP_INSTANCE_STAT_REMOTE_NORMDEVJITTER
Definition: rtp_engine.h:225
@ AST_RTP_INSTANCE_STAT_COMBINED_JITTER
Definition: rtp_engine.h:215
@ AST_RTP_INSTANCE_STAT_TXJITTER
Definition: rtp_engine.h:217
@ AST_RTP_INSTANCE_STAT_LOCAL_MINJITTER
Definition: rtp_engine.h:231
@ AST_RTP_INSTANCE_STAT_COMBINED_LOSS
Definition: rtp_engine.h:193
@ AST_RTP_INSTANCE_STAT_LOCAL_STDEVJITTER
Definition: rtp_engine.h:235
@ AST_RTP_INSTANCE_STAT_COMBINED_RTT
Definition: rtp_engine.h:237
@ AST_RTP_INSTANCE_STAT_NORMDEVRTT
Definition: rtp_engine.h:245
@ AST_RTP_INSTANCE_STAT_RTT
Definition: rtp_engine.h:239
@ AST_RTP_INSTANCE_STAT_RXOCTETCOUNT
Definition: rtp_engine.h:257
@ AST_RTP_INSTANCE_STAT_LOCAL_STDEVMES
Definition: rtp_engine.h:280
@ AST_RTP_INSTANCE_STAT_LOCAL_NORMDEVJITTER
Definition: rtp_engine.h:233
@ AST_RTP_INSTANCE_STAT_RXCOUNT
Definition: rtp_engine.h:191
@ AST_RTP_INSTANCE_STAT_REMOTE_SSRC
Definition: rtp_engine.h:251
void * ast_rtp_instance_get_data(struct ast_rtp_instance *instance)
Get the data portion of an RTP instance.
Definition: rtp_engine.c:585
#define ast_rtp_instance_get_remote_address(instance, address)
Get the address of the remote endpoint that we are sending RTP to.
Definition: rtp_engine.h:1250
enum ast_media_type ast_rtp_codecs_get_stream_type(struct ast_rtp_codecs *codecs)
Determine the type of RTP stream media from the codecs mapped.
Definition: rtp_engine.c:1529
#define AST_RTP_RTCP_FMT_NACK
Definition: rtp_engine.h:333
#define ast_debug_rtp(sublevel,...)
Log debug level RTP information.
Definition: rtp_engine.h:3099
void ast_rtp_instance_set_last_tx(struct ast_rtp_instance *rtp, time_t time)
Set the last RTP transmission time.
Definition: rtp_engine.c:3996
void ast_rtp_instance_set_data(struct ast_rtp_instance *instance, void *data)
Set the data portion of an RTP instance.
Definition: rtp_engine.c:580
int ast_rtp_codecs_payload_code_tx_sample_rate(struct ast_rtp_codecs *codecs, int asterisk_format, const struct ast_format *format, int code, unsigned int sample_rate)
Retrieve a tx mapped payload type based on whether it is an Asterisk format and the code.
Definition: rtp_engine.c:2085
void ast_rtp_instance_set_prop(struct ast_rtp_instance *instance, enum ast_rtp_property property, int value)
Set the value of an RTP instance property.
Definition: rtp_engine.c:727
int ast_rtp_codecs_find_payload_code(struct ast_rtp_codecs *codecs, int payload)
Search for the tx payload type in the ast_rtp_codecs structure.
Definition: rtp_engine.c:2151
int ast_rtp_codecs_get_preferred_dtmf_format_rate(struct ast_rtp_codecs *codecs)
Retrieve rx preferred dtmf format sample rate.
Definition: rtp_engine.c:1598
void ast_rtp_instance_get_local_address(struct ast_rtp_instance *instance, struct ast_sockaddr *address)
Get the local address that we are expecting RTP on.
Definition: rtp_engine.c:665
@ AST_RTP_ICE_CANDIDATE_TYPE_RELAYED
Definition: rtp_engine.h:509
@ AST_RTP_ICE_CANDIDATE_TYPE_SRFLX
Definition: rtp_engine.h:508
@ AST_RTP_ICE_CANDIDATE_TYPE_HOST
Definition: rtp_engine.h:507
#define AST_DEBUG_CATEGORY_ICE
Definition: rtp_engine.h:3091
int ast_rtp_instance_set_local_address(struct ast_rtp_instance *instance, const struct ast_sockaddr *address)
Set the address that we are expecting to receive RTP on.
Definition: rtp_engine.c:610
int ast_rtp_get_rate(const struct ast_format *format)
Retrieve the sample rate of a format according to RTP specifications.
Definition: rtp_engine.c:4276
int ast_rtp_codecs_payload_code_tx(struct ast_rtp_codecs *codecs, int asterisk_format, const struct ast_format *format, int code)
Retrieve a tx mapped payload type based on whether it is an Asterisk format and the code.
Definition: rtp_engine.c:2146
ast_rtp_extension
Known RTP extensions.
Definition: rtp_engine.h:593
@ AST_RTP_EXTENSION_TRANSPORT_WIDE_CC
Definition: rtp_engine.h:599
@ AST_RTP_EXTENSION_ABS_SEND_TIME
Definition: rtp_engine.h:597
int ast_rtp_payload_mapping_tx_is_present(struct ast_rtp_codecs *codecs, const struct ast_rtp_payload_type *to_match)
Determine if a type of payload is already present in mappings.
Definition: rtp_engine.c:1220
#define ast_rtp_instance_set_remote_address(instance, address)
Set the address of the remote endpoint that we are sending RTP to.
Definition: rtp_engine.h:1138
#define AST_RTP_RTCP_FMT_REMB
Definition: rtp_engine.h:339
ast_rtp_dtls_connection
DTLS connection states.
Definition: rtp_engine.h:572
@ AST_RTP_DTLS_CONNECTION_NEW
Definition: rtp_engine.h:573
@ AST_RTP_DTLS_CONNECTION_EXISTING
Definition: rtp_engine.h:574
#define ast_debug_dtls(sublevel,...)
Log debug level DTLS information.
Definition: rtp_engine.h:3133
ast_rtp_property
Definition: rtp_engine.h:116
@ AST_RTP_PROPERTY_NAT
Definition: rtp_engine.h:118
@ AST_RTP_PROPERTY_RETRANS_RECV
Definition: rtp_engine.h:130
@ AST_RTP_PROPERTY_RETRANS_SEND
Definition: rtp_engine.h:132
@ AST_RTP_PROPERTY_RTCP
Definition: rtp_engine.h:126
@ AST_RTP_PROPERTY_ASYMMETRIC_CODEC
Definition: rtp_engine.h:128
@ AST_RTP_PROPERTY_DTMF
Definition: rtp_engine.h:120
@ AST_RTP_PROPERTY_DTMF_COMPENSATE
Definition: rtp_engine.h:122
@ AST_RTP_PROPERTY_REMB
Definition: rtp_engine.h:134
#define ast_debug_dtls_packet_is_allowed
Definition: rtp_engine.h:3137
#define AST_LOG_CATEGORY_RTP_PACKET
Definition: rtp_engine.h:3065
#define AST_RTP_STAT_STRCPY(current_stat, combined, placement, value)
Definition: rtp_engine.h:492
#define ast_debug_ice(sublevel,...)
Log debug level ICE information.
Definition: rtp_engine.h:3145
void ast_rtp_instance_get_requested_target_address(struct ast_rtp_instance *instance, struct ast_sockaddr *address)
Get the requested target address of the remote endpoint.
Definition: rtp_engine.c:695
int ast_rtp_instance_set_incoming_source_address(struct ast_rtp_instance *instance, const struct ast_sockaddr *address)
Set the incoming source address of the remote endpoint that we are sending RTP to.
Definition: rtp_engine.c:628
int ast_rtp_instance_extmap_get_id(struct ast_rtp_instance *instance, enum ast_rtp_extension extension)
Retrieve the id for an RTP extension.
Definition: rtp_engine.c:908
#define AST_RTP_CN
Definition: rtp_engine.h:296
int ast_rtp_codecs_get_preferred_dtmf_format_pt(struct ast_rtp_codecs *codecs)
Retrieve rx preferred dtmf format payload type.
Definition: rtp_engine.c:1589
int ast_rtp_engine_unregister(struct ast_rtp_engine *engine)
Unregister an RTP engine.
Definition: rtp_engine.c:364
#define AST_RTP_RTCP_FMT_TRANSPORT_WIDE_CC
Definition: rtp_engine.h:341
struct ast_rtp_codecs * ast_rtp_instance_get_codecs(struct ast_rtp_instance *instance)
Get the codecs structure of an RTP instance.
Definition: rtp_engine.c:749
const char * ast_rtp_instance_get_channel_id(struct ast_rtp_instance *instance)
Get the unique ID of the channel that owns this RTP instance.
Definition: rtp_engine.c:570
unsigned int ast_rtp_codecs_get_framing(struct ast_rtp_codecs *codecs)
Get the framing used for a set of codecs.
Definition: rtp_engine.c:1682
unsigned int ast_rtp_instance_get_ssrc(struct ast_rtp_instance *rtp)
Retrieve the local SSRC value that we will be using.
Definition: rtp_engine.c:4011
#define AST_RTP_STAT_SET(current_stat, combined, placement, value)
Definition: rtp_engine.h:484
#define DEFAULT_DTMF_SAMPLE_RATE_MS
Definition: rtp_engine.h:110
int ast_rtp_instance_add_srtp_policy(struct ast_rtp_instance *instance, struct ast_srtp_policy *remote_policy, struct ast_srtp_policy *local_policy, int rtcp)
Add or replace the SRTP policies for the given RTP instance.
Definition: rtp_engine.c:2936
#define AST_RTP_RTCP_FMT_PLI
Definition: rtp_engine.h:335
#define ast_rtp_engine_register(engine)
Definition: rtp_engine.h:852
#define AST_RTP_CISCO_DTMF
Definition: rtp_engine.h:298
#define AST_SCHED_DEL_UNREF(sched, id, refcall)
schedule task to get deleted and call unref function
Definition: sched.h:82
#define AST_SCHED_DEL(sched, id)
Remove a scheduler entry.
Definition: sched.h:46
int ast_sched_del(struct ast_sched_context *con, int id) attribute_warn_unused_result
Deletes a scheduled event.
Definition: sched.c:614
int ast_sched_add(struct ast_sched_context *con, int when, ast_sched_cb callback, const void *data) attribute_warn_unused_result
Adds a scheduled event.
Definition: sched.c:567
int ast_sched_add_variable(struct ast_sched_context *con, int when, ast_sched_cb callback, const void *data, int variable) attribute_warn_unused_result
Adds a scheduled event with rescheduling support.
Definition: sched.c:526
int(* ast_sched_cb)(const void *data)
scheduler callback
Definition: sched.h:178
Security Event Reporting API.
struct stasis_topic * ast_security_topic(void)
A stasis_topic which publishes messages for security related issues.
Asterisk internal frame definitions.
void ast_smoother_set_flags(struct ast_smoother *smoother, int flags)
Definition: smoother.c:123
#define ast_smoother_feed_be(s, f)
Definition: smoother.h:80
int ast_smoother_test_flag(struct ast_smoother *s, int flag)
Definition: smoother.c:128
void ast_smoother_free(struct ast_smoother *s)
Definition: smoother.c:220
#define AST_SMOOTHER_FLAG_FORCED
Definition: smoother.h:36
struct ast_frame * ast_smoother_read(struct ast_smoother *s)
Definition: smoother.c:169
#define ast_smoother_feed(s, f)
Definition: smoother.h:75
struct ast_smoother * ast_smoother_new(int bytes)
Definition: smoother.c:108
#define AST_SMOOTHER_FLAG_BE
Definition: smoother.h:35
struct stasis_message_type * stasis_message_type(const struct stasis_message *msg)
Get the message type for a stasis_message.
@ STASIS_SUBSCRIPTION_FILTER_SELECTIVE
Definition: stasis.h:297
int stasis_subscription_accept_message_type(struct stasis_subscription *subscription, const struct stasis_message_type *type)
Indicate to a subscription that we are interested in a message type.
Definition: stasis.c:1024
int stasis_subscription_set_filter(struct stasis_subscription *subscription, enum stasis_subscription_message_filter filter)
Set the message type filtering level on a subscription.
Definition: stasis.c:1078
struct stasis_subscription * stasis_unsubscribe_and_join(struct stasis_subscription *subscription)
Cancel a subscription, blocking until the last message is processed.
Definition: stasis.c:1135
#define stasis_subscribe(topic, callback, data)
Definition: stasis.h:649
#define S_OR(a, b)
returns the equivalent of logic or for strings: first one if not empty, otherwise second one.
Definition: strings.h:80
int attribute_pure ast_true(const char *val)
Make sure something is true. Determine if a string containing a boolean value is "true"....
Definition: utils.c:2199
static force_inline int attribute_pure ast_strlen_zero(const char *s)
Definition: strings.h:65
int attribute_pure ast_false(const char *val)
Make sure something is false. Determine if a string containing a boolean value is "false"....
Definition: utils.c:2216
void ast_copy_string(char *dst, const char *src, size_t size)
Size-limited null-terminating string copy.
Definition: strings.h:425
char * ast_skip_blanks(const char *str)
Gets a pointer to the first non-whitespace character in a string.
Definition: strings.h:161
Definition: test_acl.c:111
Generic container type.
When we need to walk through a container, we use an ao2_iterator to keep track of the current positio...
Definition: astobj2.h:1821
Wrapper for an ast_acl linked list.
Definition: acl.h:76
Main Channel structure associated with a channel.
descriptor for a cli entry.
Definition: cli.h:171
int args
This gets set in ast_cli_register()
Definition: cli.h:185
char * command
Definition: cli.h:186
const char * usage
Definition: cli.h:177
Data buffer containing fixed number of data payloads.
Definition: data_buffer.c:59
A recurring DNS query.
Definition: dns_internal.h:157
A DNS query.
Definition: dns_internal.h:137
For AST_LIST.
Definition: dns_internal.h:39
char data[0]
The raw DNS record.
Definition: dns_internal.h:60
int rr_type
Resource record type.
Definition: dns_internal.h:41
The result of a DNS query.
Definition: dns_internal.h:117
Structure used to handle boolean flags.
Definition: utils.h:199
Definition of a media format.
Definition: format.c:43
struct ast_codec * codec
Pointer to the codec in use for this format.
Definition: format.c:47
struct ast_format * format
Data structure associated with a single frame of data.
struct ast_frame_subclass subclass
union ast_frame::@226 data
struct timeval delivery
enum ast_frame_type frametype
unsigned int flags
const char * src
Abstract JSON element (object, array, string, int, ...).
Structure defining an RTCP session.
double maxrxmes
double reported_mes
double maxrxlost
unsigned int themrxlsr
unsigned int rxmes_count
unsigned int received_prior
unsigned int sr_count
unsigned char frame_buf[512+AST_FRIENDLY_OFFSET]
double reported_maxjitter
unsigned int reported_mes_count
double reported_normdev_lost
double reported_minlost
double normdevrtt
double reported_normdev_mes
double stdevrtt
double minrxjitter
unsigned int soc
unsigned int lastsrtxcount
double reported_maxmes
struct ast_sockaddr them
unsigned int reported_lost
double reported_stdev_jitter
unsigned int reported_jitter_count
double normdev_rxjitter
double accumulated_transit
double reported_stdev_lost
struct timeval txlsr
enum ast_rtp_instance_rtcp type
unsigned int spc
unsigned int rxjitter_count
unsigned int reported_lost_count
double normdev_rxlost
double reported_stdev_mes
unsigned int rtt_count
double normdev_rxmes
double maxrxjitter
double reported_normdev_jitter
double reported_maxlost
unsigned int rxlost_count
unsigned int rr_count
double stdev_rxjitter
double reported_jitter
double stdev_rxmes
double reported_minjitter
double minrxlost
struct ast_sockaddr us
struct timeval rxlsr
double minrxmes
char * local_addr_str
unsigned int expected_prior
double reported_minmes
double stdev_rxlost
DTLS configuration structure.
Definition: rtp_engine.h:605
enum ast_rtp_dtls_setup default_setup
Definition: rtp_engine.h:608
enum ast_rtp_dtls_verify verify
Definition: rtp_engine.h:611
unsigned int rekey
Definition: rtp_engine.h:607
enum ast_rtp_dtls_hash hash
Definition: rtp_engine.h:610
unsigned int enabled
Definition: rtp_engine.h:606
unsigned int ephemeral_cert
Definition: rtp_engine.h:617
enum ast_srtp_suite suite
Definition: rtp_engine.h:609
Structure that represents the optional DTLS SRTP support within an RTP engine.
Definition: rtp_engine.h:621
int(* set_configuration)(struct ast_rtp_instance *instance, const struct ast_rtp_dtls_cfg *dtls_cfg)
Definition: rtp_engine.h:623
Structure for an ICE candidate.
Definition: rtp_engine.h:525
struct ast_sockaddr address
Definition: rtp_engine.h:530
enum ast_rtp_ice_component_type id
Definition: rtp_engine.h:527
struct ast_sockaddr relay_address
Definition: rtp_engine.h:531
enum ast_rtp_ice_candidate_type type
Definition: rtp_engine.h:532
Structure that represents the optional ICE support within an RTP engine.
Definition: rtp_engine.h:536
void(* set_authentication)(struct ast_rtp_instance *instance, const char *ufrag, const char *password)
Definition: rtp_engine.h:538
const char * name
Definition: rtp_engine.h:667
struct ast_rtp_engine_dtls * dtls
Definition: rtp_engine.h:744
unsigned int remote_ssrc
Definition: rtp_engine.h:454
unsigned int rxcount
Definition: rtp_engine.h:400
unsigned int local_ssrc
Definition: rtp_engine.h:452
unsigned int rxoctetcount
Definition: rtp_engine.h:460
unsigned int rxploss
Definition: rtp_engine.h:424
unsigned int txcount
Definition: rtp_engine.h:398
unsigned int txploss
Definition: rtp_engine.h:422
unsigned int txoctetcount
Definition: rtp_engine.h:458
char channel_uniqueid[MAX_CHANNEL_ID]
Definition: rtp_engine.h:456
An object that represents data received in a feedback report.
Definition: rtp_engine.h:388
unsigned int fmt
Definition: rtp_engine.h:389
struct ast_rtp_rtcp_feedback_remb remb
Definition: rtp_engine.h:391
Structure for storing RTP packets for retransmission.
A report block within a SR/RR report.
Definition: rtp_engine.h:346
unsigned int highest_seq_no
Definition: rtp_engine.h:352
struct ast_rtp_rtcp_report_block::@272 lost_count
unsigned short fraction
Definition: rtp_engine.h:349
unsigned int source_ssrc
Definition: rtp_engine.h:347
An object that represents data sent during a SR/RR RTCP report.
Definition: rtp_engine.h:361
struct ast_rtp_rtcp_report::@273 sender_information
unsigned int type
Definition: rtp_engine.h:364
unsigned short reception_report_count
Definition: rtp_engine.h:362
unsigned int rtp_timestamp
Definition: rtp_engine.h:367
struct ast_rtp_rtcp_report_block * report_block[0]
Definition: rtp_engine.h:374
struct timeval ntp_timestamp
Definition: rtp_engine.h:366
unsigned int octet_count
Definition: rtp_engine.h:369
unsigned int ssrc
Definition: rtp_engine.h:363
unsigned int packet_count
Definition: rtp_engine.h:368
RTP session description.
unsigned int rxcount
unsigned int lastividtimestamp
unsigned int dtmf_duration
unsigned int dtmfsamples
unsigned int ssrc_orig
struct ast_format * lasttxformat
struct rtp_transport_wide_cc_statistics transport_wide_cc
unsigned int lastts
struct ast_smoother * smoother
struct ast_sched_context * sched
unsigned short seedrxseqno
struct timeval txcore
unsigned int remote_seed_rx_rtp_ts_stable
double rxmes
enum ast_rtp_dtmf_mode dtmfmode
struct ast_sockaddr strict_rtp_address
double rxstart
double rxstart_stable
enum strict_rtp_state strict_rtp_state
unsigned short seqno
unsigned int rxoctetcount
struct timeval rxcore
unsigned int last_seqno
struct ast_frame f
struct ast_rtcp * rtcp
int expectedrxseqno
unsigned int themssrc_valid
double rxjitter
unsigned int dtmf_timeout
char cname[AST_UUID_STR_LEN]
unsigned int txcount
unsigned char rawdata[8192+AST_FRIENDLY_OFFSET]
unsigned int last_transit_time_samples
unsigned int cycles
unsigned int lastovidtimestamp
unsigned int ssrc
unsigned int asymmetric_codec
double rxjitter_samples
struct ast_rtp::@471 missing_seqno
struct ast_data_buffer * recv_buffer
optional_ts last_end_timestamp
unsigned int lastotexttimestamp
unsigned int flags
struct timeval dtmfmute
struct ast_sockaddr bind_address
unsigned char ssrc_saved
struct ast_data_buffer * send_buffer
struct rtp_learning_info rtp_source_learn
struct ast_rtp_instance * owner
The RTP instance owning us (used for debugging purposes) We don't hold a reference to the instance be...
unsigned int remote_seed_rx_rtp_ts
unsigned int lastitexttimestamp
unsigned int dtmf_samplerate_ms
unsigned int lastdigitts
unsigned int txoctetcount
struct ast_rtp_instance * bundled
char sending_digit
struct rtp_red * red
struct ast_rtp::@472 ssrc_mapping
struct ast_format * lastrxformat
unsigned int themssrc
Structure for rwlock and tracking information.
Definition: lock.h:157
Socket address structure.
Definition: netsock2.h:97
socklen_t len
Definition: netsock2.h:99
void(* destroy)(struct ast_srtp_policy *policy)
Definition: res_srtp.h:72
int(* set_master_key)(struct ast_srtp_policy *policy, const unsigned char *key, size_t key_len, const unsigned char *salt, size_t salt_len)
Definition: res_srtp.h:74
void(* set_ssrc)(struct ast_srtp_policy *policy, unsigned long ssrc, int inbound)
Definition: res_srtp.h:75
int(* set_suite)(struct ast_srtp_policy *policy, enum ast_srtp_suite suite)
Definition: res_srtp.h:73
struct ast_srtp_policy *(* alloc)(void)
Definition: res_srtp.h:71
int(* unprotect)(struct ast_srtp *srtp, void *buf, int *size, int rtcp)
Definition: res_srtp.h:48
int(* change_source)(struct ast_srtp *srtp, unsigned int from_ssrc, unsigned int to_ssrc)
Definition: res_srtp.h:44
int(* protect)(struct ast_srtp *srtp, void **buf, int *size, int rtcp)
Definition: res_srtp.h:50
struct ast_rtp_instance * rtp
Definition: res_srtp.c:67
Structure for variables, used for configurations and for channel variables.
Definition: ndbm.h:57
Definition: astman.c:222
structure to hold extensions
unsigned int ts
unsigned char is_set
RTP learning mode tracking information.
enum ast_media_type stream_type
struct timeval received
struct ast_sockaddr proposed_address
struct timeval start
struct ast_frame t140
unsigned char t140red_data[64000]
unsigned char ts[AST_RED_MAX_GENERATION]
unsigned char len[AST_RED_MAX_GENERATION]
unsigned char buf_data[64000]
unsigned char pt[AST_RED_MAX_GENERATION]
long int prev_ts
struct ast_frame t140red
Structure used for mapping an incoming SSRC to an RTP instance.
unsigned int ssrc
The received SSRC.
unsigned int ssrc_valid
struct ast_rtp_instance * instance
The RTP instance this SSRC belongs to.
Packet statistics (used for transport-cc)
Statistics information (used for transport-cc)
struct rtp_transport_wide_cc_statistics::@470 packet_statistics
Definition: sched.c:76
Definition: ast_expr2.c:325
STUN support.
int ast_stun_request(int s, struct sockaddr_in *dst, const char *username, struct sockaddr_in *answer)
Generic STUN request.
Definition: stun.c:415
int ast_stun_handle_packet(int s, struct sockaddr_in *src, unsigned char *data, size_t len, stun_cb_f *stun_cb, void *arg)
handle an incoming STUN message.
Definition: stun.c:293
#define ast_debug_stun(sublevel,...)
Log debug level STUN information.
Definition: stun.h:54
#define AST_DEBUG_CATEGORY_STUN
Definition: stun.h:45
static const int STANDARD_STUN_PORT
Definition: stun.h:61
@ AST_STUN_ACCEPT
Definition: stun.h:65
int value
Definition: syslog.c:37
Test Framework API.
#define ast_test_suite_event_notify(s, f,...)
Definition: test.h:189
static struct test_options options
static struct test_val b
static struct test_val a
static struct test_val d
void * ast_threadstorage_get(struct ast_threadstorage *ts, size_t init_size)
Retrieve thread storage.
#define AST_THREADSTORAGE(name)
Define a thread storage variable.
Definition: threadstorage.h:86
int64_t ast_tvdiff_us(struct timeval end, struct timeval start)
Computes the difference (in microseconds) between two struct timeval instances.
Definition: time.h:87
struct timeval ast_samp2tv(unsigned int _nsamp, unsigned int _rate)
Returns a timeval corresponding to the duration of n samples at rate r. Useful to convert samples to ...
Definition: time.h:282
int ast_tvzero(const struct timeval t)
Returns true if the argument is 0,0.
Definition: time.h:117
@ TIME_UNIT_MICROSECOND
Definition: time.h:341
int ast_tvcmp(struct timeval _a, struct timeval _b)
Compress two struct timeval instances returning -1, 0, 1 if the first arg is smaller,...
Definition: time.h:137
struct timeval ast_time_create_by_unit(unsigned long val, enum TIME_UNIT unit)
Convert the given unit value, and create a timeval object from it.
Definition: time.c:113
double ast_samp2sec(unsigned int _nsamp, unsigned int _rate)
Returns the duration in seconds of _nsamp samples at rate _rate.
Definition: time.h:316
unsigned int ast_sec2samp(double _seconds, int _rate)
Returns the number of samples at _rate in the duration in _seconds.
Definition: time.h:333
struct timeval ast_tvadd(struct timeval a, struct timeval b)
Returns the sum of two timevals a + b.
Definition: extconf.c:2282
struct timeval ast_time_create_by_unit_str(unsigned long val, const char *unit)
Convert the given unit value, and create a timeval object from it.
Definition: time.c:143
struct timeval ast_tvsub(struct timeval a, struct timeval b)
Returns the difference of two timevals a - b.
Definition: extconf.c:2297
double ast_tv2double(const struct timeval *tv)
Returns a double corresponding to the number of seconds in the timeval tv.
Definition: time.h:270
ast_suseconds_t ast_time_tv_to_usec(const struct timeval *tv)
Convert a timeval structure to microseconds.
Definition: time.c:90
int64_t ast_tvdiff_ms(struct timeval end, struct timeval start)
Computes the difference (in milliseconds) between two struct timeval instances.
Definition: time.h:107
struct timeval ast_tvnow(void)
Returns current timeval. Meant to replace calls to gettimeofday().
Definition: time.h:159
struct timeval ast_tv(ast_time_t sec, ast_suseconds_t usec)
Returns a timeval from sec, usec.
Definition: time.h:235
static void destroy(struct ast_trans_pvt *pvt)
Definition: translate.c:292
Handle unaligned data access.
static void put_unaligned_uint16(void *p, unsigned short datum)
Definition: unaligned.h:65
static void put_unaligned_uint32(void *p, unsigned int datum)
Definition: unaligned.h:58
int error(const char *format,...)
Definition: utils/frame.c:999
static void statistics(void)
Definition: utils/frame.c:287
FILE * in
Definition: utils/frame.c:33
Utility functions.
#define ast_test_flag(p, flag)
Definition: utils.h:63
#define RAII_VAR(vartype, varname, initval, dtor)
Declare a variable that will call a destructor function when it goes out of scope.
Definition: utils.h:941
#define ast_assert(a)
Definition: utils.h:739
#define MIN(a, b)
Definition: utils.h:231
#define ast_socket_nonblock(domain, type, protocol)
Create a non-blocking socket.
Definition: utils.h:1073
#define ast_clear_flag(p, flag)
Definition: utils.h:77
long int ast_random(void)
Definition: utils.c:2312
#define ast_set_flag(p, flag)
Definition: utils.h:70
#define ARRAY_LEN(a)
Definition: utils.h:666
Universally unique identifier support.
#define AST_UUID_STR_LEN
Definition: uuid.h:27
char * ast_uuid_generate_str(char *buf, size_t size)
Generate a UUID string.
Definition: uuid.c:141
#define AST_VECTOR_RESET(vec, cleanup)
Reset vector.
Definition: vector.h:625
#define AST_VECTOR_ELEM_CLEANUP_NOOP(elem)
Vector element cleanup that does nothing.
Definition: vector.h:571
#define AST_VECTOR_SIZE(vec)
Get the number of elements in a vector.
Definition: vector.h:609
#define AST_VECTOR_REMOVE_CMP_ORDERED(vec, value, cmp, cleanup)
Remove an element from a vector that matches the given comparison while maintaining order.
Definition: vector.h:540
#define AST_VECTOR_FREE(vec)
Deallocates this vector.
Definition: vector.h:174
#define AST_VECTOR_REMOVE_CMP_UNORDERED(vec, value, cmp, cleanup)
Remove an element from a vector that matches the given comparison.
Definition: vector.h:488
#define AST_VECTOR_GET_CMP(vec, value, cmp)
Get an element from a vector that matches the given comparison.
Definition: vector.h:731
#define AST_VECTOR_ADD_SORTED(vec, elem, cmp)
Add an element into a sorted vector.
Definition: vector.h:371
#define AST_VECTOR_INIT(vec, size)
Initialize a vector.
Definition: vector.h:113
#define AST_VECTOR_APPEND(vec, elem)
Append an element to a vector, growing the vector if needed.
Definition: vector.h:256
#define AST_VECTOR(name, type)
Define a vector structure.
Definition: vector.h:44
#define AST_VECTOR_GET_ADDR(vec, idx)
Get an address of element in a vector.
Definition: vector.h:668